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INVARIANTS OF FOUR SUBSPACES

by G.W. SCHWARZ and D.L. WEHLAU

Introduction.

1.1. — Our problem is to determine the invariant theory of four
linear subspaces of a fixed vector space V (everything over C). This is
related to the problem of classifying r-tuples of subspaces of vector spaces.
The latter problem (in the representation theory of quivers) is known to
be "tame" if r < 4 and "wild" otherwise; for example, the determination of
the normal pairs o f n x m matrices (see [GP], [BGP], [Kac]).

1.2. — Let A ; i , . . . , fei be integers between 1 and n — 1, inclusive, and
let k denote one of the ki. A ^-dimensional subspace of C77' corresponds
to an element of the projective space P(D^), where Dk denotes the set
of decomposable elements of A^C71). We are interested in the SLn-orbit
structure of P(D^) x • • • x P(D^), which one easily obtains from the
SLyi-orbit structure of X : = D^ x • • • x D^. The SLyi-variety X is the
basic object of interest.

Note that the quotient of the (SLn x SLfc)-module C71 (g) Ck by the
action of SLk is just Dk (see 2.1). Thus (X, SLn) is a quotient, as follows.
Set H = SLfc, x • • • x SLfc4 with its natural action on W : = C^ C • - • C C^4.
Set k: = (A ; i , . . . , k^) and set G: = SLn x H with its natural action on
V : = V(n,k) = C710 W. Then (X, SLn) is the quotient ( V / / H , G / H ) . The
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orbit structure of (V, G) determines that of (X, SLyi), so we concentrate on
the former case. Set

6: = 2n - A;i - • • • - A;4 (the defect),

g:= dimqx]81- = dimC^.

Unless we are doing a numerical example or otherwise specified, we assume
that

k\ <k-z <k^ <^ A;4.

1.3. — We first determine the closed orbits of (V, G); equivalently, we
determine the algebra C^]0 or the categorical quotient V//G. It is more
difficult to find the orbit structure of the fibers of the quotient mapping
TT: V —>• V//G. Classically, this has been done by using certain covariants.
A covariant is just an element of an isotypic component of C[V}. While
we do not determine the orbit structure of the fibers, we do show that
the covariants have a very nice structure: they are (almost always) a free
(G-Cpl^-module. We then say that (V, G) is cofree; equivalently, V//G
is an affine space and TT is equidimensional. We determine the principal
isotropy group of (V, G) in the important cases (including the coses 6=0,
q>_2). This allows us to completely determine the structure of C[V} as a
(G-C[y] ̂ -module [Sch2, 1.1] (but not as a graded (G-C[y] ̂ -module).

1.4. — The dimensions (n,k) and representations V(n^k) occur in
series (obtained via castling 2.2). Eventually the elements of the series are
either all cofree or all not cofree, but some series take longer than others
to "settle down". Among these are the series containing V(2,(l, 1,1,2))
and V(3,(l,1,1,1)). For other reasons, Gelfand and Ponomarev (see [GP])
found the indecomposables of the latter kind to be exceptional.

1.5. — The invariants of (X,SLn) were recently determined by
R.Howe and R. Huang [HoHu]. Their work complements and/or extends
earlier work ofTurnbull [Turn], Huang [Huan] and Ringel [Ring]. Howe and
Huang used techniques from representation theory and combinatorics (the
symbolic method) to obtain the following:

• an explicit description of C^X]81^;

• a proof that C^X]81^ is always regular (a polynomial ring).
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There are slight inaccuracies in these results: One type of invariant
is missing (see 3.17.4 and Example 2.7) and CRC]^ = C^}0 fails to be
regular in one case (Theorem 2.9.3.d). We have approached the problem
using ideas from invariant theory, and we are able to find shorter and more
direct proofs of the results in [HoHu].

When 6 ^ 0, the technique of castling is decisive (see 2.2 and 3.1).
We show that q < 4 and completely classify the cases q = 3 and q = 4.
We show how the invariants arise from very simple ones twisted and
made complicated by castling (see 2.2). In particular, we explain the
"mysterious" type III invariants of [HoHu] and we also find a fourth type
(Theorem 3.17 (4)). If 6 = 0, castling is not very effective. Instead we
use invariant theory to compute the principal isotropy group of (V,G).
This gives us q, and then we exhibit q explicit generators of CIV]0. The
computation of the invariants is in Sections 3 and 4.

In Sections 5, 6 and 7 we determine necessary and sufficient conditions
for C[V} to be a free (G-CIV] ̂ -module; equivalently, we determine when
the quotient mapping 'Ky:V —> V / / G is equidimensional. This is much
harder than determining the invariants. The most important case is that
of 4 medials (y(2n,(n,n,n,7i))). Here we use an induction to reduce to
properties of the case n = 2. In general, the obvious method is to use the
Luna-Richardson theorem to reduce to the 4 medials case. This does not
work, but we find a variant which does.

We determine the principal isotropy groups of (V, G) in case 6 = 0
and q ^ 2. The cases where 6 ^ 0 and q > 3 are easily handled.
As noted above, this information allows us to compute covariants and
their multiplicities. For example, if the principal isotropy group is trivial,
then every irreducible representation of G occurs as a free CtV^-submodule
of C[V] with multiplicity equal to its dimension. This occurs in the cases
V(5,(4,2,2,2)) {6 = 0, q = 2), V(7,(3,3,3,3)) {6 = 2, q = 4) and many
others.

Usually, 7Ty:V —> V//G is equidimensional if and only if TTX'-X —>•
X//G is. Theorem 2.10 (proof in Section 8) lists the exceptions.

2. Main results.

2.1. — Let Y be an affine G-variety. Let Y//G denote the affine variety
corresponding to the algebra of invariants CIV]6' and 7Ty:y —>• Y//G the
morphism dual to the inclusion C^}0 C C[V]. We say that (V, G) is
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• coregular if C^}0 is a polynomial algebra, equivalently; Y//G is
smooth (and isomorphic to affine space);

• equidimensional if Try is equidimensional;

• co free if C[Y} is a free C[y ̂ -module. (A G-module V is cofree if
and only if it is coregular and equidimensional [Schi], 17.29);

• stable if there is a dense subset of closed orbits.

A subgroup L C G is a

• generic isotropy group if there is an open dense subset Y ' of Y such
that Gy is conjugate to L for every y € V;

• principal isotropy group if there is an open dense subset U of Y / / G
such that Gy is conjugate to L for every closed orbit in ̂ ^(U).

2.2. — We make extensive use of castling (see Section 3.1):
Let a denote k\ 4- • • • + fci and set 6: = 2n — a. (The problem is quite
different, depending upon whether or not 6 is zero.) We have castling
transformations Cy and C^ which transform V(n,k) to V{a - n, k) and
y(n, A;) to V(n, {n — k ^ , . . . , n — A;i)). The transformation C^ was already
used in [HoHu] to reduce to the case that 6 > 0. The class C\(V(n,k))
of V(n^ k) is the collection of representations which can be obtained
from V(n^k) by Cy and C^. Castling transformations preserve algebras of
invariants, (non) stability and generic isotropy groups (up to isomorphism).
Thus principal isotropy groups are preserved in the stable case.

2.3. — Each class (with 6 ^ 0 ) has a linear ordering: Let h denote
a + n. If we apply Cy, then h changes to h — 6. Thus we say that Cy is a
castling up (resp. down) if 6 < 0 (resp. 6 > 0). We define "up" and "down"
for C^ similarly, where C^ sends h to h + 26. We say that V(n1', k1) is above
(resp. strictly above) V{n,k) if V ( n ' , k ' ) is obtained from V(n,k) by a
(resp. nonempty) sequence of castlings up.

2.4. DEFINITION. — We say that V(n,k) is minimal if it is minimal
in its castling class. Equivalently, Cy cannot be applied or is a castling up,
and the same for C^,.

To determine the algebra of invariants, etc. of V(n, k ) we may reduce
to the case that V(n,k) is minimal. Here our questions are either easy to
answer or we may reduce to an instance of three subspaces. We then
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use our complete analysis of the possibilities for two and three subspaces
(Section 3.8).

2.5. — We say that an invariant / of V(n,k) has (reduced) degree
(a, 6, c, d) if, as a function on X = D^ x • • • x D^, it is multihomogeneous
of degree a in D^, b in D^, etc. Note that, as a function on V(n,fc) , it
has multidegree (aA;i , . . . , dk^). By degree we will always mean the reduced
degree. The total (reduced) degree of / is a + b + c + d. We will use similar
notation and definitions for two and three subspaces of n-space. We always
denote the dimension of C[y]6' by q.

2.6. Example. — Consider V(7,(3,3,3,2)). Then castling down we
obtain

y(4,(3,3,3,2)), y(4,(l,l,l,2)) and y(l,(l, 1,1,2)).

Of course, Y(l,(l, 1,1,2)) does not come from four subspaces of C1,
but this is not a problem when computing invariants! The invariant of
degree (1,0,0,0) in V(l,(l, 1,1,2)) becomes one of degree (2,1,1,1) in
y(7,(3,3,3,2)) (see (3.17)). The generators whose degree is bigger than
(1,1,1,1) are labeled "mysterious" in [HoHu]. As in this example, they all
arise from simple invariants made complicated by castling.

2.7. Example. — Consider V(4,(l, 1,1,1)), which is generated by the
obvious invariant of degree (1,1,1,1). Castling we obtain

Y(4,(3,3,3,3)) and y(8,(3,3,3,3)),

where the latter has invariants generated by an element in degree (2,2,2,2).

Our main results are the following:

2.8. THEOREM. — Suppose that 6 ̂  0. Then

(1) (V, G) is coregular^ and q < 4.

(2) Jfg=3, then V is above

(a) y(n,(d,n,n,n)), 1 < d < n, or

(b) V(n,(a, &, n, n)) where a + b = n, a < 6, or

(c) V(n,(a,b,b,n)) or y(n,(a,a,6,n)), a + b = n, a < 6, or
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(d) y(2n,(n,n,n,d)), d> 2n or

(e) y(n,(n,n,n,d)), d > n.

(3) J fg=4 , then V is above

(a) V(n,(n,n,n,n)), or

(b) y(2n,(n,n,n,2n)).

Concerning cofreeness (equivalently, equidimensionality) we have:
(4) Ifq<2, then V is cofree.

(5) The non-cofree representations with q = 3 are

(a) (from2.a,d= 1) thoseaboveV(2n+l,(n+l,n+l,n+l,2n)),
n^ 2,

(b) (from 2.d, n = 1) V(2,(l, 1, l,d)) and V(d + 1,(1,1, l,d)),
d > 3 and

(c) (from 2.e, n = 1) those above V(d+ 2,(1,1, l,d)), d ^ 2.

(6) The only non-cofree representations with q = 4 are

(a) (from 3.a, n = 1) those above V(3,(l, 1,1,1)),

(b) (from 3.a, n = 2) those above V(6,(2,2,2,2)) and

(c) ( from3.b,n=l)V(2,( l , l , l ,2)) ,y(3,( l , l , l ,2)) ,
V(3,(2,2,2,1)), V(4,(2,2,2,1)), V(4,(2,2,2,3))
andY(5,(2,2,2,3)).

2.9. THEOREM. — Suppose that 6 = 0.

(1 ) J f fc4>^ , then g = 0 and V is not stable.

(2) If A;4 == n, then q = 2 with generators of degrees (1,1,1,0) and
(0,0,0,1). Moreover, V is cofree and stable with principal isotropy group
SLk, xSL^ xSL^.

(3) Jffel < n, Jet a denote min{^i,n — ^4}. Then

(a) V is stable with principal isotropy group (up to a finite cover)
SLn-k^-k2 x SLn-k^-ks x SL^_^_^| x T"-1, where T7' denotes
an r-torus (C*)7'. Furthermore^

q = a + 1 + <^i+A;4,n + ^i4-A;3,n + ^i+A;2,n-

(b) y is cofree if V ̂  y(2n,(n,n,n,n))), n ̂  2.



INVARIANTS OF FOUR SUBSPACES 673

(c) V(4,(2,2,2,2)) is coregular, but not cofree.

(d) V(2,(l, 1,1,1)) is neither coregular nor cofree.

Write V = y(n, A?) = (C^W, SL^ x ̂ ) as in 1.2. Then X = V//ff =
Dfe^ x • • • x D^4. We consider equidimensionality of (X, SLn):

2.10. THEOREM. — Let (X, SLn) and V = V(n, k) be as above.

(1) IfV is equidimensional, then (X, SLn) is equidimensional.

(2) If (X, SLn) is equidimensional, then V is equidimensional, with
the following exceptions:

(a) V=y(2n+l,(n+l,n+l,n+l,2n)), n ̂  2,

(b) V = V(d+ 1,(1,1, l,d)), d ̂  3 and

(c) V=y(5,(2,2,2,3)).

Theorem 2.8 follows from 3.11 and the results in Section 5.
Theorem 2.9.3 follows from Proposition 4.5, Remark 4.6, Theorem 4.9
and Theorem 7.11. Parts 1 and 2 are left to the reader. Theorem 2.10
follows from Theorem 2.8, Theorem 2.9 and Theorem 5.3.

3. The case 6 ̂  0.

3.1. Castling. — Consider a representation (C71 (g) U C Z, SLn x L)
where dim U = n + n' > n, SLn acts trivially on Z and L is reductive.
We assume that L acts trivially on A"'"1"71''(U). Then the invariants of
(C71 (g) £/ C Z, SLn x L) are isomorphic to those of (C^ 0 £/* C Z, SL^ x L).
The only thing to observe is that the quotients by the special linear
groups are the product of Z and the decomposable vectors in the
isomorphic representations ^(U) and A72 (U*). Furthermore, since the
general SLn and SLn' orbits are closed with trivial stabilizer, the isotropy
groups of non-zero points in the quotients are isomorphic. By projection
to L, we obtain an isomorphism of generic isotropy groups. We will
call a castling transformation of the form described above a simple
castling transformation. Thus Cy is a simple transformation while C^ is
the composition of 4 simple transformations. However, unless otherwise
specified, by "castling transformation" we are referring to Cy and C^'
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3.2. — As in §§ 1.2-2.3, let

V=V{n,k), a:=Y^k^
i

6:=2n-a, h = a- + n, q= dim CIV]6'.

In this section we assume that 6 -^ 0. We only consider representations
V(n, k ) where n >_ 1 and ki ^ 1, z = 1,..., 4. Castling sends

y(n,^) =Cn(8)TV to (Cy-^lV*.

But we may replace TV* by IV without changing anything of interest, and
we obtain our transformation Cy. Similarly, we obtain C^ by castling each
of the representations

(C^1 0 C71, SLfc, x SL,) to (C"-^ 0 C71, SL,_^ x SL,).

We denote by V = V^n', k ' ) the representation obtained by applying Cy
or C^ to V(n, k), and we set

a'^^^, ^=2n'-a', /z^a'+n'.
z

Then we have

3.3. PROPOSITION.

(1) Cv applies iff a > n, in which case hf = h — 6;

(2) CK, applies iffk^ < n, in which case h' = h + 26;

(3)^=-^;

(4) Cl(y) is totally ordered by the value ofh.

3.4. COROLLARY. — Let

M= {meN; m\6\ < ki <n-2m\6\, i= 1 , . . . , 4 } .

Ifm € M, then we can castle down from V to

V = V{n - 2m|<?|, (fci - m\6\,..., k^ - m\6\)).

If m is the maximal element of M, then V is at most three castlings up
from the minimal element.
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Proof. — We may assume that m >_ 1. First suppose that 6 > 0.
Applying Cy and then C^ we obtain V(n — 6,{n — 6 — k ^ ^ . . . , n — 6 — A;i)),
and another iteration gives V(n — 26, (k\ — 6 , . . . , k^ — 6)). Induction then
gives the result. If 6 < 0, then we may use the argument above after
applying C^,. D

3.5. Example. — Consider V(2r + l,(r, r, r, r)) where 6=2.

• If r = 2k + 1 is odd, then applying 3.4 with m == k we arrive
at y(l,(l, 1,1,1)).

• If r = 2A: is even, we may take m = k — 1 to obtain V(3,(l, 1,1,1)),
and then apply Cy to get to y(l,(l,l,l ,l)). One easily sees that, in fact,
[V(2r ± l,(r, r, r, r))} is the castling class of V(l,(l, 1,1,1)). Similarly,

{y(2r , ( r , r , r , r± l ) )}u{y(2r+l , ( r , r , r , r+ l ) )}
U{y(2r - l , ( r - l , r , r , r ) )}

is the castling class of V(2,(l, 1,1,2)).

3.6. THEOREM. — Let V be minimal with 6 ^ 0. Then we have the
following possibilities:

(1) a < n and 9 = 0 ;

(2) a = n and q = 1 with a generator of degree ( 1 , 1 , 1 , 1 ) ;

(3) a > 2n and k^ > n. Then we have the generators of
V(n,(A;i, A;2, A;s)) and an additional generator of degree (0,0,0,1) ifk^ = n.

Proof. — Clearly (1) and (2) cover the possibilities for a < n, so we
may suppose that a > n. Since V(n, k ) is minimal and a ^ 2n, Cy must be
a castling up, so that a > 2n. If k^ < n, then we may castle down by C^,
so we must be in case (3). D

3.7. COROLLARY. — Let V(n, k ) be minimal where 6 ̂  0.

(1) Ifn<(7 ^n-hfc i , thenC\(y(n,k)) = {V(n,k), C^(V(n,k))} is
finite.

(2) Ifn + A;4 < a or a <_ n, then Cl(V(n, k)) is infinite.

Proof. — If a > n, then a > 2n by minimality, hence Cy is
a castling up. But we cannot apply C^ to V ( n ' , k ' ) = Cy{V{n,k)) if
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^4 = A:4 > n' = a — n, so (1) holds. If n + k^ < a, then

y(n^=c4c,(y(n,^)))
has n' = a — n, a' == 3a — 4n and A;4 = a — n — k\. Then

a' - n' - (max{A/i, . . . , k^} = k^) == a - 2n + A:i > 0,

and we may continue castling up indefinitely. Finally, if a < n, then
V(n1', k ' ) = C,t(V(n, k ) ) satisfies a' > 3n' and a ' — n' —kl^> 0, so we may
castle up indefinitely. D

3.8. Invariants of two or three subspaces. — If V(n, k ) is minimal,
then it often happens that k^ is larger than n, in which case we are
reduced to computing the invariants of three subspaces. So, we consider
the invariants of V(n,£) where n > 1, £j >_ 1 for j = 1,2,3. We adapt our
terminology from four subspaces to this situation: We set

T=^+^2+^3.

The castlings Cy and C^ send V(n^£) to

V(r - n,£) and V(n, {n -^n- i^n- ^i)),

respectively (whenever they apply). Then Cy (or C^) is a castling up if it
increases n + r. In other words, C^ (resp. C^,) is a castling up if r > 2n
(resp. 3n > 2r).

3.9. Remark. — It is no longer true that a castling class has a
unique minimal element. For example, from V(5,(2,3,4)) we can castle
down by Cy or by CyC^ to obtain minimal elements V(4,(2,3,4)) and
y(l,(l,2,3)), respectively.

3.10. THEOREM. — Let £j ^ 1, 1 ^ j ^ 3. Then minimal
homogeneous generators of the invariants of C[V(n^£)] have, up to
permutation of the i^ degrees (1,0,0), (1,1,0) or (1,1,1), corresponding
to equalities

^ = n, £-t + ^2 = n and ^i + ^2 + 4 = ri

(or ^ 1 + ^ 2 + ^ 3 = 2n with ^i, ^2? ^3 < ^)- There are only the following
possibilities (up to permutation of the £z) :
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(1) q = 0: no subset of{^i, ^2? ^3} consisting of numbers at most n
adds up to n or 2n.

(2)g=l and one of the following occurs:

(a) ^i = n;

(b) ^+^=n;

(c) ^+^2+^3=^ ;

(d) ^i + ̂ 2 + ̂ 3 = 2n and ̂ i, ̂  ̂  < n.

(3) q = 2 and the generators are as in 2.a and/or 2.b.

(4) 9 = 3 and V = y(n,(n,n,n)), n ̂  1, or V(2n,(n,n,n)), n >, 1.

Moreover,

(5) V(n^) is coregular.

(6) Only V(2,(l, 1,1)) is not cofree.

Proof. — Assume that i\ <_ ^ <_ £3. If ^3 >: n, then we obtain
(at most) an invariant of type 2 (a) and the invariants o f V = V(n, (^1,^2))-
The only possibility to get something new is if i\, ^2 < u < i\-\- i^. But
then CK gives V(n^ (n — ^2? ̂  — ^i)) where TT, — ^2 + ?^ — ^i < ^5 so there are
no new types of invariants. Note that we get one possibility here for 9=3 ,
namely V(n, (n, n, n)).

It is easy to see that C^, when it applies, can only interchange
invariants of types 2 (a) and 2 (b). Similarly, if C^ applies, then it only
interchanges invariants of types 2 (c) and 2 (d). Hence we may reduce to
finding the invariants of the minimal V.

We may assume that £3 < n and that V is minimal. Since C^ is not a
castling down, we have r <_ | n. If Cy applies it is a castling down, so we
must have r < n. We are in case 2 (c) or case 1, hence 1, 2 and 3 hold. Part 4
is the observation that the castling class of V(n, n) is {V(n, n)^ Y(2n, n)}.

If q < 2, then V(n^£) is cofree: Equidimensionality is easy, and
coregularity follows from [Kempf]. Obviously y(n,(n,n,n)) is coregular
(and cofree), hence its castling transform V(2n,(n,n,n)) is coregular, and
we have (5). It is well-known that V(2,(1,1,1)) is not cofree, since its
null cone has codimension 2 while q = 3. To establish (6), we need to
show that V(2n,{n,n,n)) is cofree, n > 2. But in Section 6 we show that
y(2n,(n,n,n,n)) is cofree for n >_ 3, hence so is y(2n,(n,n,n)). If n = 2,



678 G.W. SCHWARZ AND D.L. WEHLAU

one uses the idea of Example 4.10 to reduce to the fact that (3C6, SO (6))
is cofree [Sch2]. Q

3.11. Proof of Theorem 2.8 (1)-(3). — Let V(n,k) be minimal.
Applying Theorem 3.6 we may assume that k^ > n. Parts 1, 2 and 3 are
then immediate from Theorem 3.10. D

3.12. Effects of castling. — Let / be an invariant of degree
(7:= (zi^2^3^4)). Since / is SLn-invariant, 7- k = ̂ ijkj is a multiple s

3
ofn. We call s the n-degree of f. Let |?| denote ^^. Let V ( n ' , k ' ) , /', s1',

3

etc. denote the result of applying Cy or C^ to V(n, k ) , /, s, etc.

3.13. LEMMA. — Suppose that Cy applies to V(n, k ) . Then Cy(f) has
degree (s - z i , . . . ,5 - u).

Proof. — Since A71 (W) is a sum of terms

^:= A^C^) (g) • • . (g) A^^4) where |f| = n,

its dual A'7"71^) is a sum of corresponding terms /\k~'F. The invariant /
lies in sums of tensor products A^ 1 0 - • • (g) A^^ with ^ r^ = ^iA;i, etc.

j=i
It follows that Cy{f) lies in sums of terms A^"^^ 0 • • • (g) A^"^^ where

s ...

S(^i -^1 ) = (5-zi)A;i, etc. ThusC^(/) has degree ( s -%i , . . . ,5-^4). D
j=i

3.14. COROLLARY. — Let /, f, etc. be as above.

(1) liCy applies, then f = (s - % i , . . . , s - 24) and 5' = 5.

(2) IfC^, applies, then f = 7 and s/ = |^| — s.

Proof. — Part (1) is immediate from Lemma 3.13, and (2) is a simple
calculation. Q

3.15. Types of generators. — Let / be a minimal multihomogeneous
generator of C^V]0, where 6 -^ 0.

• We say that / is of type (1) if its total degree is 2, e.g., its degree
is (1,1,0,0).
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• Otherwise we say that / is of type (2).

Our usage of "type" is different than that in [HoHu]. We call {d,s}
the degree pair of /, where d (resp. s) is the degree (resp. n-degree) of /.

3.16. LEMMA. — Let f be a multihomogeneous minimal generator
ofqy]0.

(1) Suppose that f is of type (1), i.e., |r| = 2. Then s = 1 and the
same holds true for C^(f) and C^f).

(2) Suppose that 6 < 0 and that f has degree pair

{(2r - l ) , ( r - l , r - l , r - l , r )} , {(2r), (r,r,r,r - 1)},

or {(2r - l),(r,r,r,r)}. Then C^(f) has the same n-degree and degree
(r, r, r, r - 1), (r, r, r, r + 1), or (r + 1, r + 1, r + 1, r + 1), respectively.

(3) Suppose that 6 > 0 and that / has degree pair

{(2r-2),(r-l,r-l,r-l,r)}, {(2r - 1), (r,r,r,r - 1)},

or {(2r - 2), (r, r, r, r)}. Then C^(f) has degree pair

{(2r-l),(r,r-l,r-l,r-l)}, {(2r), (r - l,r,r,r)},

or {(2r), (r, r, r, r)}, respectively.

Proof. — Part (1) is easy and (2) follows from 3.14. For (3), consider
the case where

r. k = (r - 1)|^| + A;4 = (2r - 2)n.

Then

^.(n-k) =(r-l)(4n-|fc|) 4- (n - k^)

== (4(r - 1) + l)n - (2r - 2)n = (2r - l)n.

The other cases are similar. The change in the degrees of the invariants is
due to the fact that n — k^ < n — k^... Q
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3.17. THEOREM. — Let V(n,k) be minimal. Let f be a minimal
non-constant multihomogeneous generator ofC^}0, and let r > 0.

(1) If f is of type (1), then so are any castling transforms off.

(2) Suppose that f has degree (0,0,0,1). Then (C^)27^/) has degree
(r.r.r.r + 1), C^C^-1 f has degree (r + l,r,r,r), (C^)2^/) has
degree (r, r+l .r+l .r+l) and C^C^f has degree (r 4- l , r+l ,r+l ,r) .

(3) Iff has degree (1,1,1,0), then we are in case 3.7.1. One can only
apply Cy, and Cy{f) has degree (0,0,0,1).

(4) If f has degree (1,1,1,1), then (C^Y f and C^CyC^ j have
degree (r + l,r + l,r + l,r + 1).

4. The case 6=0.

When 6 = 0, we cannot get very far with our usual castling
transformations, since Cv is the identity and C^ has order 2. However,
there are some alternative means to simplify things. We eventually land in
the case of four medials, i.e., in the case V(2n,(n, n, n, n)).

4.1. Four medials. — If V is a G-module, we denote the
principal isotropy group by PIG(V) (or PIG(V,G)) and its identity
component by PIG(y)°. Let L = PIG(V). We denote by N (or Tv^)
the quotient Nc(L)/L, which has a natural action on V L . See [Slod] for the
notion of slice representation used in the proof below.

4.2. PROPOSITION. — Let n ^ 1. Then (V,G) = V^n^n.n.n.n)) is
stable with principal isotropy group T ^ (C*)72"1, where T lies in G as

{(M,t,t,diag(t-1^-1)) e (SL^)4 x SL^n ; t G (C*)71-1}.

Proof. — We use the symbols n, n', n", n"1 to distinguish our four
copies of C71 and SLn. The subrepresentation (C71 C C^) (g) C272 is stable
with one dimensional quotient (the determinant is the generator of the
invariants), and the principal isotropy group is

{(p,/i,A:) € SL, x SL,/ x SL2n ; k = diag((^-1)^ (/i-1)^}.

The slice representation is, ignoring trivial factors,

((c71 e c^)* 0 (C71' e C71"), SLn x SL^/ x SLn. x SL^/).
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We can now take slice representations of the various pairings of the SL^s
to obtain, at the penultimate stage, the adjoint representation of the group

SL, ̂  { ( g ^ g ^ ^ g ) e (SL,)4; g e SL,}.

Thus the principal isotropy group is a maximal torus T71"1. Since the final
slice representation is stable, the original representation was stable. D

4.3. Principal isotropy group. — Suppose that we are given A;i, etc.
as usual. Define

a:= min{A;i,n — ^4}, r = n — k\ — k^^

s = n — A;i — k^, t = \n — k\ — k^\.

Note that, since V\ + Vz has codimension at least r in C7'1, the intersection
V^ 0 V4 has dimension at least r. Similarly, V^ n V^ has dimension at
least s and V^ H ¥3 (resp. Vi H V^) has dimension at least t if k^ + k^ < n
(resp. k\ + k^ > n).

We now find the generic stabilizer of V(n^k): We may assume
that all intersections we consider are as generic as possible. That is,
dim Vi + V^ = k-t + A;2, etc. If A;i 4- A;4 < n define

(1)iv,:=y3n^4,
(2)^:=V2ny4,
(3)Wt:=v^nv^
(4) TV2a := ( î + V2) n (Vi + Vs) n (Vi + ̂ 4).

4.4. LEMMA. — Generically, we have

(1) dimH^a = 2a, dimly^ = r, etc.,

(2) c^ = w^a e Wr e Ws e w,,
(3) Vl C ^2a,

(4)V2C^2ae^®m,

(5) Vs C W^a eWr^Wt and

Wv^cw^a^WreWs.


