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ABOUT G-BUNDLES OVER ELLIPTIC CURVES

by Yves LASZLO((*)

1. Introduction.

In this note, we study principal bundles over a complex elliptic curve
X with reductive structure group G. As in the vector bundle case, we
first show that a non semistable bundle has a canonical semistable L-
structure with L some Levi subgroup of G reducing the study of G-
bundles to the study of semistable bundles (Proposition 3.2). We then
look at the coarse moduli space Mg of topologically trivial semistable
bundles on X (there is not any stable topologically trivial G-bundle)
and prove that it is isomorphic to the quotient [['(T) ®z X|/W where
I'(T) is the group of one parameter subgroups of a maximal torus 7' and
W = N(G,T)/T is the Weyl group (Theorem 4.16). Suppose that G is
simple and simply connected and let 6 be the longest root (relative to some
basis (ai,...,a;) of the root system ®(G,T)). The coroot 8V of 6 has a
decomposition 8 = Y g;a) with g; a positive integer. Using Theorem 4.16

(2

and Looijenga’s isomorphism

[F(T) ®z X]/W = P(l?gh cee ’gl)a
one gets that Mg is isomorphic to the weighted projective space
P(1,91,...,91) (see 4.17), generalizing the well-known isomorphism
Msy,,, = P* (see [T] for instance). One recovers for instance the Ver-
linde formula in this case.

We know that these results are certainly well-known from experts,
but we were unable to find any reference in the literature, except of course
when G is either SL or GL. For another point of view, see [BG].

During the referee process of this paper, an independent paper of
Friedman, Morgan and Witten has appeared in Duke’s eprints (see [FMW]),
where the link between Looijenga’s result and bundles on elliptic curves is
studied from another point of view.

I would like to thank M. Brion and J. Le Potier for their comments on
a preliminary version of this note and the referee for valuable suggestions.

(*) Partially supported by the European HCM Project “Algebraic Geometry in Europe”
(AGE).
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Notations. — By scheme, we implicitly mean a complex scheme. Let
G be a reductive group with a Borel subgroup (resp. a maximal torus)
B (resp. T C B). The corresponding Lie algebras will be denoted by t, b
and g.

We denote by W = N(G,T)/T the Weyl group and by I'(T") the W-
module Hom(G,,,T).

2. Review on the Harder-Narasimhan reduction.

Let X be an algebraic curve which is smooth, projective and con-
nected and E be a G-bundle on X. Recall that E is semistable if and only
if the adjoint bundle £ = Ad(FE) is a semistable vector bundle. Following
[AB], let me recall how to define the Harder-Narasimhan reduction of E.
Pick a non degenerate invariant quadratic form ¢ on the Lie algebra of G.
Then q defines a non degenerate quadratic form on €.

LEMMA 2.1. — The length r — 1 of the Harder-Narasimhan filtration
0=&cC...c&cC...cé& =€
of € is even.
Proof. — Let
0=&C...c&C...Ccé&. =€
be the Harder-Narasimhan filtration of £. The Harder-Narasimhan filtra-
tion of £* is
0C...C(E/&-) C...C&

Because £ is self-dual, the Harder-Narasimhan filtration is self-dual and
one has an isomorphism

(2.1) E S (E)E )
inducing isomorphisms
(2.2) gri = (grr41-4)%i=1,...7

where gr; = £;/€;_1. Assume that the length 7 — 1 is odd. Let us consider
the morphisms

mk:f,'r/2®5k—>8/£k_1, 0<k<r-1
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deduced from the Lie bracket of £. The equality (2.2) gives the inequalities

(2.3) B1 > > ey > =g > > =

where p; is the slope of the semistable vector bundle gr; = &;/€;—1. In
particular, the slopes p; + p; of the subquotients gr; ® gr;,i < r/2 and
J < k which appear in &/, ® & are not less than . /5 + px > px though
the slopes of the subquotients gr;,7 > k which appear £/&_1 are < .
This shows that myg is zero for all £ and that all elements ofE, /2 are
nilpotent. By (2.1), this algebra is also lagrangian. Suppose that the
center of G is of positive dimension. Then £ contains a trivial sub-bundle
(of positive rank) as a direct summand which implies that some of the
u;’s is zero, contradicting (2.3). The Lie algebra bundle £ is therefore
semisimple and therefore has no no non trivial lagrangian sub-Lie algebra
(with respect of the Killing form form) consisting of nilpotent elements,
just by a dimension argument. O

It follows that one can index the Harder-Narasimhan filtration of £
such that

(2.4) 0=8_TC8_T+1C...C5_1C&)C...Cgr_lzg

where £_; is the orthogonal of £;_;. One checks that & is a subalgebra
of £. Notice that & /E_1 is self-dual and therefore has slope zero. In
particular, the slope of gr_;,j > 0is > 0. As in the proof of the preceding
lemma, this immediately implies the sequence of inclusions

(25) [S_j,g_l] C 8_]‘_1 for all J-

In particular, all elements of £_; are nilpotent. For sake of completeness,
let me prove this easy lemma (cf. Th VIIL.10.1 of [Bo]).

LEMMA 2.2. — Let g be a reductive algebra endowed with an invariant
non degenerate bilinear form. Let n' be a subalgebra of g whose elements
are nilpotent. Then, if the orthogonal of v’ is a sub-Lie algebra of g, it is
parabolic.

Proof. — The Lie algebra n’ is nilpotent. Let b be a maximal
solvable Lie subalgebra of g containing n’ and n its nilpotent ideal. By [Bo],
Definition VIIL.3.3.1, b is a Borel subalgebra of g. Because all elements of
n’ are nilpotent, n’ is contained in n. By [Bo], proposition VII.1.3.10 (iii),
the orthogonal of n is b and the lemma follows. O

Because the orthogonal of £_; is &, the Lie subalgebra & is therefore
parabolic with radical £_; (see [AB], p. 589). Let P be the unique standard
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parabolic subgroup defined by &y. If F' is the bundle of local trivialization
Gs = Es (S — X étale) whose differential sends Lie(P)s to &, then F is
a P-structure of E. Let us denote by U the unipotent radical of P and
by P (resp. F) the quotient P/U (resp. F/U). By construction, F is
semistable (because Ad(F) = £/€_1).

DEFINITION 2.3. — With the notation above, the P-bundle F is the
Harder-Narasimhan reduction of E.

Remark 2.4. — It is easy to check that the filtration and therefore
the corresponding reduction does not depend on the particular choice of
the invariant non degenerate quadratic form on Lie(G).

Example 2.5. — Suppose that E is the GL,-bundle of local
frames of a vector bundle £ on X with Harder-Narasimhan filtration
0=E&...C¢&...C & =E&. Let P be the quasi-triangular subgroup of
GL,-defined by the partition [r; = rk(&;4+1) — rk(&;)]o<i<k of rk(€). Then
F is the P-bundle of local frames compatible with the filtration and F is
the x; GL,,-bundle of local frames of ® £;;1/&; .

‘We suppose once for all that X is an elliptic curve.

3. Non semistable G-bundles.

Let E be a G-bundle on X and let F' be the Harder-Narasimhan
reduction of E. Let us consider a Levi factor of P thought as a section
o : P — P of the canonical projection P —» P = P/U.

Remark 3.1. — Following Humphreys (see [Hu|, 30.2) a Levi factor is
a factor of the unipotent radical and not of the radical itself (as in Bourbaki
for instance).

PROPOSITION 3.2. — With the notations above, the P-bundle o, (F)
is isomorphic to F'.

Remark 3.3. — This is the generalization of the well-known (and
easy) fact that any vector bundle on X is a direct sum of semistable vector
bundles.

Proof. — Let us denote by

1-U—-P->P-o1
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be the twist of
1-U—-P—->P—1

by F (see [S], chap. I & 5). Geometrically, P (resp. P) is the group
scheme Autp(F) (resp. Autp(F)). The twisted group U is the unipotent
radical of P and is isomorphic F xp U (P acts on the normal subgroup U
by conjugation). As usual, the map

H(X,P) - H'X,P) __ [H(X,P) — H(X,P)
F" s Isomp(F,F")™P\  F" =+ ZIsomp(F,F")

are bijective. The image of Zsomp(F,0,F) in H*(X, P) is the trivial torsor
ZIsomp(F,F) and it is enough to show the equality H'(X,U) = {{U]} to
prove the isomorphism F = ¢,(F). With the notations of (2.4), the Lie
algebra of U is £_1. By (2.5), the Lie algebra £_;/€_;_; is abelian for any
j > 1. This induces a filtration

1=U_, Cu_r+1 C...CUCU1=U
by unipotent group schemes where the exponential defines isomorphisms
UjU_j1 > E /€ 1521

of abelian group schemes. By construction, £_;/€_;_1,j > 1 is semistable
of positive slope and therefore

HY(X,E_;/€E_j-1)=0,j>1
because g(X) = 1. This implies the equality

HY(X,U) = {[u]}.

4. The coarse moduli space Mg.

Let Mg be the coarse moduli space of semistable G-bundle of trivial
topological type (what is the same, the component containing the trivial
torsor Gx). Recall that the (closed) points of Mg are S-equivalence classes
of semistable G-bundles. The only thing which will be needed about this
equivalence relation is the following (cf. [Ral], Corollary 3.12.1):

4.1. Every class £ defines a Levi subgroup L such that there exists
a stable L-bundle F' with F(G) € €. Moreover, F(G) is well defined up to
isomorphism.
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Remark 4.2. — Ramanathan’s construction of Mg is written for a
curve of genus > 2, but the construction can be made in general (see for
instance [LeP] in the case of G = GL,, from which the general case follows).

4.3. We denote by a ® b the product of two T-bundles a and b (for
the natural structure of abelian group of H*(X,T)). Let 1 = (¢);cs be a
finite family of one parameter subgroups and L = (L; € I) a family of line
bundles of degree 0 on X (thought as G,,-torsors). Then, %{)I Li(¢;) is a

T-structure of a G-bundle L, on X which is semistable. This defines a
morphism of abelian groups

p:T(T)®z X — HY(X,T).

Chose a (closed) point = of X which defines an isomorphism Pic’(X) = X
and a Poincaré line bundle P on X x Pic’(X). This allows to construct a
universal semistable T-bundle L on X x I'(T) <§z§> X.

Remark 4.4. — The theta line bundle ©® on X = Pic'(X) becomes
through the isomorphism X = Pic(X) the determinant bundle det(RT'P)*.

The family of semistable bundles L(G) defines a morphism of (re-
duced) schemes
I(T) ®z X — Mg.

The action of the Weyl group W on I'(T') defines an action I'(T") ézz) X such
that w.Ly = Ly for all w € W. Let

7 [I(T) ®z X]/W — Mg

be the induced morphism. We want to prove that 7 is an isomorphism.

4.5. Let us prove that m is finite. Let G — SLy be a faithful
representation of G inducing a morphism Mg — Mgyr,,. Let L be the
inverse of the determinant bundle on Mgy, .

Remark 4.6. — Notice that in this case, Mgy, = PY-1 and that the
determinant bundle is just O(1) (see [Tu], Theorem 7 for instance).

LEMMA 4.7. — The line bundle 7*(L) is ample.

Proof. — One can assume that G is semisimple. Let g be the natural
morphism
qg: T(T)®z X — Mg.
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It is enough to prove that ¢*(L) is ample. Let us choose a basis of T'(L)
identifying I'(T') (%) X with X! (I is the rank of G). Let v : G,,, — T be a non
trivial element in I'(T). Let g, : X — Mg be the morphism defined by .
One can assume that y(z) = diag(2",...,2™") for z € C* (with }_~v; = 0).
Then (see Remark 4.4),

* A
q’Y(L) = e it
which is ample because 3 42 > 0 (recall that - is non trivial). The rank-N

vector bundle bundle parameterized by (z1,...,x;) is

6?(’)( Z*yi(:w, —x))

YEY

By additivity of the determinant bundle, ¢*(L) is of the form

©% with b; > 0
1<i<l

and therefore is ample. O

The fibers of 7 are therefore finite, and the proper morphism = is
finite.

4.8. Let m~1(0) be the fiber of 7 at the trivial bundle Gx. Let us first
prove that 771(0) is set-theoretically reduced to [0], the class W.0. Let us
first prove the following general result.

4.9. Let us consider the following situation: let p : X — S be a proper
morphism such that Og — p.Ox is an isomorphism. Assume that p has a
sectiono : S — X. Let A C B be a reductive subgroup of a linear group B.

LEMMA 4.10. — Let a be an A-bundle trivial along o. Then, if the
associated B-bundle 3 = a(B) is trivial, the A-bundle « is so.

Proof. — Let s be the section of §/A defined by «. Because §/A is
affine over S, the section s factors through p in a section 5. Because « is
trivial along o, the section § comes from a section of the restriction to o
of the trivial bundle 3 and can be lifted to a section s’ of 3. The section
s’ mod A of3/A is equal to s and defines a trivialization of . = s*3. O

4.11. Choose an embedding G in a product G’ = [[ GL,, of linear

groups such that Zo(G) C Zo(G’') (Zp denotes the neu{ral component).
Let T’ be a maximal torus of G’ containing T. Let f: Mg — Mg be a
natural morphism (see [Ra2], Corollary of Theorem 7.1). Let E be a T-
bundle such that E € 7=1(0) and let E’ be the corresponding 7’-bundle.
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Because f(E(G)) = [E'(G")], the semistable bundle is equivalent to the
trivial bundle and is therefore trivial (a direct sum of line bundles of degree
0 is equivalent to the trivial bundle if and only if all summands are trivial).
Applying the preceding lemma with a = E,A=T,B =G’ and X = X for
instance, one gets that E is trivial.

4.12. It remains to show that = is étale at the origin: this will follow
from the fact that the completion of 7 at the origin can be identified to the
completion at the origin of the Chevalley isomorphism t/W = g/G.

LEMMA 4.13. — The morphism 7 : (I'(T) ® Pic’(X))/W — Mg is
étale at the origin.

Proof. — Let’s briefly recall how to construct the moduli space Mg
(see [Ral], [BLS]), or better of an affine neighborhood M of the trivial bun-
dle X x G as a GIT quotient Y/H of a smooth affine scheme Y by some
reductive group H (with Lie algebra b). One choose first a faithful represen-
tation G < GL,, inducing an embedding I'(T) ® Pic®(X) — (Pic®(X))".
For m big enough, one knows that the canonical morphism

tp: H°(P(C™) ® O(mz)) ® O — P(C™) ® O(mxz)

is surjective for all semistable bundles P and that H°(.p) is bijective. Let
x be the Euler characteristic of some P(C") ® O(mxz). By the theory of
Hilbert schemes, the pairs (P,¢) where P is a semistable G-bundle and ¢
an isomorphism

H°(P(C™) ® O(maz)) = CX

are parameterized by a smooth scheme Y and Mg is a GIT quotient of this
scheme by H = GL,, (see [BLS]). Notice that the stabilizer of the “trivial
pair” is G itself.

Let U be the universal T-bundle on X x (I'(T) ® Pic’(X)). Let
us chose a trivialization of the vector bundle RI['(LXO(mz)) on some
symmetric affine neighborhood S° of 0 in Pic®(X). Therefore, the direct
image of U(C™)KIO(m) is trivial on § = (§°)" NT(T) ® Pic’(X) and the
trivialization is W-equivariant. The induced morphism 7: S — Mg =Y/H
is therefore induced by a W-equivariant morphism S — Y mapping 0 to y.
Notice that the orbit H.y is closed. By considering some H-invariant afline
open neighborhood of y, one can assume that Y is afiiuic (the quotient Y/H
is now a neighborhood of H.y in Mg).
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Let’s consider the following commutative diagram:

ClYl+ — C[S]+

@ 1

V=(T;Y)h £» T3S

where C[Y]4 (resp. C[S]4+) denotes the maximal ideal of y (resp. 0). The
transpose of k is the tangent map of S — Mg from S to the stack of
G-bundles on X, namely the Kodaira-Spencer map

k: t=t® H(X,0x) =ToS — (T,Y)/h =g ® H'(X,0) = g.

LEMMA 4.14. — The Kodaira-Spencer map k is the canonical
inclusion t — g.

Proof. — By functoriality, one is reduced to the case where G = GL,,
and T is the torus of invertible diagonal matrices. Consider the one
parameter subgroup of differential aE;; for some integer a (E;; is the
standard diagonal rank 1 matrix). If (Aq,g) is a Cech-cocycle representing
X € HY(O), the derivative

on
—(0
(v ®N) ©
is defined by the vector bundle on X [e]/(e2 = 0) with cocycle 1 + aeAy g Ei ;.

In other words,
on

O(v®A)

which proves the lemma. g

(0) = Adv,

Notice that k is N(G,T)-equivariant. By Luna’s results ([Lu]), one
obtains an étale slice of Y — Y/H as follows.

One choose an H, = Autg(X x G) = G-invariant section o of
C[Y]4+ — (T,;Y)/h and the induced morphism Y — V' identifies étale lo-
cally Y/H and V/H,. The group N(G,T) being reductive and *k being
surjective, one pick an invariant section 7 of 'k : g* — t* which defines
a morphism (still denoted by 7)

t* — C[Y]+ — C[5]+
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which is W-equivariant. This is a W-equivariant section of C[S]+ — T§S
and therefore defines an étale slice of S — S/W. Shrinking S and Y if
necessary, one obtains from the diagram (4.1) the commutative diagram

i —— cls¥

S(a) { S(7) [

(8g9)¢ 25 (g¢)W

where §(c) and S(7) are étale. By Chevalley’s theorem, 7 is therefore étale
at the origin. O

4.15. The morphism 7 is therefore a finite morphism between normal
varieties and is of degree 1. We have proved the

THEOREM 4.16. — The morphism
m: [I(T) ®@z X|/W — Mg

is an isomorphism.

4.17. Assume that G is simple and simply connected. Let 6 be the
longest root and a;,i =1,...1 the basis of the root system ®(B,G). The

coroot 8V is a sum
v v
6" = E gity
i

where o is the coroot of a. Then Looijenga [Lo] has proved that
[[(T) ®z X]/W is the weighted projective space P(1,91,...q)-

Remark 4.18. — The proof in [Lo] is not correct. See [BS] for a more
general result and hints for a complete proof.

4.19. It is interesting to remark ([D], remarques 1.8) that O(l) is
locally free if and only if [ is a multiple of lem(g;) although it is reflexive
(Lemme 4.1 of loc. cit.). In particular, Mg is locally factorial if and only
if lem(g;) = 1, condition which is equivalent to G special in the sense of
Serre (look at the table of [Bo]). If one notice that lem(g;) is also the
minimal Dynkin index of the representations of G (see [LS]), this funny
characterization of special groups in terms of Mg is the version in the
genus one case of Proposition 13.2 of [BLS] (which deals with the genus
> 1). In all the cases, one has the formula

(4.2) dim H®(Mg, O(1)) = card(P)
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where P, is the number of dominant weights w such that < 8V, w >< 1, as
predicted by the Verlinde formula (see [Be]).

4.20. Let us explain briefly the link between the theorem of
Narasimhan and Seshadri and our description of Mg. Suppose that
G is semisimple with maximal compact subgroup K. The theorem of
Narasimhan and Seshadri says that the complex points of Mg are param-
eterized by equivalence classes of pairs of elements of K which commutes
(K acting on these pairs diagonally through the adjoint action). Suppose
further that G is simply connected. Then such a class has a representative
in Tg X Tr (where Tg is the maximal torus of K). Suppose that X (C) is
a complex torus C/Z @ Zt of period 7 in the Poincaré upper half plane.
The complex structure (a,b) — a — 7b on R x R induces a complex struc-
ture on Tr X Tr which is naturally the maximal torus T of G. We get a
diagram

F(T) ® C 5 TR X TR

I(T)® X(C) —— Mg(C)

One checks easily that this diagram commutes.
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