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INJECTIVE MODELS OF G-DISCONNECTED
SIMPLICIAL SETS

by Marek GOLASINSKI

The purpose of this paper is to extend the rational homotopy theory
on G-disconnected simplicial sets being not necessary of finite G-type.

Sullivan [12] introduced the rational de Rham theory for connected
simplicial complexes and applied it to show that the de Rham algebra A%
of QQ-differential forms on a simply connected complex X of finite type
determines its rational homotopy type. The central results of Sullivan’s
theory has been generalized by Triantafillou (see [13], [15]) to equivariant
context but under the assumption that a simplicial set X of finite type
with a finite group G action is G-connected and nilpotent, i.e. the fixed
point simplicial subsets X are nonempty, connected, and nilpotent for
all subgroups H C G. In this case not only A% with the induced G-
action are considered but also the de Rham algebras Aj( » of XH for all
subgroups H C G. It means that a functor A% on the category O(G)
of canonical orbits is studied and its componentwise injectivity is the key
observation for the existence of an equivariant analog of Sullivan’s minimal
models. Unfortunately, G-connectedness is a much more severe restriction
on a G-simplicial set than connectedness is in the nonequivariant context,
since it is impossible to break up a G-simplicial set into “connected
components”, as one would do nonequivariantly. Therefore, instead of the
orbit category O(G), we have to work in this paper over the category
O(G, X) with one object for each component of each fixed point simplicial
subset X of a G-simplicial set X for all subgroups H C G.

This paper grew out of our attempt to understand and generalize
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the Ph. D. thesis by B.L. Fine (see [4], the Chicago University, 1992). It
is not clearly written there, but the used methods and obtained results
can be only applied for G-CW-spaces of finite G-type and finitely G-
connected (i.e. all its fixed point subspaces own a finite number of
components). Namely, the category O(G,X) is infinite in general, even
for a G-CW-space X of finite G-type. Put k-Mod’ (resp. k-Mod) for the
category of k-modules (resp. finitely generated) over a field k. It does not
arise from this thesis if the category of functors O(G, X) — k-Mod’ or
O(G, X) — k-Mod is considered. However, none of them is appropriate to
be applied for any (even of finite G-type) G-CW-space. In the category
of functors O(G, X) — k-Mod” sufficiently many injective objects do not
exist. Moreover, in the category of functors O(G, X) — k-Mod the tensor
product of two injective objects is not injective. These two properties are
crucial to make further steps in the Ph. D. thesis by B.L. Fine for studies of
(even of finite G-type) G-CW-spaces.

Here is a brief summary of the paper. In Section 1 we investigate
the category kI-Mod of covariant functors on a small category I to the
category of k-modules over a field k. This approach is inspired by a
category of functors on categories related to the orbit category O(G)
determined by a finite group G. For simplicity we replace these categories
by an EI-category I (i.e. a small category such that all endomorphisms are
isomorphisms). We introduce basic notions and present some prerequisites
about injective objects in the category kI-Mod.

Unfortunately, injective kI-modules are not preserved by tensor
product. Therefore, we move to the category of functors from an EI-
category I to the very useful but rather neglected category k-Mod® of
linearly compact k-modules considered already by Lefschetz in [10]. We
recall the basic terminology in the category k-Mod®, define complete tensor
product and prove Proposition 1.4 on its behaviour on linearly compact
k-modules. Then complete tensor and symmetric powers are defined in
the category of graded linearly compact kl-modules and some of their
properties are stated in Remark 1.6.

In Section 2 we extend our previous investigations on the category
I-DGAg of functors from an FEl-category I to the category DGAy of
differential graded algebras over a field k. For a complete injective (as
a kl-module) klI-algebra A and a complete kI-module M we consider its
cohomologies H*(A), H*(A, M) and a convergent spectral sequence

Ef? = ExtP (M, HI(A)) = HP*9(A,M)
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which is a crucial tool in the sequel.

Then, we generalize the results of [13] and present an existence of an
injective minimal model for a complete injective kl-algebra A, for an FI-
category I. The above spectral sequence plays a key role in a construction
of this model and for this reason the injectivity of A (as a kI-module) is
necessary. On the other hand, by [8] for any complete kl-algebra A there
exists a complete injective kl-algebra £(A) and a natural cohomology
isomorphism A — £(A). First, we show in Propositions 2.3 and 2.4 that
injective minimal kl-algebras behave (up to homotopy) as cofibrant ones.
Then we prove in Theorem 2.8 an existence and uniqueness of an injective
minimal model .MS? of a complete injective kl-algebra A.

Our object in Section 3 is to apply the results assembled in the previous
sections to the category G-SS of G-simplicial sets, where G is a finite group.
We show in Proposition 3.3 that on the de Rham algebra A% of rational
polynomial forms on a simplicial set X there is a natural complete linear
topology. Next we observe that much of algebraic-topological information
on a G-simplicial set X is encoded in the cofinite EI-category O(G, X) with
one object for each component of each fixed point simplicial subset X,
for all subgroups H C G.

With any G-simplicial set X, we associate the de Rham QO(G, X)-
algebra A%, where Q is the field of rationals; its injectivity was presented
in [6]. We show in Lemma 3.6 that the category of injective linearly
compact kO(G, X)-modules is closed with respect to the complete tensor
product and deduce in Theorem 3.7 an existence of an injective minimal
model for the de Rham QO(G, X)-algebra A% of a G-simplicial set X.
Finally, we state Theorem 3.11 as the main result and describe the rational
homotopy type of a nilpotent G-simplicial set X by means of injective
minimal model of the de Rham algebra 4%.

The author wishes to express his indebtedness to Professor
S. Balcerzyk for carefully reading the manuscript and very useful dis-
cussions. He is also grateful to the referee for helpful suggestions.

1. Injective modules over a category.

Let k be a field. The category of (left) k-modules is denoted by
k-Mod. If I is a small category then a covariant functor I — k-Mod is called
a left kI-module and the functor category of left kI-modules is denoted
by kI-Mod, and called the category of left kI-modules. We also have the
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category of contravariant functors I — k-Mod, alias right kI-modules and
denoted by Mod-kI.

The notions submodule, quotient module, kernel, image and cokernel
for kI-modules are defined object-wise. For each object I € Ob(I) we have
the right kl-module

kl(—,I):1 — k-Mod

determined by the Yoneda functor I(—, I) and similarly, the left kI-module
kI(I,—). Projective and injective kl-modules are defined by usual lifting
properties. Observe that the category of projective right kI-modules is
isomorphic to the category of all injectives in the category of all covariant
functors from I to the category k-Mod°P dual to k-Mod.

In various categories considered in algebraic topology endomorphisms
are isomorphisms. Therefore, let I be an EI-category, which by definition,
is a small category in which each endomorphism is an isomorphism.
Following [11], we define a partial order (which is crucial for the sequel) on
the set Is(I) of isomorphism classes I of objects I € Ob(I) by

I<7T if I(I,J)#0.

This induces a partial ordering on the set Is(I) of isomorphism classes
of objects, since the EI-property ensures that I < J and J < I implies
I =J We write that I < Jif I < J and I # J. If I € Ob(I) with
the automorphism group Aut(I), we let k[I] = kAut(I) be the group ring
of Aut(I) and write k[I]-Mod for the category of left k[/]-modules.

For a fixed I € Ob(I) we introduce the following covariant functors
needed in the sequel.

Cosplitting functor St : kI-Mod — k[I]-Mod.

If M is a kI-module, let S;(M) be the k[I]-submodule of M (I) equal
to the intersection of kernels of all k-homomorphisms M (f): M(I) — M(J)
induced by all non isomorphisms f:I — J with I as source. Each
automorphism g € Aut() induces a map M(g): M(I) — M(I) which
maps Sr(M) into itself. Thus S;(M) becomes a left k[I]-module. It is clear
how Sy is defined on morphisms.

Coeatension functor Er : k[I}-Mod — kI-Mod.
This functor sends N to Homyz)(kI(—, I), N).
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It is easy to observe that the category kI-Mod has sufficiently many
injectives. Hereafter, we assume that [ is an EI-category with the filtration
0=ToCTy C--- CTp =Is(I) such that

(*) IeT,, JeT, I<J implies k> ¢.
Injective kI-modules for such a category I have been analysed in [6]. It turns
out that they can be constructed from injective modules over group rings.

The dual category k-Mod°P is isomorphic to the category k-Mod®
of linearly compact k-modules considered in [10]. For our further purpose
we briefly present some results on the category k-Mod®. A topological
k-module M is said to be linearly topological if it is Hausdorff and there
is a fundamental system N (M) of neighborhoods of zero consisting of
k-submodules. A linearly topological k-module M is called linearly compact
if for every collection of its closed affine subsets {F;}icr (i.e. F; = m; + M;
for some closed k-submodule M; C M) with the finite intersection

property it holds [} F; # 0. For linearly topological k-modules M
i€l

and N let Homi(M,N) be the set of all continuous k-linear maps.
We topologize this k-module by requiring that for any linearly compact
k-submodule K C M and an open k-submodule V' C N the k-submodules
{f € Hom}(M,N); f(K) C V} form a subbasis of a linear topology on
Hom! (M, N). For a k-module M, let M* = HomL (M, k) be its topological
dual.

THEOREM 1.1 (see [10]).

(1) A linearly topological k-module M is linearly compact if and only if
M* is discrete.

(2) If M is linearly compact or discrete then the canonical map
M — M™* is a topological isomorphism.

(83) If M and N are linearly compact or discrete k-modules then
the canonical map Homi(M,N) — Homi(N*,M*) is a topological
isomorphism.

There is another interesting link between linearly compact k-modules
and discrete k-modules.
Remark 1.2 (see [10]). — For a k-module M any two of the following
properties imply the third:
(1) M is discrete;
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(2) M is linearly compact;
(3) M is finitely generated.

For a linearly topological k-module M and its closed k-submodule M’
the quotient topology on M /M’ is linear. In particular, if M’ is an open
submodule then this topology on M /M’ is discrete. Let wpr: M — M/M'
be the canonical map. For Vi,V, € N(M) such that Vi C Va, let
w“g :M/Vi — M/V, be the canonical map and

M" = lim M/V.
VeN(M)

Write my : M* — M/V for the canonical projection. Then the collection of
k-submodules {kermy; V € N(M)} forms a subbasis of a linear topology
on M”. The k-module M” with this topology is called the completion
of M. The collection of maps wy : M — M/V, for V € N (M) determines
a continuous monomorphism w:M — M" and w(M) is dense in M".
A topological k-module M is said to be complete if the map w is a
topological isomorphism. Of course, if M is linearly compact or discrete
then w(M) is closed in M" and thus M is complete as well.

For two linearly topological k-modules M and N let M ® N be their
tensor product over k. If V C M and W C N are two open k-submodules,
we write

VW] =VQN+MaW.

Then, the following lemma holds.

LeEMMA 1.3. — If M and N are linearly topological k-modules then
the collection of k-submodules [V, W] of M ® N with open k-submodules
V C M and W C N forms a linear topology on M ® N and such that
the canonical bilinear map M x N — M ® N is universal with respect to
uniformly continuous k-bilinear maps to linearly topological k-modules.

Write M ® N for the completion (M ® N)* and call it the complete
tensor product of M and N. Then the canonical map M x N - M ® N is
universal with respect to uniformly continuous k-bilinear maps to complete
k-modules. Now we are in position to show

ProposiTION 1.4. — If M and N are linearly compact (resp. discrete)
k-modules then M ® N is linearly compact (resp. discrete) and there is a
topological isomorphism M* ® N* — (M ® N)*.
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Proof. — Observe that

M®N = lim M®N/[V,W] ~ lim M/V®N/W.
VeN (M) VeN (M)
WEN(N) WEN(N)

If M and N are linearly compact then the quotient k-modules M/V and
N/W are linearly compact and discrete. Hence by Remark 1.2 both of them
are finitely generated. Thus M ® N is linearly compact as an inverse limit
of finitely generated k-modules and (M ® N)* is discrete. Of course, if M
and N are discrete then the induced topology on M ® N is discrete, so
M®N = M ® N and (M ® N)* is linearly compact.
Define a map
f:M*®& N* — (M & N)*

as follows. For ¢ € M* and @ € N* there is a k-bilinear uniformly
continuous map ¢y: M x N — k such that (¢¢)(m,n) = ¢(m)y(n) for
m € M and n € N. Thus there is a unique map ¢ ® 1: M ® N — k since k
is a complete k-module. Therefore, we can write f(¢ ® ¥) = ¢ ® 9 to get

a continuous k-map f:M* & N* — (M & N)*. It is not difficult to see
that f is a continuous monomorphism.

Let now v € (M®N)* and M,N be linearly compact. Then
there are V. € N(M) and W € N(N) such that v([V,W]) = 0. Let
¥:M/V ® N/W — k be the induced map. But M/V and N/W are finitely
generated k-modules, hence

(M/VQ@N/W)* =~ (M/V)*® (N/W)*.
Let ai,...,a, € (M/V)* and B,...,0 € (N/W)* be such that
¥=a1®P1+ - +0r QB
Define ¢; € N* and z/)z € M* by ¢; = a;my and ¢; = Gymw fori =1,...,r.
Then v = f(¢1 ® Y1 + - -+ + ¢» ® ¥,) and f is an epimorphism.

Let now M and N be discrete and v € (M ® N)*. For finitely
generated k-submodules V C M and 1% CNletV CM*and W C N*
be the corresponding open k-submodules. Then the restriction 7|V g
determines an element in M*/V ® N*/W. Thus we get

peM*®N* = lim M*/V®N*/W
VEN(M*)
WEN(N™)
such that f(¢) = 7. O

Theorem 1.1 and Proposition 1.4 yield immediately
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COROLLARY 1.5.

(1) Any linearly compact k-module is topologically isomorphic to a
product of one-dimensional k-modules.

(2) If{V;};c; and {W; }j ¢ are collections of linearly compact k-modules
then there exists a topological isomorphism

i€l jeJ iet
Let now I be an EI-category. A covariant functor from I to k-Mod° is
said to be a linearly compact left kI-module. Then [6] yields a full description
of all injective kI-modules. For two linearly compact left k[-modules M, N

we define their complete tensor product M @ N as a linearly compact left
kI-modules such that

(M & N)(I) = M(I) & N(I) for all I € Ob(l).

Put @ = {Qi}i>o for a graded linearly compact left kI-module.
Then for any I € Ob(I) we get a graded linearly compact left k-module
Q) = {Q:i(I)}i>o0 and let |g| = ¢ for ¢ € Q;(I). For n > 0, by means
of associativity of the complete tensor product ®, we can define graded
linearly compact left kI-modules ff"Q and §"Q (called the nth tensor and
symmetric power, respectively) as follows:

T"Qu) = P Qu&-®Qi.()
iy tin=i
and
(5"Q):(D) = ((5"Q)u(1)"
for i > 0, where ((S"Q)i(I))" = (T"Qi(I)/(R"Q)s(I))" and (R"Q)i(I) is

the homogeneous k-submodule of (T"Q);(I) generated by elements

QO ®g— (-1)*1Plg @ Qg1 ®G® - B n

for gx € Qg (I) and k = 1,...,n. Then the natural canonical map
7 :T"Q(I) — TrQ(I)/R™Q(I) determines 7 :T"Q(I) — S"Q(I) for
I € Ob(I).
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Moreover, if characteristic of k is zero then there is a natural map
or:S"Q(I) — T"QI)
such that

1
(1 ® - ®qn+R"Q(I)) = ] > e(r)gry ® @ oy
TESH
for gx € Q)q,|(I), I € Ob(I) and k = 1,...,n, where S, is the nth symmetric
group and €: S, — {41, —1} the sign map. Then we get the induced natural
map

51:8"Q(I) — T"Q(I)

such that 7157 = idg,, for I € Ob(I) and 5"Q is a direct summand

of f”Q. Moreover, we define fQ and §Q, the graded linearly compact
tensor and symmetric left kl-algebra, where for ¢ > 0

(TQ)i = P(T"Q): and (5Q); = P(5"Q):.

n>0 n>0

Observe that §Q = ’fQ/ ﬁQ, where EQ is the closed homogeneous
ideal of T'Q) generated by elements

cR@y—(-1)¥ly @z for z,yeTQ.

Remark 1.6. — If Q = {Q;}i>0 is a graded injective linearly compact
left kI-module and the complete tensor product preserves injective linearly
compact left kI-modules then the graded linearly compact left kI-modules
TnQ, 5"Q for n > 0 and TQ = {(TQ):}i>0, SQ = {(5Q);}i>0 are injective
linearly compact left kI-modules.

2. Algebras over a category and their injective
minimal models.

Let DG Ay be the category of homologically connected commutative
differential graded k-algebras (or simply k-algebras). We briefly recall some
constructions presented in [9]. For a given map v:B — E in DGAy,
where B is augmented, Halperin [9] considers its “minimal factorization”.
Namely, he generalizes the notion of a minimal k-algebra (cf. [12]) to a
minimal K S-extension given by a sequence of augmented k-algebras

E:B—*»C -2 A,
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where A is free as a graded commutative k-algebra generated by some
graded k-module M = {M;};>0. If My = 0 then the extension E is called
positive. Next in [9], it is shown that for any map v: B — E of connected
k-algebras, where B is augmented there is a unique (up to isomorphism)
minimal K S-extension

E:B—sC-"5 4

and a homology isomorphism p:C — E such that poi=1.

The extension E together with the map p:C — E is called a KS-
minimal model for . In particular, for a k-algebra A and the canonical
map k — A one gets a minimal algebra M4 together with a homology
isomorphism p4 : M4 — A called the minimal model for A.

An object A = {A"},>0 in DG Ay is called complete if

(1) A™ is a complete linearly topological k-module and the differential
d: A™ — A"t is continuous for all n > 0;

(2) multiplication A™ x A™ — A™*™ is uniformly continuous for
all n,m > 0 (with respect to the linear product topology on A™ x A™).

Write DGA,: for the subcategory of DG A determined by complete
differential graded k-algebras.

Let A be a complete k-algebra with the differential d, M a (non-
graded) linearly topological k-module and 7: M — Z"*'A a k-map to
the (n + 1)-cocycles of A for a fixed n > 0. Denote by (M,n) the graded
k-module with M in degree n and 0 otherwise. Define a differential d,
on A ® S(M,n) by

d‘r|A:d and d'r|M:T,

where §(M ,n) is the completion of the symmetric algebra S(M,n) on the
graded k-module (M,n). Then the k-algebra (A ® S(M,n), d,), denoted
by A ®, S(M,n), is called an elementary extension of M and the class

[r] € H™™ (Homy (M, A)) = Homy (M, H" ' A)

the structure class. For a minimal k-algebra M let M (n) be its subalgebra
generated by elements of degree less or equal n. Then M is said to be
nilpotent if each M(n) is constructed from M(n — 1) by a finite number of
elementary extensions. A homologically connected k-algebra A is said to
be nilpotent if its minimal model M4 is nilpotent. If X is a (connected)
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nilpotent simplicial set then the de Rham Q-algebra A% of differential
form is nilpotent as it was shown in [1]. If a k-algebra A is augmented let
A= ker(A — k) be its augmentation ideal. Recall that decomposability of
the differential d of A means that d(4) C A - A.

Let I be an EI-category and kI-DGAj the category of all covariant
functors from I to DGAg called klI-algebras (or simply systems of k-
algebras). We say that a kl-algebra A is complete (resp. linearly compact)
if the algebras A(I) are complete (resp. linearly compact) for all I € Ob(I)
and A is injective if the left kI-modules A™ are injective for n > 0, where
A™(I) = (A(I))™ for all I € Ob(I).

For any complete injective (as a kI-module) kI-algebra A and a
complete left kI-module M we consider two types of cohomology of A.

(1) The kI-module H™(A) such that H™(A)(I) = H"(A(I)) for
I €0Ob(I)andn > 0.

(2) The cohomology H™(A, M) = H"(Hom(M, A)) with coefficients
in M for n > 0, where {Hom(M, .A")},>0 is a cochain complex in the
category of complete left kI-modules. For a projective resolution M)
of M in the category of complete kI-modules we form the double
complex Hom(M®), A). The standard homological algebra arguments yield
a spectral sequence

E}? = Ext?(M,HY(A)) = HP*(A, M).

Notice that the injectivity of A (as a kl-module) implies the convergence of
this sequence and H"(A, M) = Hom(M, H"(A)) if M is projective. This
spectral sequence is an essential tool in our further investigations.

Remark 2.1. — If A and B are injective (as kI-modules) kl-algebras
then a map f:A — B induces an isomorphism H"(f): H"(A) — H™(B)
for n > 0 if and only if for any kl-module M the induced map
H"(f,M):H"(A,M) — H™(B, M) is an isomorphism for n > 0.

Proof. — If H™(f) is an isomorphism for n > 0 then from the
above spectral sequence it follows that H"(f, M) is an isomorphism as well
for n > 0.

Let now H™(f, M) be an isomorphism for any kI[-module M and
n > 0. For a fixed object I € Ob(I) consider a kI-module M; such that
M;(J) = kI(J,I). Then H*(M;, A) = H"(A(I)) = H"(A)(I) and H"(f)
is an isomorphism for any n > 0. O






