Annales de l'institut Fourier

Masakazu Suzuki

 Affine plane curves with one place at infinity

 Affine plane curves with one place at infinity}

Annales de l'institut Fourier, tome 49, n ${ }^{\circ} 2$ (1999), p. 375-404

http://www.numdam.org/item?id=AIF_1999__49_2_375_0
© Annales de l'institut Fourier, 1999, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

AFFINE PLANE CURVES WITH ONE PLACE AT INFINITY

by Masakazu SUZUKI

Introduction.

Let C be an irreducible algebraic curve in the complex affine plane \mathbb{C}^{2}. We shall say that C has one place at infinity, if the normalization of C is analytically isomorphic to a compact Riemann surface punctured by one point.

There are several works concerning the classification problem of the affine plane curves with one place at infinity to find the canonical models of these curves under the polynomial transoformations of the coordinates of \mathbb{C}^{2}.

In the case when C is non-singular and simply connected, AbhyankarMoh [1] and Suzuki [11] proved independently that C can be transformed into a line by a polynomial coordinate transformation of \mathbb{C}^{2}. Namely, in this case, we can take a line as a canonical model.

In case C is singular and simply connected, Zaidenberg-Lin [12] proved that C has the canonical model of type $y^{q}=x^{p}$, where p and q are coprime integers $\geqslant 2$.

Assuming that C is non-singular, the cases when the genus g of C is 2,3 and 4 were studied by Neumann [8], A'Campo-Oka [3] from the topological view point and by Miyanishi [4] from the algebrico-geometric

Keywords: Plane curves - One place at infinity - Semi-group criterion - Approximate roots.
Math. classification: 14E25.
view point. Miyanishi [5] classified the dual graphs of the curves which appears by the minimal resolution of the singularity at infinity. Recently, Nakazawa-Oka [7] gave the classification of all the canonical models for the cases $g \leqslant 7$, and in its appendix, Nakazawa gave the classification for $g \leqslant 16$ without proof.

In the present paper, we shall first explain how to get the canonical compactification (M, E) of \mathbb{C}^{2} corresponding to the minimal resolution of the singularity of the curve C at infinity (after taking the coordinate system of \mathbb{C}^{2} which minimize the degree of the defining equation of C), and then we shall study the dual graph $\Gamma(E)$ of the boundary curve E.

In this way, we shall first get a new simple proof to the above mentioned Abhyankar-Moh-Suzuki theorem. Next, we shall make it clear the relationship between the dual graph $\Gamma(E)$ and the δ-sequence of Abhyankar-Moh theory. We shall get a new algebrico-geometric proof to the beautifull so-called semi-group theorem of Abhyankar-Moh [2] and its inverse theorem due to Sathaye-Stenerson [9]. Our new proof gives us also an algorithm to compute the weights of the dual graph $\Gamma(E)$ by computer ${ }^{(1)}$.

To end this introduction, I would like to express here my hearty thanks to Mr. Takashi Oishi and Mr. Koichi Koide for their help at the beginning of this research to the experimental calculation of various algebraic invariants of the dual graphs by computer.

1. Preliminaries.

1.1. Primitive polynomials.

Let $f(x, y)$ be a polynomial function on the complex affine plane \mathbb{C}^{2} with coordinate system x and $y . f(x, y)$ will be called primitive if the algebraic curve defined by $f(x, y)=\alpha$ in \mathbb{C}^{2} is irreducible for all complex numbers α except for a finite number of α 's. The following proposition is well known (see for example the Appendix of Furushima [4]).

[^0]Proposition 1. - For any polynomial $f(x, y)$, there exist a primitive polynomial $F(x, y)$ and a polynomial $\varphi(z)$ of one variable z such that $f(x, y)=\varphi(F(x, y))$.

From this proposition, we can get the following corollary.
Corollary. - Irreducible polynomials are always primitive.
In fact, let us write $f(x, y)$ in the form

$$
f(x, y)=\varphi(F(x, y))
$$

by a primitive polynomial $F(x, y)$ and a polynomial $\varphi(z)$ of one variable z. Since the curve $C: f(x, y)=0$ is irreducible and f takes the zero of order 1 on $C, \varphi(z)$ vanishes only on $z=0$ and takes the zero of order 1 on $z=0$. Therefore $\varphi(z)$ is a polynomial of degree 1 . This implies that f is primitive.

1.2. Dual graph.

We shall assume from now that M is a non-singular projective algebraic surface over the complex number field and E an algebraic curve on M. We shall assume further that each irreducible component of E is non-singular and intersect each other at only one point at most. In such case, we shall say that E is of normal crossing type.

For a curve E of normal crossing type, we represent each irreducible component of E by a vertex and join the vertices if and only if the corresponding irreducible components intersect each other. We associate to each vertices an integer, called weight, equal to the self-intersection number of the corresponding irreducible component on M. The weighted graph thus obtained will be called the dual graph of E and noted by $\Gamma(E)$. In case the values of the weights are not in question, the weights may be omitted in the picture of the dual graphs bellow.

Lemma 1. - Let $E_{1}, \cdots, E_{r}, E_{r+1}$ be the irreducible components of E and assume that the dual graph $\Gamma(E)$ is of the following linear type:

$$
\Gamma(E): \begin{array}{ccccc}
& \begin{array}{ccc}
-n_{1} & -n_{2} & -n_{r} \\
\circ & -\cdots \cdots \cdots \cdots & \\
E_{1} & E_{2} & E_{r}
\end{array} E_{r+1}
\end{array} \quad\left(n_{i} \geq 2\right) .
$$

Assume further that there exists a holomorphic function f on a neighborhood U of $E_{1} \cup E_{2} \cup \cdots \cup E_{r}$ such that the zero divizor (f) of f on U is written in the following form:

$$
(f)=\sum_{i=1}^{r} m_{i} E_{i}+m_{r+1} E_{r+1} \cap U
$$

Then,
(1) m_{2}, \cdots, m_{r+1} are all multiple of m_{1}.
(2) Set $p_{i}=m_{i} / m_{1},(1 \leqslant i \leqslant r+1)$, then $\left(p_{r+1}, p_{r}\right)$ are coprime each other and the following continuous fraction expansion holds:

$$
\frac{p_{r+1}}{p_{r}}=n_{r}-1 \sqrt{n_{r-1}}-\cdots-1 \sqrt{n_{2}}-1 \sqrt{n_{1}}
$$

Proof. - Since $(f) \cdot E_{i}=0$, we have $m_{i+1}=n_{i} m_{i}-m_{i-1}$ for $i=1, \cdots, r$, where $m_{0}=0$. The two assertions of the lemma are the immediate consequences of these equations.

1.3. Intersection matrix.

Let $E_{1}, E_{2}, \cdots, E_{R}$ be the irreducible components of E and consider the intersection matrix

$$
I_{E}=\left(\left(E_{i} \cdot E_{j}\right)\right)_{i, j=1, \cdots R}
$$

Set $\Delta_{E}=\operatorname{det}\left(-I_{E}\right)$. The following two lemmas can also be obtained easily by a direct computation.

Lemma 2. - The determinant Δ_{E} is invariant under the blowing up of the points on E. Namely, if $\tau: M_{1} \rightarrow M$ is a blowing up of a point P on E, we have then $\Delta_{\tau^{-1}(E)}=\Delta_{E}$.

Lemma 3. - Assume that the dual graph $\Gamma(E)$ is of the following type:

$$
\Gamma(E): \stackrel{-m_{r}}{ } \quad-m_{r-1}-m_{1} \quad-1 \quad-n_{1} \quad-n_{s-1}-n_{s} .
$$

We have then

$$
\Delta_{E}=p q-a q-b p
$$

where p, a, q, b are the natural numbers defined by the continuous fractions

$$
\begin{aligned}
& \frac{p}{a}=m_{1}-1 \sqrt{m_{2}}-1 \sqrt{m_{3}}-\cdots-1 \sqrt{m_{r}} \\
& \frac{q}{b}=n_{1}-1 \sqrt{n_{2}}-1 \sqrt{n_{3}}-\cdots-1 \sqrt{n_{s}}
\end{aligned}
$$

satisfying

$$
(p, a)=1,(q, b)=1,0<a<p, 0<b<q .
$$

1.4. Compactifications of the affine plane.

Assume now that $M-E$ is biregular to \mathbb{C}^{2}. In such a case, we shall call the pair (M, E) an algebraic compactification of \mathbb{C}^{2} and E the boundary curve. Let $E_{1}, E_{2}, \cdots, E_{R}$ be the irreducible components of E.

By C.P. Ramanujam [9] and J.A. Morrow [6], (M, E) can be transformed into the pair $\left(\mathbb{P}^{2}, L\right)$ of the complex projective plane \mathbb{P}^{2} and a line L on it, by a finitely many times of blowing ups and downs along the boundary curve. Therefore, by Lemma $2, \Delta_{E}=-\left(L^{2}\right)=-1$, namely

$$
\operatorname{det} I_{E}= \pm 1
$$

This implies that, for any R number of integers $k_{1}, k_{2}, \cdots, k_{R}$, there exists uniquely determined R integers $m_{1}, m_{2}, \cdots, m_{R}$ such that

$$
\sum_{i=1}^{R} m_{i}\left(E_{i} \cdot E_{j}\right)=k_{j}, \quad(j=1,2, \cdots, R)
$$

Thus, we have
Lemma 4. - Let (M, E) be an algebraic compactification of \mathbb{C}^{2} such that the boundary curve E is of normal crossing type and $E_{1}, E_{2}, \cdots, E_{R}$ be the irreducible components of E. Then, for any R number of integers $k_{1}, k_{2}, \cdots, k_{R}$, there exists a divisor $D=\sum_{i=1}^{R} m_{i} E_{i}$ with support on E, uniquely determined, such that

$$
\left(D \cdot E_{j}\right)=k_{j}, \quad(j=1,2, \cdots, R)
$$

In particular, if $k_{1}, k_{2}, \cdots, k_{R}$ have a common divisor d, then all the coefficients $m_{1}, m_{2}, \cdots, m_{R}$ are multiple of d.

2. Resolution of the singularity at infinity.

2.1. Canonical coordinates.

Let C be an irreducible affine algebraic curve with one place at infinity defined by a polynomial equation $f(x, y)=0$ in the complex affine plane \mathbb{C}^{2} with the coordnate system x, y. Assume that the degree of $f(x, y)$ is m with respect to x and n with respect to y. Then, the usual argument about the Newton boundary shows that $f(x, y)$ is of the following form:

$$
f(x, y)=\left(a x^{p}+b y^{q}\right)^{d}+\sum_{q i+p j<p q d} c_{i j} x^{i} y^{j},
$$

where $a \neq 0, b \neq 0, d=\operatorname{gcd}(m, n), p=m / d, q=n / d$.
In case $q=1$ (namely, $n=d, m=p n$), one can reduce the degree of $f(x, y)$ with respect x by a coordinate transformation of the following form:

$$
x_{1}=x, \quad y_{1}=y+c x^{p}
$$

called de Jonquière type. Therefore, by a finitely many times of de Jonquière type coordinate transformations and the exchange of the coordinates x and y, one can reduce the polynomial $f(x, y)$ to one of the following two cases:
(A) $m=1, n=0$ (In this case, C is a line);
(B) $m=p d, n=q d,(p, q)=1,1<q<p$.

Definition. - We shall call the coordinate system x, y satisfying (A) or (B) the canonical coordinate system for C. An affine plane curve with one place at infinity having the canonical coordinate system of type (A) will be said linealizable.

Assumption. - We shall assume, from now on to the end of this paper, that $f(x, y)$ is of type (B) (non-linealizable type).

Now, let us compactify the plane \mathbb{C}^{2} to get the projective plane \mathbb{P}^{2} with the inhomogeneous coordinates x, y, and blow up the point at infinity of the curve C.

At the beginning, the closure \bar{C} of C passes through the intersection point of the x-axis and the ∞-line A in \mathbb{P}^{2}, by the assumption $q<p$. Let us denote by E_{0} the (-1)-curve appeared by the blowing up. The function
$\frac{y^{q}}{x^{p}}$ has the pole of order q on E_{0} and the zero of order $p-q$ on A. Then, if $p-q>q$ (resp. $p-q<q$), \bar{C} is tangent to E_{0} (resp. A). Here, we denote the proper image of A by the same character A.

Let a be the positive integer defined by

$$
a q<p<(a+1) q
$$

In case $a=1(p-q<q)$, we set $E_{1}=A$.
In case $a>1$, after further $a-1$ times of the blowing ups of the point at infinity of the curve C, we get the compactification of \mathbb{C}^{2} with the boundary curve having the following dual graph:

Here, the function $\frac{y^{q}}{x^{p}}$ has the pole of order q on E_{0} and the zero of order $p-a q$ on E_{1}. Therefore, the closure of the curve C passes through the intersection point of E_{0} and E_{1}, and is tangent to E_{1}. Now, blowing down from A the (-1)-curve on the right hand side of the dual graph $a-1$ times successively, we get the following dual graph:

$-a$	0
\circ	0

Let ($M_{1}, E_{0} \cup E_{1}$) be the compactification of \mathbb{C}^{2} thus obtained. The function f has the poles of order n on E_{0} and of order m on E_{1}. The indetermination point of f on M_{1} is uniquely the intersection point of E_{0} and E_{1}.

Remark. - Note that, if one continue to blow up the the point at infinity of C at least twice, then the self-intersection numbers of the proper transforms of E_{0} and E_{1} become both $\leqslant-2$, since \bar{C} is tangent to E_{1} on M_{1}.

2.2. Successive blowing ups.

Now, from M_{1}, let us blow up the indetermination points of f successively, until the indetermination points of f disappear. Let M_{f} be
the surface obtained by this resolution of the indetermination point of f. We shall continue to denote by E_{0}, E_{1} the proper images of E_{0}, E_{1} in M_{f} respectively, and let $E_{i}(2 \leqslant i \leqslant R)$ be the proper image in M_{f} of the (-1)-curve appeared by the $(i-1)$-th blowing up. Each E_{i} is a non-singular rational curve and the total curve $E_{f}=E_{0} \cup E_{1} \cup \cdots \cup E_{R}$ is of normal crossing type. The last curve E_{R} is of the first kind and f is non-constant on E_{R}. Note further that the union

$$
E_{1}^{\prime}=E_{0} \cup E_{2} \cup \cdots \cup E_{R}
$$

is an exceptional set, since E_{0} was exceptional in M_{1}.
Let us denote by \bar{C} the closure of C in M_{f}. Let Z (resp. P) be the union of the components of E_{f} on which $f=0$ (resp. $f=\infty$). Since f has no indetermination point on M_{f}, the zero $\bar{C} \cup Z$ and the pole P of f do not intersect each other. Let S be the union of the other components of E_{f}. f is non-constant on each irreducible component of S. We have $E_{R} \subset S$.

Suppose that P is not connected. Then, the connected component of P which does not contain E_{1} must be exceptional, which is absurd. Hence, P is connected. P coincide with the connected component of $\overline{E_{f}-S}$ which contains E_{0} and E_{1}, since f has no indetermination point on M_{f}.

In the same way, since Z is contained in the exceptional set $E_{1}{ }^{\prime}$, each connected component of Z must have an intersection point with \bar{C}. Since, on the other hand, C is of one place at infinity, \bar{C} has only one intersection point with E_{f}. Therefore, Z is connected. Let Q be the intersection point of \bar{C} and E_{f}.
(a) If $Q \notin Z$, then $Z=\varnothing$. In this case, S is irreducible, since each irreducible component of S must intersect \bar{C}.
(b) If $Q \in Z$, then the zero points of f on S are necessarily on Z. Each irreducible component of S intersects Z and P which are both connected. Since the dual graph $\Gamma\left(E_{f}\right)$ of E_{f} is a tree, this implies that S is irreducible.

Thus, in either case S is irreducible, namely $S=E_{R}$.
Proposition 2. - (i) E_{R} is the unique irreducible component of E_{f} on which f is non-constant. (ii) P is the connected component of $\overline{E_{f}-E_{R}}$ which contains E_{0} and E_{1}.

Corollary 1. - At each step of the process to get M_{f} from M_{1}, the indetermination point of the function f to be blown up is unique, and is situated on the (-1)-curve appeared by the preceding blowing up.

By this corollary, we see that the the dual graph $\Gamma\left(E_{f}\right)$ of E_{f} has the the following form:

Here, $1=j_{1}<i_{1}<j_{2}<i_{2}<\cdots<j_{h}<i_{h}<R$. Taking into account the remark at the end of the previous subsection, we have

Corollary 2. $-E_{i}^{2} \leqslant-2$ for $i=0, \ldots, R-1$ and $E_{R}^{2}=-1$.
Since P is the connected component of $\overline{E_{f}-E_{R}}$ which contains E_{0} and E_{1}, P is the union of the irreducible components of E_{f} situated in the left side to the vertex E_{R} in the above dual graph $\Gamma\left(E_{f}\right)$. Let

$$
P_{f}=\sum_{i=0}^{R} \nu_{i} E_{i}
$$

be the pole divisor of f on M_{f}. We have $\nu_{i}>0$ for $E_{i} \subset P$ and $\nu_{i}=0$ for the other components E_{i}. Let k be the degree of f on E_{R}. Then, we have

$$
\left(P_{f} \cdot E_{i}\right)= \begin{cases}0 & (i \neq R) \tag{*}\\ k & (i=R)\end{cases}
$$

Assume that $k>1$. Then, by Lemma 4, ν_{0}, \cdots, ν_{R} are all multiple of k. Since P is simply connected, there exists a simply connected neighborhood $U=U(P)$ of P such that $U \cap \bar{C}=\varnothing$, and there exists a meromorphic function F on U such that

$$
f=F^{k}
$$

This implies that, for any complex number α with sufficiently large $|\alpha|$, the curve defined by $f=\alpha$ is composed of k irreducible components. This is a contradiction, since f is primitive by Proposition 1. Thus we get $k=1$.

Suppose now that $E_{f}-P-E_{R} \neq \varnothing$. Let $B_{1}, B_{2}, \cdots, B_{s}$ be the irreducible components of $B=\overline{E_{f}-P-E_{R}}$ in the order from the
nearest to E_{R} (from left to right in the above dual graph $\Gamma\left(E_{f}\right)$). Let $\left(B_{i}^{2}\right)=-\beta_{i}(1 \leqslant i \leqslant s)$ and set

$$
n_{1}=1, n_{2}=\beta_{1}, n_{3}=n_{2} \beta_{2}-n_{1}, \cdots, n_{s+1}=n_{s} \beta_{s}-n_{s-1}
$$

Since $\beta_{i} \geqslant 2$ for all i, we have $n_{s+1} \geqslant 2$. Consider the divisor $N=\sum_{i=1}^{s} n_{i} B_{i}$. We have then

$$
\left(N \cdot E_{i}\right)= \begin{cases}0 & \left(E_{i} \neq E_{R}, B_{s}\right) \\ 1 & \left(E_{i}=E_{R}\right) \\ -n_{s+1} & \left(E_{i}=B_{s}\right)\end{cases}
$$

Since $k=1$ in (*), we get

$$
\left(\left(P_{f}-N\right) \cdot E_{i}\right)= \begin{cases}0 & \left(E_{i} \neq B_{s}\right) \\ n_{s+1} & \left(E_{i}=B_{s}\right)\end{cases}
$$

Therefore, by Lemma 4, all the coefficients of the divisor $P_{f}-N$ must be multiple of $n_{s+1}(\geqslant 2)$. This is a contradiction, since the coefficient of $P_{f}-N$ for B_{1} is -1 . Therefore, the components B_{1}, \cdots, B_{s} do not exist. Thus, we have

Theorem 1. - (i) The degree of f on E_{R} is equal to 1.
(ii) The vertex corresponding to E_{R} is situated on an edge of $\Gamma\left(E_{f}\right)$.
(iii) Any irreducible component of E_{f} except for E_{R} is a pole of f.

For each $\alpha \in \mathbb{C}$, denote by C_{α} the curve defined by $f=\alpha$ in \mathbb{C}^{2}. We have then

Corollary 1. - For any $\alpha \in \mathbb{C}$, the closure $\overline{C_{\alpha}}$ of C_{α} in M_{f} intersects E_{R} transversely at only one point (so is smooth at the intersection point), and intersects no other irreducible component $E_{i}(i \neq R)$. In particular, C_{α} is also irreducible and has one place at infinity.

Corollary 2. - If $C=C_{0}$ is non-singular and of genus g, then any C_{α} except for a finite number of α 's is of genus g.

In particular, if $C=C_{0}$ is non-singular and simply connected, then all the curves $\overline{C_{\alpha}}$ are isomorphic to \mathbb{P}^{1}. The mapping $f: M_{f} \rightarrow \mathbb{P}^{1}$ defines a ruled surface structure on M_{f}, and $P=E_{0} \cup E_{1} \cup \cdots E_{R-1}$ is its singular fiber. Therefore, P must contain at least one (-1)-curve in its irreducible components. This is a contradiction, since $E_{0}, E_{1}, \cdots, E_{R-1}$ contain no
(-1)-curve by Corollary 2 of Proposition 2. Therefore, the case (B) which we assumed at the beginning of this section does not occur for simply connected non-singular C. Thus, we get

Corollary 3 ([1], [11]). - If an affine plane curve C is nonsingular and simply connected, then there exists a polynomial coordinate transformation of \mathbb{C}^{2} which maps C to a line in \mathbb{C}^{2}.

2.3. Minimal resolution of the singularity at infinity.

By Theorem 1 (ii), the dual graph $\Gamma\left(E_{f}\right)$ is of the following form:

Let $i_{1}<i_{2}<\cdots<i_{h}$ be the indices of the irreducible components of E_{f} corresponding to the branching vertices of the graph $\Gamma\left(E_{f}\right)$, and $j_{0}=0<j_{1}=1<j_{2}<\cdots<j_{h}<j_{h+1}=R$ be the indices corresponding to the edges of $\Gamma\left(E_{f}\right)$ as above.

Reversing the process of the construction of $\left(M_{f}, E_{f}\right)$, one can blow down successively $E_{R}, E_{R-1}, \cdots, E_{2}$ in this order to get the smooth surface M_{1}. Therefore, we have $\left(E_{i}^{2}\right)=-2$, for $i_{h} \leqslant i \leqslant R-1$.

Definition. - Let $M=M_{C}$ be the surface obtained by the blowing down of $E_{R}, E_{R-1}, \cdots, E_{i_{h}+1}$ from M_{f}. We shall denote the images of E_{0}, $E_{1}, \cdots, E_{i_{h}}$ in M_{C} newly by the same notations $E_{0}, E_{1}, \cdots, E_{i_{h}}$, and set

$$
E=E_{C}=E_{0} \cup E_{1} \cup \cdots \cup E_{i_{h}} \text { in } M_{C}
$$

We shall call the pair $(M, E)=\left(M_{C}, E_{C}\right)$ the compactification of \mathbb{C}^{2} obtained by the minimal resolution of the singularity of C at infinity. Accordingly, the graph $\Gamma\left(E_{C}\right)$ will be called the dual graph of the minimal resolution of the singularity of C at infinity.

Setting

$$
L_{k}=\bigcup_{i_{k-1}<i \leqslant i_{k}} E_{i}
$$

for each $1 \leqslant k \leqslant h$, we shall call $L_{k}\left(\right.$ resp. $\left.\Gamma\left(L_{k}\right)\right)$ the k-th branch of E_{C} (resp. of $\Gamma\left(E_{C}\right)$), where $i_{0}=-1$. We shall denote i_{h} by T.

3. (p, q)-sequence and δ-sequence.

In the followings, we shall denote $\left(M_{C}, E_{C}\right)$ by (M, E) and the closure of C in M by \bar{C}.

Definition. - We shall denote by δ_{k} the order of the pole of f on $E_{j_{k}}$ for $0 \leqslant k \leqslant h$ and call $\left\{\delta_{0}, \delta_{1}, \cdots, \delta_{h}\right\}$ the δ-sequence of C (or of f).

The purpose of this section is to describe the relationship between the δ-sequence and the weights of $\Gamma(E)$. Note first that we have

$$
\delta_{0}=n, \quad \delta_{1}=m
$$

since we assumed that $f(x, y)$ is of degree m with respect to x and n with respect to y. For each $k(1 \leqslant k \leqslant h)$, set the weights of $\Gamma\left(L_{k}\right)$ as follows:

where $L_{0}=$ the closure of the y-axis and $L_{h+1}=\bar{C}$. Define the positive integers $p_{k}, a_{k}, q_{k}, b_{k}$ such that

$$
\left(p_{k}, a_{k}\right)=1,\left(q_{k}, b_{k}\right)=1, \quad 0<a_{k}<p_{k}, 0<b_{k}<q_{k}
$$

by the continuous fractions as follows:

$$
\begin{aligned}
& p_{k} / a_{k}=m_{1}-1 \sqrt{m_{2}}-1 \sqrt{m_{3}}-\cdots-1 \sqrt{m_{r}} \\
& q_{k} / b_{k}=n_{1}-1 \sqrt{n_{2}}-1 \sqrt{n_{3}}-\cdots-1 \sqrt{n_{s}}
\end{aligned}
$$

Remark. - In case there is no vertex between the two branching vertices corresponding to $E_{i_{k-1}}$ and $E_{i_{k}}(k>1, r=0)$, we set $p_{k}=1$, $a_{k}=0$.

Definition. - We shall call the sequence

$$
\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right), \cdots,\left(p_{h}, q_{h}\right)
$$

the (p, q)-sequence of C (or of f).
By Lemma 3, we have
Proposition 3. $-p_{k} q_{k}-b_{k} p_{k}-a_{k} q_{k}=\left\{\begin{array}{cc}-1 & (k=1) \\ 1 & (k>1)\end{array}\right.$.
Therefore, $\left(p_{k}, q_{k}\right)$ are coprime each other, and if the pair $\left(p_{k}, q_{k}\right)$ is given, the pair $\left(a_{k}, b_{k}\right)\left(0<a_{k}<p_{k}, 0<b_{k}<q_{k}\right)$ is determined uniquely by this equation, so that, by the continuous fraction expansion of $\frac{p_{k}}{a_{k}}$ and $\frac{q_{k}}{b_{k}}$, the self-intersection numbers of the irreducible components of L_{k} are determined except for that of $E_{i_{k}}$.

Note that $\left(E_{T}^{2}\right)=\left(E_{i_{h}}^{2}\right)=-1$. As for the self-intersection numbers of $E_{i_{1}}, \cdots, E_{i_{h-1}}$, one can check easily the following proposition.

Proposition 4. - Suppose that, for $1<k \leqslant h$, the t weights n_{s-t+1}, \cdots, n_{s} of the above dual graph $\Gamma\left(L_{k}\right)$ are equal to -2 and that $n_{s-t} \neq-2$. Then,

$$
\left(E_{i_{k-1}}^{2}\right)=\left\{\begin{array}{cl}
2 & \left(p_{k}>q_{k}\right) \\
2+t & \left(p_{k}=1\right) \\
3+t & \text { (otherwise })
\end{array}\right.
$$

Thus, the dual graph $\Gamma(E)=\Gamma\left(E_{C}\right)$ can be determined completely by the (p, q)-sequence of C.

Now, by Lemma 1,
Proposition 5. - The order of the pole of f on $E_{i_{k}}$ is equal to $q_{k} \delta_{k}$.
In particular, since $\delta_{0}=n, \delta_{1}=m, f$ has the pole of order $p_{1} n=q_{1} m$ on $E_{i_{1}}$. Remember that $m=p d, n=q d,(p, q)=1$ (see (2.1)). We get then $p_{1} q=q_{1} p$. Since $\left(p_{1}, q_{1}\right)=1$ by Proposition 3 , this implies

$$
\text { Corollary. - (i) } p_{1}=p, q_{1}=q, \quad \text { (ii) } d p_{1}=\delta_{1}, \quad \text { (iii) } q_{1} \delta_{1}=p_{1} \delta_{0}
$$

Let

$$
P_{f}=\sum_{i=0}^{T} \nu_{i} E_{i}
$$

be the pole divisor of f on M. By Lemma 1 , the coefficients ν_{i} of E_{i} corresponding to the vertices between E_{0} (resp. E_{1}) and $E_{i_{1}}$, including $E_{i_{1}}$, are all multiple of δ_{0} (resp. δ_{1}). Further, applying

$$
\left(P_{f} \cdot E_{i}\right)=0
$$

for each E_{i} corresponding to the vertices between $E_{i_{1}}$ and $E_{i_{2}}$ successively, all the coefficients ν_{i} of these E_{i}, including $E_{i_{2}}$, are linear combinations of δ_{0} and δ_{1} with integer coefficients. Since all the coefficients of E_{i} between $E_{i_{2}}$ and $E_{j_{2}}$ are multiple of δ_{2}, the coefficients of E_{i} between $E_{i_{2}}$ and $E_{i_{3}}$ are linear combinations of $\delta_{0}, \delta_{1}, \delta_{2}$ with integer coefficients. Continuing in this way, we see that

$$
\text { Proposition 6. }-q_{k} \delta_{k} \in \mathbb{Z} \delta_{0}+\mathbb{Z} \delta_{1}+\cdots \mathbb{Z} \delta_{k-1}
$$

Now, setting $\sigma=i_{k-1}(2 \leqslant k \leqslant h)$, let us denote by M_{σ} the surface obtained by the $(\sigma-1)$-th blowing up in the process to get M from M_{1}. We may say that M_{σ} is the surface obtained by the blowing down of $E_{T}, T_{T-1}, \ldots, E_{\sigma+1}$ successively from M. Let $\tau_{\sigma}: M \rightarrow M_{\sigma}$ be the mapping obtained by the composition of these blowing downs. We shall denote the images of \bar{C}, E_{σ} in M_{σ} by $\bar{C}^{(\sigma)}, E_{\sigma}^{(\sigma)}$, respectively. $\bar{C}^{(\sigma)}$ intersects $E_{\sigma}^{(\sigma)}$ at the point $Q_{\sigma}=\tau_{\sigma}\left(E_{T} \cup \cdots E_{\sigma+1}\right)$. Let d_{k} be the intersection number of $\bar{C}^{(\sigma)}$ and $E_{\sigma}^{(\sigma)}$ in M_{σ}. Since M_{σ} is nonsingular, there exists a holomorphic function φ_{σ} on a neighborhood U_{σ}
of $\tau_{\sigma}^{-1}\left(Q_{\sigma}\right)=E_{\sigma+1} \cup \cdots \cup E_{T}$ in M which has the zero divisor of the form:

$$
\left(\varphi_{\sigma}\right)=E_{\sigma} \cap U_{\sigma}+\sum_{i=\sigma+1}^{T} \mu_{i} E_{i}
$$

We have then $\mu_{j_{\alpha}}=\mu_{i_{\alpha-1}}$ and, by Lemma $1, \mu_{i_{\alpha}}=q_{\alpha} \mu_{j_{\alpha}}$ for $\alpha=$ $k, k+1, \cdots, h$, where we set $\mu_{\sigma}=1$. This implies $\mu_{T}=\mu_{i_{h}}=q_{k} q_{k+1} \cdots q_{h}$. Hence, we have

$$
d_{k}=\left(\bar{C}^{(\sigma)} \cdot E_{\sigma}^{(\sigma)}\right)=\mu_{T}=\left\{\begin{array}{cc}
1 & (k=h+1) \\
q_{k} q_{k+1} \cdots q_{h} & (k \leqslant h)
\end{array}\right.
$$

Let $P_{f}^{(\sigma)}$ be the pole divisor of f on M_{σ}. We have then

$$
\begin{gathered}
\bar{C}^{(\sigma)} \sim P_{f}^{(\sigma)}=\sum_{i \leqslant \sigma} \nu_{i} E_{i}^{(\sigma)}, \\
d_{k}=\left(\bar{C}^{(\sigma)} \cdot E_{\sigma}^{(\sigma)}\right)=\sum_{i \leqslant \sigma} \nu_{i}\left(E_{i}^{(\sigma)} \cdot E_{\sigma}^{(\sigma)}\right) .
\end{gathered}
$$

Since each ν_{i} is a linear combination of $\delta_{0}, \delta_{1}, \cdots, \delta_{k-1}$ with integer coefficients, we have

$$
d_{k} \in \mathbb{Z} \delta_{0}+\mathbb{Z} \delta_{1}+\cdots \mathbb{Z} \delta_{k-1}
$$

Hence, d_{k} is a multiple of $\operatorname{gcd}\left\{\delta_{0}, \delta_{1}, \cdots, \delta_{k-1}\right\}$. On the other hand, the coefficients $\nu_{0}, \cdots, \nu_{\sigma}$ of $P_{f}^{(\sigma)}$ are the solutions of the simultaneous linear equations

$$
\sum_{i \leqslant \sigma} \nu_{i}\left(E_{i}^{(\sigma)} \cdot E_{j}^{(\sigma)}\right)=\left\{\begin{array}{cc}
0 & (j<\sigma) \\
d_{k} & (j=\sigma)
\end{array}\right.
$$

Therefore, by Lemma $4, \nu_{0}, \cdots, \nu_{\sigma}$ are all multiple of d_{k}. In particular, $\delta_{0}, \delta_{1}, \cdots, \delta_{k-1}$ are also multiple of d_{k}. Thus, d_{k} is the greatest common divisor of $\delta_{0}, \delta_{1}, \cdots, \delta_{k-1}$. Consequently, we have

Proposition 7. - Let $d_{k}(1 \leqslant k \leqslant h+1)$ be the greatest common divisor of $\delta_{0}, \delta_{1}, \cdots, \delta_{k-1}$. We have then $d_{h+1}=1$ and, for $k \leqslant h$,

$$
d_{k}=q_{k} q_{k+1} \cdots q_{h}
$$

or equivalently

$$
q_{k}=d_{k} / d_{k+1}
$$

Remark. - These relations hold for $\mathrm{k}=1$ also, since $d_{1}=\delta_{0}=n$, $d_{2}=d$ and $q_{1}=q=n / d$.

Let us consider the holomorphic function φ_{σ} on a neighborhood U_{σ} of $E_{\sigma+1} \cup \cdots \cup E_{T}$ defined in the above proof of Proposition $7\left(\sigma=i_{k-1}, 2 \leqslant\right.$ $k \leqslant h)$. Then, $\Phi=\varphi_{\sigma}^{\delta_{k}} f$ takes a pole of order $q_{k-1} \delta_{k-1}-\delta_{k}$ on $E_{i_{k-1}}$, since f takes a pole of order $q_{k-1} \delta_{k-1}$ on it.

On the other hand, φ_{σ} takes a zero of order q_{k} on $E_{i_{k}}$, while f takes a pole of order $q_{k} \delta_{k}$. Hence, $\Phi=\varphi_{\sigma}^{\delta_{k}} f$ is either a non-constant function or a non-zero constant $(\neq \infty)$ on $E_{i_{k}}$. If one blow down $E_{T}, E_{T-1}, \cdots, E_{i_{k}+1}$, the zero curve $\bar{C}^{\left(i_{k}\right)}$ of Φ intersects $E_{i_{k}}^{\left(i_{k}\right)}$ with the multiplicity $d_{k+1}=$ $q_{k+1} q_{k+2} \cdots q_{h}$. Therefore Φ is non-constant and of degree d_{k+1} on $E_{i_{k}}$. Hence, the order of the pole of Φ on $E_{i_{k-1}}$ is $d_{k+1} p_{k}$. Consequently, we obtain

PRoposition 8. $-d_{k+1} p_{k}=q_{k-1} \delta_{k-1}-\delta_{k}(2 \leqslant k \leqslant h)$.
Thus, the (p, q)-sequence and the dual graph $\Gamma(E)$ are determined completely by the δ-sequence of f. Let us summarize here the results obtained so far about the δ-sequence and (p, q)-sequence.

Proposition 9. - Let $C: f=0$ be a non-linearizable affine plane curve with one place at infinity. Let $\delta_{0}, \delta_{1}, \cdots, \delta_{h}$ be the δ-sequence of C, $\left\{\left(p_{k}, q_{k}\right)\right\}$ be the (p, q)-sequence of C and set $d_{k}=\operatorname{gcd}\left\{\delta_{0}, \cdots, \delta_{k-1}\right\}$ $(1 \leqslant k \leqslant h+1)$. We have then, for $1 \leqslant k \leqslant h$,
(1) $q_{k}=d_{k} / d_{k+1}, d_{h+1}=1$,
(2) $d_{k+1} p_{k}= \begin{cases}\delta_{1} & (k=1) \\ q_{k-1} \delta_{k-1}-\delta_{k} & (2 \leqslant k \leqslant h),\end{cases}$
(3) $q_{k} \delta_{k} \in \mathbb{Z} \delta_{0}+\mathbb{Z} \delta_{1}+\cdots+\mathbb{Z} \delta_{k-1}$.

Further, the dual graph $\Gamma\left(E_{C}\right)$ of the minimal resolution of the singularity of C at infinity is determined by the δ-sequence.

4. Canonical divisor.

The holomorphic 2-form $\omega=d x \wedge d y$ in \mathbb{C}^{2} extends to a meromorphic 2-form on M. The canonical divisor $K=(\omega)$ has the support on E. Let g be the genus of the curve $C_{\alpha}: f=\alpha$ for generic $\alpha \in \mathbb{C}$. If C is non-singular, g is equal to the genus of C by Theorem 1. Let

$$
P_{f}=\sum_{i=0}^{T} \nu_{i} E_{i}
$$

be the pole divisor of f on M. Taking into account

$$
\left(P_{f} \cdot E_{i}\right)=\left(\bar{C} \cdot E_{i}\right)= \begin{cases}0 & (0 \leqslant i \leqslant T-1) \\ 1 & (i=T)\end{cases}
$$

we get, by the adjunction formula,

$$
\begin{aligned}
2 g-2 & =(K \cdot \bar{C})+\left(\bar{C}^{2}\right) \\
& =\left(K \cdot P_{f}\right)+\left(\bar{C} \cdot P_{f}\right) \\
& =\left(K \cdot P_{f}\right)+\nu_{T} \\
& =\left((K+E) \cdot P_{f}\right)-\left(E_{T} \cdot P_{f}\right)+\nu_{T} \\
& =\sum_{i=0}^{T} \nu_{i}\left((K+E) \cdot E_{i}\right)-1+\nu_{T}
\end{aligned}
$$

According as E_{i} corresponds either the branch point, edge, or other point in the dual graph $\Gamma(E)$, we can calculate the value of $(K+E) \cdot E_{i}$ as follows:

$$
(K+E) \cdot E_{i}=\left\{\begin{array}{cl}
1 & \text { (branch) } \\
-1 & \text { (edge) } \\
0 & \text { (others) }
\end{array}\right.
$$

Hence

$$
\begin{aligned}
2 g-2 & =\nu_{i_{1}}-\nu_{0}-\nu_{1}+\sum_{k=2}^{h-1}\left(\nu_{i_{k}}-\nu_{j_{k}}\right)-\nu_{j_{h}}+\nu_{T}-1 \\
& =\nu_{i_{1}}-\nu_{0}-\nu_{1}+\sum_{k=2}^{h}\left(\nu_{i_{k}}-\nu_{j_{k}}\right)-1 \\
& =p q d-p d-q d-1+\sum_{k=2}^{h} \delta_{k}\left(q_{k}-1\right)
\end{aligned}
$$

Thus, we have
Theorem 2. $-2 g-1=d\{(p-1)(q-1)-1\}+\sum_{k=2}^{h} \delta_{k}\left(q_{k}-1\right)$.
Since the right hand side of this last equation is positive, we have $g>0$. We get in this way another proof to Corollary 3 of Theorem 1.

5. Approximate roots.

Multiplying $f(x, y)$ by a non-zero constant, if necessary, we may assume that $f(x, y)$ is monic (of degree n) with respect to y. For the divisors $d_{1}(=n), d_{2}, \cdots, d_{h}, d_{h+1}(=1)$ of n defined in Proposition 7 , set $n_{k}=\frac{n}{d_{k}}(k=1, \cdots, h+1)$. Then, there exists, for each $k(1 \leqslant k \leqslant h+1)$, a pair of polynomials $g_{k}(x, y)$, monic and of degree n_{k} with respect to y, and $\psi_{k}(x, y)$ of degree $<n-n_{k}$ with respect to y, uniquely determined by the folowing condition:

$$
f=g_{k}^{d_{k}}+\psi_{k}
$$

One can check the existence and the uniqueness of this pair $\left(g_{k}, \psi_{k}\right)$ by the termwise comparison of the both side of the last equation. We shall call $g_{k}(x, y)$ the k-th approximate root of f. We have $g_{1}=y$ and $g_{h+1}=f$ by definition. From the uniqueness of the approximate roots, it follows that g_{k} is also the k-th approximate root of g_{j} for any j with $k<j<h+1$. The sequence

$$
g_{0}=x, g_{1}=y, g_{2}, \cdots, g_{h}, g_{h+1}=f
$$

will be called the g-sequence of f. In the followings, we shall denote by C_{k} the curve defined by $g_{k}(x, y)=0$ in \mathbb{C}^{2}. We have $C_{0}=y$-axis, $C_{1}=x$-axis and $C=C_{h+1}$ by definition.

Theorem 3. - Each $C_{k}(k \leqslant h)$ is also with one place at infinity. Further, its closure $\overline{C_{k}}$ in M intersects transversely $E_{j_{k}}$, and does not intersect other irreducible components of E.

Before giving the proof to this theorem, let us prepare two lemmas.
Lemma 5. - Let $c_{1}, c_{2}, \cdots, c_{\alpha}$ be α non-zero complex numbers, d an integer, and set

$$
\varphi(t)=\prod_{i=1}^{\alpha}\left(t-c_{i}\right)^{d}
$$

Then, $\varphi(t)-\varphi(0)$ takes a zeros of order $\leqslant \alpha$ at $t=0$.
Lemma 6. - Let a, b, e be complex analytic curves on a nonsingular complex surface W such that a and b have no common irreducible
component with $e, a \cap b=\varnothing$ and e is compact. Assume that $a \cup e$ (resp. $b \cup e$) be the zero set of a holomorphic function u (resp. v) on W. Let

$$
a=\bigcup_{i=1}^{r} a_{i}, b=\bigcup_{j=1}^{s} b_{j}, e=\bigcup_{k=1}^{t} e_{k}
$$

be the decompositions into the irreducible components, and let

$$
\begin{aligned}
& (u)=\sum_{i=1}^{r} \mu_{i} a_{i}+\sum_{k=1}^{t} m_{k} e_{k}, \\
& (v)=\sum_{j=1}^{s} \nu_{j} b_{j}+\sum_{k=1}^{t} n_{k} e_{k}
\end{aligned}
$$

be the zero divisor of u, v respectively. Finaly, let α_{i} (resp. β_{j}) be the degree of the zero divisor of v (resp. u) restricted to a_{i} (resp. b_{j}). We have then,

$$
((u) \cdot(v))=\sum_{i=1}^{r} \mu_{i} \alpha_{i}=\sum_{j=1}^{s} \nu_{j} \beta_{j} .
$$

In fact, since $a_{i} \cdot b_{j}=0,(u) \cdot e_{k}=0,(v) \cdot e_{k}=0$,

$$
\begin{aligned}
((u) \cdot(v)) & \left.=\left(\sum_{i=1}^{r} \mu_{i} a_{i}+\sum_{k=1}^{t} m_{k} e_{k}\right) \cdot(v)\right) \\
& \left.=\left(\sum_{i=1}^{r} \mu_{i} a_{i}\right) \cdot(v)\right) \\
& =\sum_{i=1}^{r} \mu_{i}\left(a_{i} \cdot(v)\right) \\
& =\sum_{i=1}^{r} \mu_{i} \alpha_{i}
\end{aligned}
$$

In the same way, we have $((u) \cdot(v))=\sum_{j=1}^{s} \nu_{j} \beta_{j}$.
Proof of Theorem 3. - It is sufficient to prove it for $2 \leqslant k \leqslant h$. Set $\sigma=j_{k}-1$. In the case $\left(E_{i_{k-1}}^{2}\right) \leqslant-3$, we have $\sigma=i_{k-1}$. In the other case
$\left(E_{i_{k-1}}^{2}\right)=-2, E_{\sigma}$ is the component with the self-intersection number $\leqslant-3$ on L_{k} nearest to $E_{i_{k-1}}$ on the dual graph $\Gamma(E)$. (See the figure below.)

Let M_{σ} be the surface obtained by the ($\sigma-1$)-th blowing up in the process to get M from M_{1}. We may say that M_{σ} is the surface obtained by the blowing down of $E_{T}, E_{T-1}, \ldots, E_{\sigma+1}$ successively from M. We shall denote the images of $\bar{C}, \bar{C}_{k}, E_{i}$ in M_{σ} by $\bar{C}^{(\sigma)}, \bar{C}_{k}^{(\sigma)}, E_{i}^{(\sigma)}$, respectively. Let Q be the intersection point of $\bar{C}^{(\sigma)}$ and $E_{\sigma}^{(\sigma)}$. Note that we have

$$
\left(\bar{C}^{(\sigma)} \cdot E_{\sigma}^{(\sigma)}\right)=d_{k}
$$

and $\bar{C}^{(\sigma)}$ is tangent to $E_{\sigma}^{(\sigma)}$, since $\left(E_{\sigma}{ }^{2}\right) \leqslant-3$.
Now, suppose that $\bar{C}_{k}^{(\sigma)}$ passes through the point Q. Let $P_{x}^{(\sigma)}=$ $\sum_{i=1}^{\sigma} \mu_{i} E_{i}^{(\sigma)}$ be the pole divisor of x on M_{σ}. We have $\mu_{i}>0$ for $1 \leqslant i \leqslant \sigma$. We have

$$
\begin{aligned}
n_{k} & =\text { the } y \text {-degree of the function } g_{k} \\
& =\text { the intersection number of } C_{k} \text { and the line } x=\text { const. } \\
& =\text { the degree of } x \text { on } C_{k}
\end{aligned}
$$

$$
=\left(\bar{C}_{k}^{(\sigma)} \cdot P_{x}^{(\sigma)}\right)=\sum_{i=1}^{\sigma} \mu_{i}\left(\bar{C}_{k}^{(\sigma)} \cdot E_{i}^{(\sigma)}\right) .
$$

On the other hand, as one can check it easily using Lemma 1 , the coefficient μ_{σ}, the order of the pole of x on E_{σ}, is equal to $q_{1} \cdot q_{2} \cdots q_{k-1}=n_{k}$. Hence, we have

$$
\left(\bar{C}_{k}^{(\sigma)} \cdot E_{i}^{(\sigma)}\right)= \begin{cases}0 & (1 \leqslant i \leqslant \sigma-1) \\ 1 & (i=\sigma),\end{cases}
$$

while $\left(\bar{C}_{k}^{(\sigma)} \cdot E_{0}^{(\sigma)}\right)=0$, since g_{k} is monic. Thus, C_{k} has one place at infinity. Since $\bar{C}_{k}^{(\sigma)}$ intersects $E_{\sigma}^{(\sigma)}$ transversely at Q, \bar{C}_{k} intersects $E_{\sigma+1}=E_{j_{k}}$
transeversely at the regular point of E in M. Thus, if one shows that $\bar{C}_{k}^{(\sigma)}$ passes through the point Q, the proof of Theorem 3 will be accomplished.

Suppose that $\bar{C}_{k}^{(\sigma)}$ does not pass through the point Q. Consider the rational function

$$
\Phi=\frac{g_{k}^{d_{k}}}{f}=1-\frac{\psi_{k}}{f}
$$

on $M_{\sigma} . \Phi$ has no zero in $U-E_{\sigma}^{(\sigma)} \cap U$ for a small neighborhood U of Q. Assume that Q is an indetermination point of Φ. Then, there must be a zero curve of Φ which passes through Q. So, $\Phi=0$ on $E_{\sigma}^{(\sigma)}$. Set $A^{(\sigma)}=$ $E_{0}^{(\sigma)} \cup E_{1}^{(\sigma)} \cup \cdots \cup E_{\sigma-1}^{(\sigma)}$. Since $A^{(\sigma)}$ is exceptional and $A^{(\sigma)} \cap \bar{C}^{(\sigma)}=\varnothing$, Φ has no pole on $A^{(\sigma)}$. Therefore, Φ must be constant $(=0)$ on $A^{(\sigma)}$. But, since $\operatorname{deg}_{y} \psi_{k}<n-n_{k}$, we have $\psi_{k} / f=0$ on $E_{0}^{(\sigma)}$, so that $\Phi=1$ on $E_{0}^{(\sigma)}$. This is a contradiction. Hence, Q is not an indetermination point of Φ.

Now, blow up the indetermination points of Φ until the indetermination points of Φ disappear. Let \tilde{M} be the surface thus obtained. We shall denote by $\tilde{C}, \tilde{C}_{k}, \tilde{E}_{j}$, etc. the proper images in \tilde{M} of $\bar{C}^{(\sigma)}, \bar{C}_{k}^{(\sigma)}, E_{j}^{(\sigma)}$, etc. respectively. In \tilde{M}, we can write the divisor of Φ as follows:

$$
(\Phi)=d_{k} \tilde{C}_{k}-\tilde{C}+\sum_{j=0}^{\tau} \nu_{j} \tilde{E}_{j}
$$

namely,

$$
\tilde{C} \sim d_{k} \tilde{C}_{k}+\sum_{j=0}^{\tau} \nu_{j} \tilde{E}_{j}
$$

where $\tilde{E}_{0}, \tilde{E}_{1}, \cdots, \tilde{E}_{\sigma}$ are the proper images of $E_{0}^{(\sigma)}, E_{1}^{(\sigma)}, \cdots, E_{\sigma}^{(\sigma)}$ respectively, and $\tilde{E}_{\sigma+1}, \cdots, \tilde{E}_{\tau}$ are the curves appeared by the blowing ups. Since Q is not an indetermination point, we have

$$
\left(\tilde{C} \cdot \tilde{E}_{i}\right)=\left\{\begin{array}{cc}
0 & (i \neq \sigma) \\
d_{k} & (i=\sigma)
\end{array}\right.
$$

Hence, $\sum_{j=0}^{\tau} \nu_{j}\left(\tilde{E}_{j} \cdot E_{i}\right)(0 \leqslant i \leqslant \tau)$ are all multiple of d_{k}, so that, by Lemma 4, all the coefficients ν_{j} are multiple of d_{k}.

Now, if the pole set \tilde{P} of Φ on \tilde{E} is not connected, then one of its connected component must be included in \tilde{A}. But this is a contradiction, since $\tilde{C} \cap \tilde{A}=\varnothing$ and \tilde{A} is exceptional. Therefore, \tilde{P} is connected.

Let $\left\{\tilde{E}_{\lambda}\right\}_{\lambda \in \Lambda}$ be the irreducible components of \tilde{E} on which Φ is nonconstant. Take one $\tilde{E}_{\lambda}(\lambda \in \Lambda)$. Since the dual graph of \tilde{E} is a tree and \tilde{P} is connected, Φ has the pole on \tilde{E}_{λ} at only one point, say a. Let \tilde{B}_{0} be the connected component of the closure of $\tilde{E}-\tilde{E}_{\lambda}$ in \tilde{M} which contains E_{0}. Then, $\Phi=1$ on \tilde{B}_{0}, since Φ is holomorphic in a neighborhood of \tilde{B}_{0} and $\Phi=1$ on $E_{0}^{(\sigma)}$. Let b be the intersection point of \tilde{B}_{0} and \tilde{E}_{λ}, and take a coordinate function t of $\tilde{E}_{\lambda} \cong \mathbb{P}^{1}:|t| \leqslant \infty$ such that $t(a)=\infty$ and $t(b)=0$. Since all the ν_{j} are multiple of d_{k}, we can write $\varphi=\left.\Phi\right|_{\tilde{E}_{\lambda}}$ as follows:

$$
\varphi(t)=\prod_{i=1}^{\alpha_{\lambda}}\left(t-c_{i}\right)^{d_{k}}
$$

By Lemma 5, the number of the zeros of $\varphi(t)-1\left(=-\psi_{k} / f\right)$ other than $t=0$ is $\geqslant \alpha_{\lambda}\left(d_{k}-1\right)$.

Let $\tilde{P}_{x}=\sum_{i=0}^{\tau} \mu_{i} \tilde{E}_{i}^{(\sigma)}$ be the pole divisor of x on \tilde{M} and \tilde{Z}_{Φ} the zero divisor of Φ. The support of \tilde{Z}_{Φ} does not intersect \tilde{B}_{0}. We have, by Lemma 6,

$$
\begin{aligned}
\left(\tilde{P}_{x} \cdot d_{k} \tilde{C}_{k}\right) & =\left(\tilde{P}_{x} \cdot \tilde{Z}_{\Phi}\right) \\
& =\sum_{\lambda \in \Lambda} \mu_{\lambda} d_{k} \alpha_{\lambda}
\end{aligned}
$$

so that

$$
n_{k}=\operatorname{deg}_{y}\left(g_{k}\right)=\left(\tilde{P}_{x} \cdot \tilde{C}_{k}\right)=\sum_{\lambda \in \Lambda} \mu_{\lambda} \alpha_{\lambda}
$$

In the same way, let Σ_{k} be the curve defined by $\psi_{k}=0$ in \mathbb{C}^{2} and $\tilde{\Sigma}_{k}$ its closure in \tilde{M}. We have then, by Lemma 6,

$$
\operatorname{deg}_{y}\left(\psi_{k}\right)=\left(\tilde{P}_{x} \cdot \tilde{\Sigma}_{k}\right) \geqslant \sum_{\lambda \in \Lambda} \mu_{\lambda} \alpha_{\lambda}\left(d_{k}-1\right)
$$

Hence,

$$
\operatorname{deg}_{y}\left(\psi_{k}\right) \geqslant n_{k}\left(d_{k}-1\right)=n-n_{k}
$$

This is contrary to the assumption $\operatorname{deg}_{y}\left(\psi_{k}\right)<n-n_{k}$. Hence, $\bar{C}_{k}^{(\sigma)}$ passes through the point Q, and Theorem 3 is proved.

Corollary. - Each $g_{k}(0 \leqslant k \leqslant h)$ has the pole of order δ_{k} on $E_{T}=E_{i_{h}}$.

In fact, let P_{f} (resp. $P_{g_{k}}$) be the pole divisor of f (resp. g_{k}) on M. Then, we have, by Theorem 3,

$$
\begin{aligned}
\delta_{k} & =\left(P_{f} \cdot \bar{C}_{k}\right) \\
& =\left(\bar{C} \cdot \bar{C}_{k}\right) \\
& =\left(\bar{C} \cdot P_{g_{k}}\right) \\
& =\text { the order of the pole of } g_{k} \text { on } E_{T} .
\end{aligned}
$$

6. Semi-group criterion.

We shall continue to use the same notations as in the previous sections.

Lemma 7. - For any integer $k(1 \leqslant k \leqslant h)$ and any integer λ, the sequence of integers $\left\{\alpha_{0}, \alpha_{1}, \cdots, \alpha_{k}\right\}$ satisfying

$$
\lambda=\alpha_{0} \delta_{0}+\alpha_{1} \delta_{1}+\cdots+\alpha_{k} \delta_{k}
$$

and $0 \leqslant \alpha_{i}<q_{i}$ for $1 \leqslant i \leqslant k$ is unique, if it does exists.
In fact, assume that there exist two sequences $\left\{\alpha_{i}\right\},\left\{\beta_{i}\right\}$ with $0 \leqslant \alpha_{i}, \beta_{i}<q_{i}(1 \leqslant i \leqslant k)$ satisfying

$$
\begin{equation*}
\sum_{i=0}^{k} \alpha_{i} \delta_{i}=\sum_{i=0}^{k} \beta_{i} \delta_{i} \tag{1}
\end{equation*}
$$

Then, setting $\bar{\delta}_{i}=\delta_{i} / d_{k+1}$, we have

$$
\sum_{i=0}^{k-1}\left(\alpha_{i}-\beta_{i}\right) \bar{\delta}_{i}=\left(\beta_{k}-\alpha_{k}\right) \bar{\delta}_{k}
$$

Here, $\bar{\delta}_{0}, \cdots, \bar{\delta}_{k-1}$ and $\bar{\delta}_{k}$ are mutually coprime, since $d_{k+1}=\operatorname{gcd}\left\{\delta_{0}\right.$, $\left.\cdots, \delta_{k}\right\}$. Therefore, $\beta_{k}-\alpha_{k}$ must be a multiple of $\operatorname{gcd}\left\{\bar{\delta}_{0}, \cdots, \bar{\delta}_{k-1}\right\}=$ $d_{k} / d_{k+1}=q_{k}$. Since $0 \leqslant \alpha_{k}, \beta_{k}<q_{k}$, this implies $\alpha_{k}=\beta_{k}$. Repeating the same argument, we get $\alpha_{k-1}=\beta_{k-1}, \cdots, \alpha_{1}=\beta_{1}$, and finally, $\alpha_{0}=\beta_{0}$ by the equation (1).

Proposition 10. - For each $k(1 \leqslant k \leqslant h), q_{k} \delta_{k}$ is a linear combination of $\delta_{0}, \delta_{1}, \cdots, \delta_{k-1}$ with non-negative integer coefficients, namely

$$
\begin{equation*}
q_{k} \delta_{k} \in \mathbb{N} \delta_{0}+\mathbb{N} \delta_{1}+\cdots+\mathbb{N} \delta_{k-1} \tag{2}
\end{equation*}
$$

Proof. - We have $q_{1} \delta_{1}=p \delta_{0}$ by the corollary to Proposition 5. Therefore, it is sufficient to prove (2) for $k \geqslant 2$. Set $\sigma=i_{k}$, and let us consider the surface M_{σ} obtained by the ($\sigma-1$) -th blowing up in the process to get M from M_{1}. We may say that M_{σ} is the surface obtained by the blowing down of $L_{h+1}, L_{h}, \ldots, L_{k+1}$ successively from M. Let $\pi_{\sigma}: M \rightarrow M_{\sigma}$ be the contraction mapping. As in the previous sections, let us denote the proper images of $\bar{C}, \bar{C}_{k}, E_{i}$ in M_{σ} by $\bar{C}^{(\sigma)}, \bar{C}_{k}^{(\sigma)}, E_{i}^{(\sigma)}$ respectively. By Theorem $3, \bar{C}_{k+1}^{(\sigma)}$ intersects transversely $E_{\sigma}^{(\sigma)}$ at the same point $Q=\pi_{\sigma}\left(L_{k+1} \cup \cdots \cup L_{h+1}\right)$ as $\bar{C}^{(\sigma)}$. Hence, the functions f and g_{k+1} on M_{σ} have the same indetermination point $Q \in E_{\sigma}^{(\sigma)}$. Let

$$
P_{f}^{(\sigma)}=\sum_{i=0}^{\sigma} \nu_{i} E_{i}^{(\sigma)}, \quad P_{g_{k+1}}^{(\sigma)}=\sum_{i=0}^{\sigma} \bar{\nu}_{i} E_{i}^{(\sigma)}
$$

be the pole divisor of f and g_{k+1} on M_{σ} respectively. Let $\bar{\delta}_{0}, \bar{\delta}_{1}, \cdots, \bar{\delta}_{k}$ be the order of the pole of g_{k+1} on $E_{j_{0}}\left(=E_{0}\right), E_{j_{1}}\left(=E_{1}\right), \cdots, E_{j_{k}}$. We have $\bar{\delta}_{0}=\bar{\nu}_{j_{0}}, \bar{\delta}_{1}=\bar{\nu}_{j_{1}}, \cdots, \bar{\delta}_{k}=\bar{\nu}_{j_{k}}$. The coefficients $\nu_{i}, \bar{\nu}_{i}(i=0,1, \cdots, \sigma)$ are the solutions of the following equations:

$$
\begin{aligned}
& \sum_{j=0}^{\sigma}\left(E_{i}^{(\sigma)} \cdot E_{j}^{(\sigma)}\right) \nu_{j}= \begin{cases}0 & (i \neq \sigma) \\
d_{k+1} & (i=\sigma)\end{cases} \\
& \sum_{j=0}^{\sigma}\left(E_{i}^{(\sigma)} \cdot E_{j}^{(\sigma)}\right) \bar{\nu}_{j}= \begin{cases}0 & (i \neq \sigma) \\
1 & (i=\sigma)\end{cases}
\end{aligned}
$$

Hence, by Lemma 4, we have $\nu_{i}=d_{k+1} \bar{\nu}_{i}$ for all $i=0,1, \cdots, \sigma$. In particular,

$$
\delta_{i}=\bar{\delta}_{i} \cdot d_{k+1}, \quad(i=0,1, \cdots, k)
$$

Therefore, in order to prove (2), it is sufficient to prove

$$
\begin{equation*}
q_{k} \bar{\delta}_{k} \in \mathbb{N} \bar{\delta}_{0}+\mathbb{N} \bar{\delta}_{1}+\cdots+\mathbb{N} \bar{\delta}_{k-1} \tag{3}
\end{equation*}
$$

By Theorem $3, \bar{C}_{k}^{(\sigma)}$ intersects $E_{j_{k}}^{(\sigma)}$ transversely and does not intersects other components $E_{i}^{(\sigma)}\left(i \neq j_{k}\right)$. We have

$$
\begin{aligned}
\bar{\delta}_{k} & =\left(P_{g_{k+1}}^{(\sigma)} \cdot \bar{C}_{k}^{(\sigma)}\right) \\
& =\left(\bar{C}_{k+1}^{(\sigma)} \cdot \bar{C}_{k}^{(\sigma)}\right) \\
& =\left(\bar{C}_{k+1}^{(\sigma)} \cdot P_{g_{k}}^{(\sigma)}\right)
\end{aligned}
$$

This implies that g_{k} has the pole of order $\bar{\delta}_{k}$ on $E_{\sigma}^{(\sigma)}$. On the other hand, by Lemma $1, g_{k+1}$ has the pole of order $q_{k} \bar{\delta}_{k}$ on $E_{\sigma}^{(\sigma)}$. Hence, $E_{\sigma}^{(\sigma)}$ is neither the zero nor the pole of $\Phi=\frac{g_{k+1}}{g_{k}^{q_{k}}}$. Further, Φ is holomorphic in a neighborhood of Q and $\Phi(Q)=0$. Therefore, Φ is not constant on $E_{\sigma}^{(\sigma)}$.

Now, set $\psi=g_{k+1}-g_{k}^{q_{k}}$. Then,

$$
\frac{\psi}{g_{k}^{q_{k}}}=\Phi-1
$$

is also a non-constant function on $E_{\sigma}^{(\sigma)}$. Therefore, ψ has also the pole of order $q_{k} \bar{\delta}_{k}$ on $E_{\sigma}^{(\sigma)}$. On the other hand, since

$$
\operatorname{deg}_{y}(\psi)<n_{k+1}=n_{k} q_{k}, \quad n_{k}=\operatorname{deg}_{y}\left(g_{k}\right)
$$

by the division of ψ by $g_{k}^{q_{k}-1}$, we get

$$
\psi=c_{1} g_{k}^{q_{k}-1}+\psi_{1}
$$

with $\operatorname{deg}_{y}\left(c_{1}\right)<n_{k}, \operatorname{deg}_{y}\left(\psi_{1}\right)<n_{k}\left(q_{k}-1\right)$. Dividing ψ_{i-1} by $g_{k}^{q_{k}-i}$ successively for $i=2, \cdots, q_{k}-1$, we get

$$
\psi_{i-1}=c_{i} g_{k}^{q_{k}-i}+\psi_{i}
$$

where $\operatorname{deg}_{y}\left(c_{1}\right)<n_{k}, \operatorname{deg}_{y}\left(\psi_{i}\right)<n_{k}\left(q_{k}-i\right)$. Thus, setting $c_{q_{k}}=\psi_{q_{k}-1}$, we get

$$
\psi=\sum_{i=1}^{q_{k}} c_{i} g_{k}^{q_{k}-i}
$$

Here, we have

$$
\operatorname{deg}_{y}\left(c_{i}\right)<n_{k}=n_{k-1} q_{k-1}, \quad n_{k-1}=\operatorname{deg}_{y}\left(g_{k-1}\right)
$$

In the same way, dividing c_{i} and its rests by $g_{k-1}^{q_{k-1}-1}, g_{k-1}^{q_{k-1}-2}, \cdots, g_{k-1}$ successively, we get

$$
c_{i}=\sum_{j=1}^{q_{k-1}} c_{i j} g_{k-1}^{q_{k-1}-j}
$$

with $\operatorname{deg}_{y}\left(c_{i j}\right)<n_{k-1}$. Thus, we have

$$
\psi=\sum_{i=1}^{q_{k}} \sum_{j=1}^{q_{k-1}} c_{i j} g_{k}^{q_{k}-i} g_{k-1}^{q_{k-1}-j}
$$

Repeating this procedure, we obtain

$$
\psi=\sum_{\alpha_{1}<q_{1}, \alpha_{2}<q_{2}, \cdots, \alpha_{k}<q_{k}} c_{\alpha_{1} \alpha_{2} \cdots \alpha_{k}} g_{1}^{\alpha_{1}} g_{2}^{\alpha_{2}} \cdots g_{k}^{\alpha_{k}}
$$

where $\operatorname{deg}_{y}\left(c_{\alpha_{1} \alpha_{2} \cdots \alpha_{k}}\right)=0$, since $g_{1}=y$. Substituting finally $g_{0}=x$, we can write ψ as follows:

$$
\psi=\sum_{\alpha_{0}<\infty, \alpha_{1}<q_{1}, \cdots, \alpha_{k}<q_{k}} c_{\alpha_{0} \alpha_{1} \cdots \alpha_{k}} g_{0}^{\alpha_{0}} g_{1}^{\alpha_{1}} \cdots g_{k}^{\alpha_{k}}
$$

where $c_{\alpha_{0} \alpha_{1} \cdots \alpha_{k}}$ are constants.
The order of the pole of each term $g_{0}^{\alpha_{0}} g_{1}^{\alpha_{1}} \cdots g_{k}^{\alpha_{k}}$ on $E_{\sigma}^{(\sigma)}$ is

$$
\begin{equation*}
\alpha_{0} \bar{\delta}_{0}+\alpha_{1} \bar{\delta}_{1}+\cdots+\alpha_{k} \bar{\delta}_{k} \tag{4}
\end{equation*}
$$

Now, by Lemma 7, these values are different each other. Hence, the order of the pole of ψ on $E_{\sigma}^{(\sigma)}$ coincide with one of the values of (4). Thus, we have

$$
q_{k} \bar{\delta}_{k}=\alpha_{0} \bar{\delta}_{0}+\alpha_{1} \bar{\delta}_{1}+\cdots+\alpha_{k} \bar{\delta}_{k}
$$

for some sequence of non-negative integers $\alpha_{0}, \alpha_{1}, \cdots, \alpha_{k}$ satisfying $0 \leqslant \alpha_{i}<q_{i}$ for $i=1, \cdots, k$. Assume here that $\alpha_{k} \neq 0$. Then, we have

$$
\alpha_{0} \bar{\delta}_{0}+\alpha_{1} \bar{\delta}_{1}+\cdots+\alpha_{k-1} \bar{\delta}_{k-1}+\left(q_{k}-\alpha_{k}\right) \bar{\delta}_{k}=0
$$

with $0<q_{k}-\alpha_{k}<q_{k}$. This contradicts Lemma 7 . Hence, we have $\alpha_{k}=0$. Thus, we obtain

$$
q_{k} \bar{\delta}_{k}=\alpha_{0} \bar{\delta}_{0}+\alpha_{1} \bar{\delta}_{1}+\cdots+\alpha_{k-1} \bar{\delta}_{k-1} .
$$

Q.E.D.

By Proposition 9 and Proposition 10, we obtain the following theorem which can be regarded as an algebrico-geometric version of the so-called semi-group theorem due to Abhyankar and Moh [2] for the curves with one place at infinity in \mathbb{C}^{2}.

Theorem 4. - Let C be an affine plane curve with one place at infinity in $\mathbb{C}^{2}, \delta_{0}, \delta_{1}, \cdots, \delta_{h}$ the δ-sequence of C and $\left(p_{1}, q_{1}\right), \cdots$, (p_{h}, q_{h}) the (p, q)-sequence of C defined at the beginning of Section 3. Set $d_{k}=\operatorname{gcd}\left\{\delta_{0}, \cdots, \delta_{k-1}\right\}$ for $1 \leqslant k \leqslant h+1$. Then, we have, for $1 \leqslant k \leqslant h$,
(1) $q_{k}=d_{k} / d_{k+1}, d_{h+1}=1$,
(2) $d_{k+1} p_{k}= \begin{cases}\delta_{0} & (k=1) \\ q_{k-1} \delta_{k-1}-\delta_{k} & (2 \leqslant k \leqslant h),\end{cases}$
(3) $q_{k} \delta_{k} \in \mathbb{N} \delta_{0}+\mathbb{N} \delta_{1}+\cdots \mathbb{N} \delta_{k-1}$.

Further, the dual graph $\Gamma\left(E_{C}\right)$ of the minimal resolution of the singularity of C at infinity is determined by the δ-sequence.

The next theorem gives the inverse of Theorem 4 in some sense.
Theorem 5 (Sathaye-Stenerson [10]). - For a sequence of $h+1$ natural numbers $\delta_{0}, \delta_{1}, \delta_{2}, \cdots, \delta_{h}(h \geqslant 1)$, define $d_{1}, d_{2}, \cdots, d_{h+1}$ by

$$
d_{k}=\operatorname{gcd}\left\{\delta_{0}, \cdots, \delta_{k-1}\right\}
$$

and set $q_{k}=d_{k} / d_{k+1}(1 \leqslant k \leqslant h)$. Suppose that the following three conditions are satisfied:
(1) $d_{h+1}=1$,
(2) $\delta_{k}<q_{k-1} \delta_{k-1}(2 \leqslant k \leqslant h)$,
(3) $q_{k} \delta_{k} \in \mathbb{N} \delta_{0}+\mathbb{N} \delta_{1}+\cdots+\mathbb{N} \delta_{k-1}(1 \leqslant k \leqslant h)$.

Then, $\left\{\delta_{0}, \delta_{1}, \delta_{2}, \cdots, \delta_{h}\right\}$ is the δ-sequence of an affine plane curve with one place at infinity in \mathbb{C}^{2}.

Proof. - We shall prove Theorem 5 by the induction on h. In the case $h=1$, setting $\delta_{0}=q, \delta_{1}=p$, we have $(p, q)=d_{2}=1$. Hence, as one sees it easily, the curve $x^{p}+y^{q}=0$ has one place at infinity and $\left\{\delta_{0}, \delta_{1}\right\}$ is its δ-sequence.

Now, let us consider the case $h \geqslant 2$. Set $\tilde{\delta}_{k}=\delta_{k} / d_{h}$ for $0 \leqslant k \leqslant h-1$, and $\tilde{d}_{k}=d_{k} / d_{h}$ for $1 \leqslant k \leqslant h$. We have

$$
\tilde{d}_{k}=\operatorname{gcd}\left\{\tilde{\delta}_{0}, \tilde{\delta}_{1}, \cdots, \tilde{\delta}_{k-1}\right\} \text { and } q_{k}=\tilde{d}_{k} / \tilde{d}_{k+1}
$$

for $1 \leqslant k \leqslant h-1$. Further, the sequence $\left\{\tilde{\delta}_{0}, \tilde{\delta}_{1}, \cdots, \tilde{\delta}_{h-1}\right\}$ satisfies the same properties (1), (2), (3) for $\tilde{h}=h-1$. Therefore, by the induction hypothesis, there exists an affine plane curve C_{h} with one place at infinity which has $\left\{\tilde{\delta}_{i}\right\}$ as its δ-sequence. Let \tilde{f} be the defining polynomial of C_{h} and, taking the canonical coordinate system x, y for C_{h} (see (2.1)), let $g_{0}=x$, $g_{1}=y, \cdots, g_{h-1}, g_{h}=\tilde{f}$ be its g-sequence. Let $(\tilde{M}, \tilde{E})=\left(M_{C_{h}}, E_{C_{h}}\right)$ be the compactification of \mathbb{C}^{2} obtained by the minimal resolution of the singularity of C_{h} at infinity (see (2.3)). The closure \tilde{C}_{k} of the curve $C_{k}: g_{k}=0(0 \leqslant k \leqslant h-1)$ in \tilde{M} passes through the irreducible component $\tilde{E}_{j_{k}}$ of \tilde{E} corresponding to the k-th edge of the dual graph $\Gamma(\tilde{E})$, and \tilde{C}_{h}
passes through a point Q of $\tilde{E}_{i_{h-1}}$, the curve appeared by the last blowing up. Now, set

$$
p_{h}=\left(q_{h-1} \delta_{h-1}-\delta_{h}\right)
$$

Since $q_{h}=d_{h}=\operatorname{gcd}\left\{\delta_{0}, \cdots, \delta_{h-1}\right\}$ and $\left(q_{h}, \delta_{h}\right)=d_{h+1}=1$, then we have $\left(p_{h}, q_{h}\right)=1$. Therefore, we can take $a_{h}, b_{h}\left(0<a_{h}<p_{h}, 0<b_{h}<q_{h}\right)$ such that

$$
p_{h} q_{h}-b_{h} p_{h}-a_{h} q_{h}=1
$$

Define the integers $m_{i}, n_{j} \geqslant 2$ by the following continuous fraction expansions:

$$
\begin{aligned}
p_{h} / a_{h} & =m_{1}-1 \sqrt{m_{2}}-1 \sqrt{m_{3}}-\cdots-1 \sqrt{m_{r}} \\
q_{h} / b_{h} & =n_{1}-1 \sqrt{n_{2}}-1 \sqrt{n_{3}}-\cdots-1 \sqrt{n_{s}}
\end{aligned}
$$

Then, we can blow up the point Q and the infinitely near points successively, in such a way that we get the h-th branch L_{h} of the form:

Let M be the surface thus obtained and E the total image of \tilde{E} in M. Let E_{i}, \bar{C}_{k} the proper images of $\tilde{E}_{i}, \tilde{C}_{k}$ in M. Note that we can do these blowing up in such a way that the closure \bar{C}_{h} passes through the component $E_{j_{h}}$. (It is sufficient to take the center of the blowing up on $E_{j_{h}}$ to get $E_{j_{h}+1}$ outside the intersection of the closure of C_{h} with $E_{j_{h}}$.)

According to the corollary to Theorem 3 , each $g_{k}(0 \leqslant k \leqslant h-1)$ takes the pole of order $\tilde{\delta}_{k}$ on $E_{i_{h-1}}$, so that it takes the pole of order δ_{k} on $E_{i_{h}}$, while g_{h} takes the pole of order

$$
q_{h}\left(q_{h-1} \tilde{\delta}_{h-1}\right)-p_{h}=q_{h-1} \delta_{h-1}-p_{h}=\delta_{h}
$$

on $E_{i_{h}}$.
Now, by the condition (3), there exists a sequence of non-negative integers α_{i} satisfying

$$
q_{h} \delta_{h}=\alpha_{0} \delta_{0}+\alpha_{1} \delta_{1}+\cdots+\alpha_{h-1} \delta_{h-1}
$$

where we may assume $0 \leqslant \alpha_{i} \leqslant q_{i}(1 \leqslant i \leqslant h-1)$, applying the condition (3) for $k=h-1, h-2, \cdots, 1$ successively, if it is neccessary. Consider the polynomial

$$
f(x, y)=g_{h}^{q_{h}}-\prod_{i=0}^{h-1} g_{i}^{\alpha_{i}}
$$

and the curve $C: f(x, y)=0$ in \mathbb{C}^{2}. Since $g_{h}^{q_{h}}$ and $\prod_{i=0}^{h-1} g_{i}^{\alpha_{i}}$ have the same order (say $q_{h} \delta_{h}$) of the poles on $E_{i_{h}}$, the function

$$
\Phi=g_{h}^{-q_{h}} \prod_{i=0}^{h-1} g_{i}^{\alpha_{i}}=1-\frac{f}{g_{h}^{q_{h}}}
$$

is either a non-constant function or a non-zero constant on $E_{i_{h}}$.
Let A (resp. B) be the closure of the connected component of $E-E_{i_{h}}$ which contains E_{0} (resp. $E_{j_{h}}$). Since A is exceptional and $A \cap \bar{C}_{h}=\varnothing, \Phi$ is holomorphic on A and the pole of Φ is contained in $\bar{C}_{h} \cup B$. On the other hand,

$$
\operatorname{deg}_{y}\left(\prod_{i=0}^{h-1} g_{i}^{\alpha_{i}}\right)<\sum_{i=1}^{h-1} q_{i} n_{i}=\sum_{i=1}^{h-1} q_{i} q_{i-1} \cdots q_{1}<q_{h} q_{h-1} \cdots q_{1}=\operatorname{deg}_{y}\left(g_{h}^{q_{h}}\right)
$$

Hence, E_{0} is a zero of Φ, so that $\Phi=0$ on A. Therefore, Φ is non-constant on $E_{i_{h}}$, and takes the pole on the irreducible component B_{1} of B which intersects $E_{i_{h}}$. The pole divisor of Φ must be of the form

$$
P_{\Phi}=q_{h} \bar{C}_{h}+\sum_{i=1}^{s} \mu_{i} B_{i},\left(\mu_{i}>0\right)
$$

where $B_{1}, B_{2}, \cdots, B_{s}$ are the irreducible components of B. By Lemma 1 , we have $q_{h} \mu_{1}=q_{h}$, so that $\mu_{1}=1$. Thus, Φ is a rational function of degree 1 on $E_{i_{h}}$. Since the curve $\Phi=1$ coincide with \bar{C}, we obtain

$$
\left(\bar{C} \cdot E_{i}\right)= \begin{cases}1 & \left(i=i_{h}\right) \\ 0 & \left(i \neq i_{h}\right) .\end{cases}
$$

Thus, the curve C has one place at infinity.
Now, since $\Phi=0$ on A, f takes the same order of the pole as $g_{h}^{q_{h}}$ on each irreducible component of A. In particular, f has the pole of order $q_{h} \tilde{\delta}_{k}=\delta_{k}$ on each $E_{j_{k}}(0 \leqslant k \leqslant h-1)$. On the other hand, since $\Phi=1-f / g_{h}^{q_{h}}$ is non-constant on $E_{i_{h}}, f$ has the pole of the same order
$q_{h} \delta_{h}$ as $g_{h}^{q_{h}}$ on $E_{i_{h}}$. Hence, f has the pole of order δ_{h} on $E_{j_{h}}$ by Lemma 1. Thus, $\left\{\delta_{0}, \delta_{1}, \cdots, \delta_{h}\right\}$ is the δ-sequence of the curve $C: f=0$ with one place at infinity.
Q.E.D.

BIBLIOGRAPHY

[1] S.S. Abhyankar and T.T. Moh, Embeddings of the line in the plane, J. reine angev. Math., 276(1975), 148-166.
[2] S.S. Abhyankar and T.T.Moh, On the semigroup of a meromorphic curve, Proc. Int. Symp. Algebraic Geometry, Kyoto (1977), 249-414.
[3] N.A' Campo and M.Oka, Geometry of plane curves via Tschirnhausen resolution tower, Osaka J. Math., Vol.33, No. 4 (1996), 1003-1034.
[4] M. Furushima, Finite groups of polynomial automorphisms in the complex affine plane(I), Mem. Fac. Sci. Kyushu Univ., 36(1982), 85-105.
[5] M. Miyanishi, Minimization of the embeddings of the curves into the affine plane, J. Kyoto Univ., Vol.36, No. 2 (1996), 311-329.
[6] J.A. Morrow, Compactifications of \mathbf{C}^{2}, Bull. Amer. Math. Soc., 78(1972), 813816.
[7] Y. Nakazawa and M. Oka, Smooth plane curves with one place at infinity, to appear in J. Math. Soc. Japan, Vol.49, No. 4 (1997).
[8] W.D. Neumann, Complex algebraic curves via their links at infinity, Invent. Math., 98(1989),445-489.
[9] C.P. Ramanujam, A topological characterization of the affine plane as an algebraic variety, Ann. Math., (2), 94(1971), 69-88.
[10] A. Sathaye and J. Stenerson, On plane polynomial curves, Algebraic geometry and its applications, C.L.Bajaj, ed., Springer, (1994), 121-142.
[11] M. Suzuki, Propriété topologique des polynômes de deux variables complexes et automorphismes algébriques de l'espace \mathbf{C}^{2}, J. Math. Sci. Japan, 26(1974), 241-257.
[12] Zaidenberg and Lin, An irreducible simply connected algebraic curve in \mathbb{C}^{2} is equivalent to a quasihomogeneous curve, Soviet Math. Dokl., Vol.28, No. 1 (1983), 200-204.

Manuscrit reçu le 15 octobre 1997, révisé le 30 septembre 1998, accepté le 26 octobre 1998.

Masakazu SUZUKI, Hakozaki, Graduate School of Mathematics Kyushu University 36 Fukuoka, 812-8581 (Japan).

[^0]: (1) We implemented a program to get the list of the δ-sequences and the corresponding dual graphs $\Gamma(E)$ of the curves with one place at infinity with any given genus. We thus confirmed the classification table given by Nakazawa in [7].

