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ABOUT G-BUNDLES OVER ELLIPTIC CURVES

by Yves LASZLO(*)

1. Introduction.

In this note, we study principal bundles over a complex elliptic curve
X with reductive structure group G. As in the vector bundle case, we
first show that a non semistable bundle has a canonical semistable L-
structure with L some Levi subgroup of G reducing the study of G-
bundles to the study of semistable bundles (Proposition 3.2). We then
look at the coarse moduli space MG of topologically trivial semistable
bundles on X (there is not any stable topologically trivial G-bundle)
and prove that it is isomorphic to the quotient [r(T) 0z •^r]/^ where
r(T) is the group of one parameter subgroups of a maximal torus T and
W == N(G,T)/T is the Weyl group (Theorem 4.16). Suppose that G is
simple and simply connected and let 0 be the longest root (relative to some
basis (ai,... ,ai) of the root system <I>(G',r)). The coroot 0^ of 0 has a
decomposition 6^ = ̂  gio^ with gi a positive integer. Using Theorem 4.16

i
and Looijenga's isomorphism

[r(r)0zX]/iv^P(i,<7i,...,pO,
one gets that MG is isomorphic to the weighted projective space
P(l ,<7i , . . . ,^) (see 4.17), generalizing the well-known isomorphism
M3L(+i ^ y1 (see [T] for instance). One recovers for instance the Ver-
linde formula in this case.

We know that these results are certainly well-known from experts,
but we were unable to find any reference in the literature, except of course
when G is either SL or GL. For another point of view, see [BG].

During the referee process of this paper, an independent paper of
Friedman, Morgan and Witten has appeared in Duke^s eprints (see [FMW]),
where the link between Looijenga^s result and bundles on elliptic curves is
studied from another point of view.

I would like to thank M. Brion and J. Le Potier for their comments on
a preliminary version of this note and the referee for valuable suggestions.
(*) Partially supported by the European HCM Project "Algebraic Geometry in Europe"
(AGE).
Key words: Semistable - Moduli space - Elliptic curve.
Math. classification : 14-01 - 14H60 - 14D20.
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Notations. — By scheme, we implicitly mean a complex scheme. Let
G be a reductive group with a Borel subgroup (resp. a maximal torus)
B (resp. T C B). The corresponding Lie algebras will be denoted by t, 6
and Q.

We denote by W = N{G,T)/T the Weyl group and by r(T) the H^-
moduleHom(G^r).

2. Review on the Harder-Narasimhan reduction.

Let X be an algebraic curve which is smooth, projective and con-
nected and E be a G-bundle on X. Recall that E is semistable if and only
if the adjoint bundle £ == Ad(£') is a semistable vector bundle. Following
[AB], let me recall how to define the Harder-Narasimhan reduction of E.
Pick a non degenerate invariant quadratic form q on the Lie algebra of G.
Then q defines a non degenerate quadratic form on £.

LEMMA 2.1. — The length r — 1 of the Harder-Narasimhan nitration

0 = So C ... C £i C ... C £r = £

of£ is even.

Proof. — Let

0 = £o c ... C £i C ... C £r = £

be the Harder-Narasimhan filtration of £. The Harder-Narasimhan filtra-
tion of £* is

O c . . . c (£/£r-iY c...c£\
Because £ is self-dual, the Harder-Narasimhan filtration is self-dual and
one has an isomorphism

(2.1) £, ̂  {£ /Sr-iY

inducing isomorphisms

(2.2) gri ̂  (grr-^i-iY.i = l , . . .r

where gri = <£^/^-i. Assume that the length r — 1 is odd. Let us consider
the morphisms

mk '• £r/2 <S)£k —^ £/£k-i, 0 < k ^ r - 1
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deduced from the Lie bracket off. The equality (2.2) gives the inequalities

(2.3) /^i > ... > ^/2 > -/^/2 > ... > -A4

where /^ is the slope of the semistable vector bundle gri = Si/£i-\. In
particular, the slopes /^ 4- /^- of the subquotients gri 0 grj,i < r/2 and
j <, k which appear in 8^/2 ̂  £k are not less than fJ.r/2 + l^k > ^k though
the slopes of the subquotients pr^z > k which appear E/£k-i a^ <: f^k-
This shows that mk is zero for all k and that all elements of£y./2 are
nilpotent. By (2.1), this algebra is also lagrangian. Suppose that the
center of G is of positive dimension. Then £ contains a trivial sub-bundle
(of positive rank) as a direct summand which implies that some of the
a^s is zero, contradicting (2.3). The Lie algebra bundle £ is therefore
semisimple and therefore has no no non trivial lagrangian sub-Lie algebra
(with respect of the Killing form form) consisting of nilpotent elements,
just by a dimension argument. D

It follows that one can index the Harder-Narasimhan nitration of £
such that

(2.4) 0 = £-r C f-r+i C ... C £-1 C £o C ... C £r-i = £

where £-j is the orthogonal of £j-i. One checks that £o is a subalgebra
of £. Notice that ^o/^-i is self-dual and therefore has slope zero. In
particular, the slope of gr-j^j > 0 is > 0. As in the proof of the preceding
lemma, this immediately implies the sequence of inclusions

(2.5) [£-,,£-i]c^-iforallj.

In particular, all elements of f-i are nilpotent. For sake of completeness,
let me prove this easy lemma (cf. Th VIII. 10.1 of [Bo]).

LEMMA 2.2. — Let Q be a reductive algebra endowed with an invariant
non degenerate bilinear form. Let n' be a subalgebra ofQ whose elements
are nilpotent. Then, if the orthogonal ofn' is a sub-Lie algebra of Q, it is
parabolic.

Proof. — The Lie algebra n' is nilpotent. Let b be a maximal
solvable Lie subalgebra ofg containing n' and n its nilpotent ideal. By [Bo],
Definition VIII.3.3.1, b is a Borel subalgebra of fl. Because all elements of
n7 are nilpotent, n' is contained in n. By [Bo], proposition VII.1.3.10 (iii),
the orthogonal of n is b and the lemma follows. D

Because the orthogonal of f-i is £o, the Lie subalgebra £o is therefore
parabolic with radical E-\ (see [AB], p. 589). Let P be the unique standard
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parabolic subgroup defined by So. If F is the bundle of local trivialization
Gs —> Es {S —> X etale) whose differential sends Lie(P)^ to So, then F is
a P-structure of E. Let us denote by U the unipotent radical of P and
by P (resp. F) the quotient P/U (resp. F / U ) . By construction, F is
semistable (because Ad(F) = fo/^-i).

DEFINITION 2.3. — With the notation above, the P-bundle F is the
Harder-Narasimhan reduction of E.

Remark 2.4. — It is easy to check that the filtration and therefore
the corresponding reduction does not depend on the particular choice of
the invariant non degenerate quadratic form on Lie(G).

Example 2.5. — Suppose that E is the GL^-bundle of local
frames of a vector bundle S on X with Harder-Narasimhan filtration
0 = So ... C S i . . . C Sk = S. Let P be the quasi-triangular subgroup of
GL^-defined by the partition [r, == rk(f,-n) - rk(Si)]o^<k of rk(f). Then
-F is the P-bundle of local frames compatible with the filtration and F is
the Xi GL^ -bundle of local frames of (B^+i/f^ .

i

We suppose once for all that X is an elliptic curve.

3. Non semistable G-bundles.

Let E be a G-bundle on X and let F be the Harder-Narasimhan
reduction of E. Let us consider a Levi factor of P thought as a section
a : P —> P of the canonical projection P —>-> P = P / U .

Remark 3.1. — Following Humphreys (see [Hu], 30.2) a Levi factor is
a factor of the unipotent radical and not of the radical itself (as in Bourbaki
for instance).

PROPOSITION 3.2. — With the notations above, the P-bundle a^(F)
is isomorphic to F.

Remark 3.3. — This is the generalization of the well-known (and
easy) fact that any vector bundle on X is a direct sum of semistable vector
bundles.

Proof. — Let us denote by

1-^U-^P ^P -^ 1
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be the twist of
1 _,[/_,?_,?_, 1

by F (see [S], chap. I & 5). Geometrically, P (resp. P) is the group
scheme Autp(F) (resp. Autp(F)). The twisted group U is the unipotent
radical of V and is isomorphic F Xp U (P acts on the normal subgroup U
by conjugation). As usual, the map

(H^X.P) -^ H^X.r) (H^X.P) -^ H^X.P^
{ F" ^ Isomp(F,Fff)Iesp'\ F" >—-. Tsomp{F,F")

are bijective. The image ofZsomp(F, a^F) in ̂ (X, P) is the trivial torsor
Xsomp(F^F) and it is enough to show the equality ^(X^U) = {[U]} to
prove the isomorphism F ^ cr^(jF'). With the notations of (2.4), the Lie
algebra otU is £-1. By (2.5), the Lie algebra E-j/£-j-\ is abelian for any
j > 1. This induces a filtration

1 = U-r C Z^-r+i C ... C U-2 C U-i = U

by unipotent group schemes where the exponential defines isomorphisms

U,,IU^ ^ ^-j/S-j-i J ^ 1

of abelian group schemes. By construction, S-j/S-j-\^j > 1 is semistable
of positive slope and therefore

^(X.f-^-i^O,.^!

because g(X) = 1. This implies the equality

H1(X^)={[U}}.

D

4. The coarse moduli space MG'

Let MG be the coarse moduli space of semistable G-bundle of trivial
topological type (what is the same, the component containing the trivial
torsor Gx)- Recall that the (closed) points of MG are 5-equivalence classes
of semistable G'-bundles. The only thing which will be needed about this
equivalence relation is the following (cf. [Ral], Corollary 3.12.1):

4.1. Every class ^ defines a Levi subgroup L such that there exists
a stable L-bundle F with F(G) G £,. Moreover, F{G) is well defined up to
isomorphism.
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Remark 4.2. — Ramanathan's construction of MG is written for a
curve of genus >_ 2, but the construction can be made in general (see for
instance [LeP] in the case of G = GLn from which the general case follows).

4.3. We denote by a 0 b the product of two T-bundles a and b (for
the natural structure of abelian group of ^(X^T)). Let ^ = Wiel De a

finite family of one parameter subgroups and L == {Li € I ) a family of line
bundles of degree 0 on X (thought as Gy^-torsors). Then, (g) L^(^) is a

i^I
T-structure of a G-bundle Z^/, on X which is semistable. This defines a
morphism of abelian groups

p:T{T)^X^H\X,T).

Chose a (closed) point x of X which defines an isomorphism Pic°(X) -^ X
and a Poincare line bundle V on X x Pic°(X). This allows to construct a
universal semistable T-bundle L on X x T(T) 0X.

z

Remark 4.4. — The theta line bundle 6 on X = Pic^X) becomes
through the isomorphism X ̂  Pic°(X) the determinant bundle det(RTPy.

The family of semistable bundles L(G) defines a morphism of (re-
duced) schemes

r(r) 0z x -^ Me.
The action of the Weyl group W on r(T) defines an action r(T) 0 X such

z
that w.L^ ^ L^ for all w € W. Let

T T : [r(r) 0z x]/w -^ MG
be the induced morphism. We want to prove that TT is an isomorphism.

4.5. Let us prove that TT is finite. Let G —>• SL^ be a faithful
representation of G inducing a morphism MG —> MSL^ • Let L be the
inverse of the determinant bundle on MSL^ •

Remark 4.6. — Notice that in this case, MSL.N = PN~1 and that the
determinant bundle is just 0(1) (see [Tu], Theorem 7 for instance).

LEMMA 4.7. — The line bundle TT*(L) is ample.

Proof. — One can assume that G is semisimple. Let q be the natural
morphism

q : F(T)(S)ZX^MG.
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It is enough to prove that q*(L) is ample. Let us choose a basis ofF(L)
identifying r(T) (g) X with X1 (I is the rank of G). Let 7 : Gm -> T be a nonz
trivial element in r(T). Let ^ : X —> MG be the morphism defined by 7.
One can assume that 7(2:) = diag(^71,... ,z^1) for z e C* (with ̂  7, = 0).
Then (see Remark 4.4),

V-^ 2^(L)=eS^
which is ample because ̂ 7? > 0 (recall that 7 is non trivial). The rank-TV

i
vector bundle bundle parameterized by (a* i , . . . , xi) is

^°(Y,^-^\
7^7

By additivity of the determinant bundle, g* (L) is of the form

[H 661 with 6, > 0
1<^

and therefore is ample. D

The fibers of TT are therefore finite, and the proper morphism TT is
finite.

4.8. Let TT'^O) be the fiber of TT at the trivial bundle Gx- Let us first
prove that TT'^O) is set-theoretically reduced to [O], the class W.O. Let us
first prove the following general result.

4.9. Let us consider the following situation: let p : X —> S be a proper
morphism such that Os —^ P^O^ is an isomorphism. Assume that p has a
section a : S —> X. Let A C B be a reductive subgroup of a linear group B.

LEMMA 4.10. — Let a be an A-bundle trivial along a. Then, if the
associated B-bundle f3 = a(B) is trivial, the A-bundle a is so.

Proof. — Let s be the section of (3 / A defined by a. Because f 3 / A is
affine over S, the section s factors through p in a section s. Because a is
trivial along a, the section s comes from a section of the restriction to a
of the trivial bundle f3 and can be lifted to a section 5' of f3. The section
s ' mod A of ' f3 /A is equal to s and defines a trivialization of a = s*f3. D

4.11. Choose an embedding G in a product Gf = ]~[GL^ of linear

groups such that Zo(G) C Z^G') (ZQ denotes the neutral component).
Let T ' be a maximal torus of G' containing T. Let / : MG —^ MG' be a
natural morphism (see [Ra2], Corollary of Theorem 7.1). Let E be a T-
bundle such that E € TT'^O) and let E ' be the corresponding T'-bundle.
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Because f(E(G)) = [-^/"(G')], the semistable bundle is equivalent to the
trivial bundle and is therefore trivial (a direct sum of line bundles of degree
0 is equivalent to the trivial bundle if and only if all summands are trivial).
Applying the preceding lemma with a==£ 1 ,A==T' , J3=G' and X = X for
instance, one gets that E is trivial.

4.12. It remains to show that TT is etale at the origin: this will follow
from the fact that the completion of TT at the origin can be identified to the
completion at the origin of the Chevalley isomorphism i/W -^ Q/G.

LEMMA 4.13. — The morphism TT : (T(T) (g) P'ic°(X))/W -^ MG is
etale at the origin.

Proof. — Let's briefly recall how to construct the moduli space MG
(see [Ral], [BLS]), or better of an affine neighborhood M of the trivial bun-
dle X x G as a GIT quotient Y / H of a smooth affine scheme Y by some
reductive group H (with Lie algebra ()). One choose first a faithful represen-
tation G ̂  GLn inducing an embedding F(T) (g) Pic°(X) ̂  (Pic^X))".
For m big enough, one knows that the canonical morphism

up : H0^^) 0 0(mx)) <g) 0 -^ P^) 0 0(mx)

is surjective for all semistable bundles P and that JEf°(^p) is bijective. Let
\ be the Euler characteristic of some P(C"') (g) 0{mx). By the theory of
Hilbert schemes, the pairs (P, i) where P is a semistable G-bundle and i
an isomorphism

HO{P{Cn)^0{mx))^CX

are parameterized by a smooth scheme Y and MG is a GIT quotient of this
scheme by H = GL^ (see [BLS]). Notice that the stabilizer of the "trivial
pair" is G itself.

Let U be the universal T-bundle on X x (T(T) 0 Pic°(X)). Let
us chose a trivialization of the vector bundle RT{C\^0{mx}) on some
symmetric affine neighborhood 6'° of 0 in Pic°(X). Therefore, the direct
image ofZ^C^BC^m) is trivial on S = (^S^ H r(T) 0 Pic°(X) and the
trivialization is W-equi variant. The induced morphism TT: S —^ MG '-= Y / H
is therefore induced by a TV-equi variant morphism S —> Y mapping 0 to y .
Notice that the orbit H.y is closed. By considering some ^-invariant affine
open neighborhood of y , one can assume that Y is afime (the quotient Y / H
is now a neighborhood of H.y in Me)'
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Let's consider the following commutative diagram:

c[y]+ -^ c[5]+

(4.1)

v=(r;y)/() -^ To* 5

where C[V]+ (resp. C[S} 4-) denotes the maximal ideal ofy (resp. 0). The
transpose of k is the tangent map of S —> MG from S to the stack of
G-bundles on X, namely the Kodaira-Spencer map

k : i == 10 H1 (X, Ox) == TO^ -^ (W/() = 8 ̂  ̂ (X, 0) = s.

LEMMA 4.14. — The Kodaira-Spencer map k is the canonical
inclusion i^—>Q.

Proof. — By functoriality, one is reduced to the case where G = GLn
and T is the torus of invertible diagonal matrices. Consider the one
parameter subgroup of differential aEi^ for some integer a {Ei^ is the
standard diagonal rank 1 matrix). If (A(^) is a Cech-cocycle representing
A e ̂ (O), the derivative

9(70 A)(0)

is defined by the vector bundle on X[e]/(e2 = 0) with cocycle 1 + aeXa^E^i.
In other words,

-^w-^9(7 ̂  A) ̂  ^ "
which proves the lemma. D

Notice that k is N{G^ r)-equivariant. By Luna's results ([Lu]), one
obtains an etale slice of Y —^ Y/H as follows.

One choose an Hy = AutG'(X x G) = (7-invariant section a of
C[y]^- —> (r*y)/l) and the induced morphism Y —> V identifies etale lo-
cally Y/H and V / H y . The group N(G,T) being reductive and tk being
surjective, one pick an invariant section r of *fc : Q" —>-> t* which defines
a morphism (still denoted by r)

€ -^ C[Y]+ ̂  c[54
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which is IV-equi variant. This is a W-equi variant section of C[5']-(- —>• T^S
and therefore defines an etale slice of S —> S/W. Shrinking S and Y if
necessary, one obtains from the diagram (4.1) the commutative diagram

C[Y]? — cw

S(<r) S(r)

(S0*)G ̂  (Sf)^

where S(<^) and S(r) are etale. By Chevalley's theorem, TT is therefore etale
at the origin. D

4.15. The morphism TT is therefore a finite morphism between normal
varieties and is of degree 1. We have proved the

THEOREM 4.16. — The morphism

T T : [r(r) 0z x}/w -^ Me
is an isomorphism.

4.17. Assume that G is simple and simply connected. Let 0 be the
longest root and o^, i = 1,... I the basis of the root system <1>(B, G). The
coroot 0^ is a sum

^=E^r
i

where o^ is the coroot of a. Then Looijenga [Lo] has proved that
[r(T) 0z ^]/W is the weighted projective space P(l,^i,.. .gi).

Remark 4.18. — The proof in [Lo] is not correct. See [BS] for a more
general result and hints for a complete proof.

4.19. It is interesting to remark ([D], remarques 1.8) that 0(1) is
locally free if and only if I is a multiple of lcm(^) although it is reflexive
(Lemme 4.1 of loc. cit.). In particular, MG is locally factorial if and only
if lcm(^) = 1, condition which is equivalent to G special in the sense of
Serre (look at the table of [Bo]). If one notice that 1cm (^) is also the
minimal Dynkin index of the representations of G (see [LS]), this funny
characterization of special groups in terms of MG is the version in the
genus one case of Proposition 13.2 of [BLS] (which deals with the genus
> 1). In all the cases, one has the formula

(4.2) dimH°(MG, 0(1)) = card(Pz)
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where Pi is the number of dominant weights w such that < ^v, w >< I , as
predicted by the Verlinde formula (see [Be]).

4.20. Let us explain briefly the link between the theorem of
Narasimhan and Seshadri and our description of MG. Suppose that
G is semisimple with maximal compact subgroup K. The theorem of
Narasimhan and Seshadri says that the complex points of MG are param-
eterized by equivalence classes of pairs of elements of K which commutes
(K acting on these pairs diagonally through the adjoint action). Suppose
further that G is simply connected. Then such a class has a representative
in TR, x TR (where Tp is the maximal torus of K). Suppose that X(C) is
a complex torus C/Z © ZT of period T in the Poincare upper half plane.
The complex structure (a, b) —> a — rb on R x R induces a complex struc-
ture on TR x TR which is naturally the maximal torus T of G. We get a
diagram

r(r) 0 c ^ TR x TR

r(T)0X(C) —^ Mc{C)
One checks easily that this diagram commutes.
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