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RIESZ POTENTIALS AND AMALGAMS

by M. COWLING, S. MEDA & R. PASQUALE

0. Introduction.

Let M be Euclidean space R71 and let —C be the usual Laplace
operator (so that C is positive). The Hardy-Littlewood-Sobolev regularity
theorem states that, i f l < p < g < o o and 1 / p — 1/q = 2/n, then there is
a constant C such that

\\u\\,<C\\Cu\\^ WeC^M).

This may be expressed by stating that C~1 maps LP(M) into Lq(M).
More generally, one may consider the Riesz potential operators /^-Q!/2 when
0 < a < n; these are given by convolution with the tempered distributions
whose Fourier transforms are | • I"0. Then £~0'/2 maps LP(M) to Lq(M)
when 1 < p < q < oo and 1/p — 1/q = ajn.

Now take M to be the infinite cylinder {{x.y^z) € R3 : x^-^-y2 =
1}, equipped with the restriction to M of the Euclidean metric, and
let C be the Laplace-Beltrami operator of M. A natural question is
whether the Riesz potential operators y;-0/2 map LP(M) to Lq(M) for
some positive real a. As is well known, and as we shall see shortly, the
answer is no, essentially because M is two-dimensional but "seems" one-
dimensional globally. Nevertheless, the Riesz potential operators do have
some smoothing properties which may be formulated in terms of amalgams.
We will now study this example in some detail, as it will be a paradigm
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for the rest of this paper. We parametrise the point (cos 6, sin 0, z) of M by
(6, z), where —TT < 0 < TT and —oo < z < oo.

The heat equation on M has a fundamental solution Hf, given by the
formula

ufa \ 1 V- ^ (^A;)^^
W^-i^^-———^———)•fcez

Then if / is a reasonably regular function on M, the solution of the heat
equation in M x R4' with initial data / is the convolution Hf * /, where

/•2-7T /•OO

Ht^f(0,z)= \ / ^(6>-(^-w)/(<^w)d^dw.
./O ./—oo

Fix a in (0,1/2). The Riesz potential operator y;-0/2 is given by
convolution with the kernel R^, where

i r ° °
^vwi •°/'-lff•d••

It is easy to see that, for all 0 in (—TT, 71-] and z in R,

f0 U TT (f) ^ ~ J rl ̂ (-(^ + ̂ V^) when 0 < ̂  1(0.1) H^ z) ~ <^ ^_,/, ̂ p(_^/^ ^en 1 $ t < oo.

This means, for instance, that there are positive constants C and C' such
that

tHt(0,z)
- exp(-(02+^2)/4() -L / '

for all 0 in (-7r,7r], z in R, and t in (0,1]. It follows immediately that

R (0 \ J (02 + ̂ )(a-2)/2 when 02 + z2 <, 1
Ql ' / t (1 + ̂ )(0-1)/2 when 02 + z2 ̂  1.

Let B(o, p) be the ball in M centred at (1,0,0) of radius p and ^,3(0, p) be
its characteristic function. Then if p <: 1,

R la \ \ W +02+ z2)^-2^2 when 02 + z2 < 1
^*XB«,,,)(^.)-{^^^.J, ^ ̂ +.^1,

while i f p > 1,

Pa * XB(o,p)(^^) - P(P2 + ̂ )(a-l)/2.

If /;-0'/2 were bounded from 77 (M) to ^^(M), then it would follow that
q{a - 1) < -1 since Ra * Xa(o^) ^ ^(M), and furthermore the ratio
11-Ka * XB(o,p)ll9/| |XB(o,p)llp would be uniformly bounded in p. Now

ll^*XB(o,p)llg ^ f p"+2/9-2/p ^^en p ̂  1

IIXB(o,p) ||p ^ 1 pa+l/9-l/p when p ̂  1,



RIESZ POTENTIALS AND AMALGAMS 1347

and this cannot be uniformly bounded in p. Thus the Riesz potential
operator C~oi/2 cannot be bounded from LP(M) to Lq(M). A shorter way
to prove this result is to appeal to [6], Theorem 1 once formula (0.1) is
known. We have given the details here because this example motivates and
informs the use of amalgams.

Nevertheless, the Riesz potential operator Cr01-!2 is regularising when
Re (a) > 0. We may express this using amalgams. For any integer j, define
Ej to be

{(x^^)eM:\z-j\<^l/2}^

and ^EJ to be its characteristic function. For p and q in [1, oo], let A^M) be
the Banach space of all measurable functions / on M such that ||/||A9 < 00?
where

/ \1/9

\\f\\A^= EIÎ IÎ
S'<=Z /

if q < oo, and
||/||A^=sup{|[/^llp:je

THEOREM. — Suppose that 0 < a < l , l < p < r < o o ,
1/p — 1/r = a/2, 1 < q < s < oo, and 1/q — 1/s = a. Then the Riesz
potential operator C~a^ is bounded from A^M) to A^(M).

The proof of this theorem is omitted, as we shall prove a more general
result later. The point is that the Riesz potential operators may not be Lp-
Lq bounded, but that boundedness between amalgams may be a substitute.
This theorem is formulated with the conditions 1/p — 1/r = a/2 and
1/q — 1/s = a/I, where the "local dimension" 2 is involved with the "local
indices" p and r, while the "global dimension" 1 is involved with the "global
indices" q and r. Thus the mapping properties between amalgams seem to
encapsulate the local and the global nature of M quite well.

The aim of this paper is to prove a version of this theorem involving
more general spaces M and operators C. In Section 1, we discuss the
definition of amalgams, and prove an A^ — A^ mapping theorem for kernel
operators. In Section 2, we consider "Gaussian" semigroups. In Sections 3
and 4, we consider examples involving Riemannian manifolds and Lie
groups of polynomial growth respectively.

It should be pointed out that the novelty of this paper lies in the
marriage between the idea of an amalgam and the study of heat-type
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semigroups. These latter have already been intensively studied, and closely
related results have been proved, in particular by T. Coulhon, L. Saloff-
Coste and N.Th. Varopoulos (see, e.g., [6], [7], [8], [9], [22], [23], [24]).

We will need a bit of notation. Given a function / on a measure space
M and a subset E of M, we shall write %E for the characteristic function
of E, and /E for the pointwise product J\E' We use the letters A, B, (7,
etc., to denote positive constants. These may vary from one occurrence to
another, but do not vary within the enunciation and proof of a result.

1. Amalgams.

Throughout this section, we assume that (M, d, a) is a measured
metric space, by which we mean a metric space (M, d) equipped with a
Borel measure /-A. We further assume that (M, d, u) satisfies the uniform
ball size conditions

inf{^(B(;r, p)) : x C M} = v{p) > 0
' ) sup{^(B(;r,p)) : x € M} = V{p) < oo,

where B(x,p) denotes the open ball in M with centre x and radius p.

For e in R'1", a discrete subset M of M is called an e- discretisation of
Mif
(1.2) d(x, x ' ) ^ e \/x e M W eM\ {x}
(1.3) d(x,M)<£ ^xeM.
It is easy to see that ^-discretisations always exist. Indeed, the class of all
the discrete subsets of M which possess property (1.2) is clearly partially
ordered by inclusion and nonvoid. Every totally ordered subset of this class
admits a maximal element by the Hausdorff maximality theorem. Now
any such maximal element M. satisfies condition (1.3): for otherwise, there
would be a point x in M such that d(x, M) > £, and then M. U {x} would
contain M. and still satisfy condition (1.2), contradicting the maximality
of.M.

The existence of ^-discretisations may also be proved more construc-
tively if desired.

We denote by B(x^ p) the set of all y in M. such that d(x, y) < p.

LEMMA 1.1. — Suppose that M is an e-discretisation of M. Then
ifp€M+, *B^I'^V-{^ VIeM'
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and if also p > e, then

#^P)>^—— V^CM.

Proof. — Fix x C M and p in R-^. Then the balls B ( y , e / 2 ) for
^/ in B(x,p) are all disjoint, and all are contained in B(x^p + ^/2).
Consequently,

# B{x, p) v{e/2) ̂  ^ /.(J9Q/, 5/2)) ^ /.(^(rr, p + e/2)) < V(p + £/2),
2/efi(o;,p)

proving the first inequality. Similarly, the balls B(y, e) for y in B(;r, p) cover
B{x^p — £), and

# B(^, p) y(^) ^ ^ /.(B(2/, ̂ )) > ^B{x, p-e))> v{p - e)^
yeB{x,p)

proving the second inequality.

Fix an ^-discretisation M. of M. For p and q in [1, oo], let A^(M, A4)
be the set of all measurable functions / on M such that H / H A ^ < °°? where

/ \ i /9
n/ ik=E iî (^)iî

\eM /

ifq< oo, and
||/||A^=sup{||/B(.,.)llp^e^}.

Then A^M,^) is a Banach space (when functions which coincide al-
most everywhere are identified) called an amalgam. Amalgams have been
studied in various degrees of generality by various authors, including J.-
P. Bertrandias, C. Dairy and C. Dupuis, J.J.F. Fournier and J. Stewart,
and F. Holland [I], [15], [16].

We now clarify the sense in which A^(M, M) looks locally like L^M)
and globally like L^(M).

PROPOSITION 1.2. — Suppose that M. is an e-discretisation of M,
that 1 < p, q < oo, and that 6 € R4'. Define a to be max{l/p - 1/g, 0}, b
to be max{l/^ - l/p,0}, V(e) to be sup{#B(y,e) : y € M}, and No to be
#B(xo^£+6).

(i) If f : M —f C is measurable and supported in B(xo^6), then
f € LP(M) if and only iff e A^(M,M), and

n/iip < Awik and II/HA? < ̂ ( îmip-
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(ii) J f /= XB(xo,s) and 6 > 2e, then

v(e)l/Pv(6-2e)l/<' V(£)I/P V(6 + 3£/2)1/-?
VW^——— - mAV" ^ ————v(e/2Y/i————•

(iii) If f : M -> C is measurable and there exists a constant C such
that

(1.4) sup{\f(y)\:yeB(x,e)}^Cm{{\f(y)\:yeB{x,e)} \/x e M,

then / € ^(M) if and only if/ € A^,(M,M), and Up < q, then

1 1 / 1 1 , ^ CVP-V^^i/^-i/p ]|y||^ and ||/||̂  ^ V^)1/-' V(e)VP-V^ ||/||,

white ifp ̂  g, then

ll/ll, ̂  ̂ )1/<^-1/P||/||A^ and ||/||̂  ^ C'1/''-1/^^)1^^^1/''-1^ jl/ll,.

(iv) Jf / : M -> C is measurable, then f e £P(M) if and on7y if
feA^,(M,M),and

ll/llp^ll/llA^V^^II/llp.

(v) If 1 ^ r < p ^ oo and 1 ^ 9 ^ s ^ oo, then A^M,^) C
A^(M,.M),and

II/HA? ^ V^)1/'-1/^' ||/||̂  V/ € A^(M, A^).

Proof. — In this proof, we write n for e- + 6.

Suppose first that / is supported in B(xo,6). Then on the one hand,

mp=^\f{y)\pw}lp

^ ( l E l/B^Wd^y))
^^B^o.r,) /

(1.5) _ / v- „, ^\l/p
- 1 ^ ll/B(a;,£)ll^l

\€B(xo,r,) /

/ __ \ 1/9
^ N S ^ E ||/B(.,e)ll^

^eBtaio,??) /

=^o°ll/lk.
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On the other hand,

/ \1/9

ll/lk=( E VB(.,e)\\l)
\eB(xo,r,) /

/ \ 1 /P

^ ^ E 11^)11?
(L6) ^eB^o,^) /

/ r \ i/p
=^ / E ^(..eWd^y))

^^xeB^.r,) /

^^v^^i/ip,
proving (i).

If / satisfies the hypotheses of (iii) and 1 <, r, s <, oo, then

II fo/ ^ II < J ̂ (5(a:'£)) l/r~l/s VB(x,e) II. when r ^ s
^^ - [ cV-/^(B(..e))l/r-l/s ||/,(,,)||, when r ̂  s.

Therefore, on the one hand,

a \ 1/9
11 / l l g ^ E l/B^^I'd^)

^e l̂ ^
/ __ \ 1/9

= Ell^(^)llg
^eAl /

^ C'0 sup{/.(B(^,£))l/9-l^ : ̂  e M} (^ ̂ (^lY9

\eM /

= C- sup{^(B(^^) l /9- l /p : x e M} \\f\\^.
On the other hand,

/ __ \ 1/9
imi^-E ii^(^)ii?

\EC.M /

< ̂  sup^BO^))^-179: ̂  e A^} ( ̂  II/B^II^179

^eAl /

< 0^(0)^ sup{^(B(^^))l/p-l/g : ̂  e A^} 11/H,,
proving (iii).

The inequalities (1.5) and (1.6), with B(xQ,r]) replaced by M and q
replaced by p, show that A^M.M) and LP(M) are isomorphic Banach
spaces, and prove (iv).
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Finally, (v) is a simple consequence of Holder's inequality. D

Remark 1.3. — Note that the constants in Proposition 1.2 (i) remain
bounded when 6 is bounded. Thus any compactly supported function is in
A^(M, M) if and only if it is in LP(M). Similarly, when the absolute value
of a function varies slowly, (1.4) holds, and (iii) applies.

A natural question is how A^(M,M) depends on the discretisation
M. used. This is answered in the next proposition.

PROPOSITION 1.4. — Suppose that M and M' are e- and e ' -
discretisations of M, where e and e/ are positive real numbers. Then, for
every p and q in [l,oo], the Banach spaces A^(M,M) and A^{M,M') are
isomorphic.

Proof. — First, recall that B(y, p) is defined to be {x e M : d(x, y) <
p}; similarly we define B ' ( y , p ) to be {x' € M' : d(xf,y) < p}. Write £" for
e + £'. From Lemma 1.1, there exists N in N such that

sup{# B(y, e") : y e M} < N and sup{# B\y, e") : y e M} < N.

Suppose that / is in A^(M,A^'). Since XB(x,e) < E XB(^),
x ' e K ' ^ x ^ " )

the triangle inequality, Holder's inequality, and Fubini's theorem imply that

(E \\fB(^\\i)^ <. (E I E fB^Y9
'x€M / \eM x ' e B ' ( x , e " ) p /

^(E( E n/B^iip)9)^
^xeM x'eB^x^) /

( \ 1/9

^w E E ii/B^oii9)
x^M x^lS'^x.e") /

/ \1/9
^N ^ \\fB^^\\l\ ,

^x'eM' /

proving that A^(M,M1) is continuously embedded in A^(M,M). The
reverse inclusion is proved by exchanging the roles of M and M' in the
above argument. Q

Since the amalgam does not depend substantially on the choice of
^-discretisation, we may ignore this choice in what follows; we use the



RIESZ POTENTIALS AND AMALGAMS 1353

notation A^(M) to denote the linear space with any one of the possible
choices of discretisations and corresponding norms.

We now consider operators on amalgams.

THEOREM 1.5. — Suppose that K : M x M —> C is a measurable
function (denned almost everywhere on M x M), and that

\K(x v)\ < P^'y)"" when ^'^ ^ 1

I v ' • " } - \ D d ( x , y ' } - b when d(x,y) ̂  1,
where a, b > 0. Suppose also that m,n > 0 and

to( \\ ^ I'^'i^"1 when P^ 1
^M)^^ ^en^l.

Then the kernel operator 1C with kernel K is bounded from A^M) to
A^(M), provided that 1 < p < r < oo, 1/p— 1/r < 1—m/a, 1 < q < s < oo
and 1/q - 1/s > 1 - n/b.

Proof. — The key to the proof of this theorem is the following well
known generalisation of Young's convolution inequality (see, e.g., [14] for
an example of its use). Suppose that TV is a measure space with measure
z/, and let G : N x N —> C be a function such that

u({y C N : \G(x,y)\ + |GQ/,rr)| > A}) < C A-* VA € R+ Vrr € N.
Then the operator <?, defined by the rule

Gf(x) = / G{x, y) f(y) d^y) W 6 TV,
J N

for all integrable simple functions /, extends to a bounded operator from
L^TV) to ^(TV) provided that 1 < p < q < oo and 1/p - 1/q = 1 - 1/t
The norm of this operator depends on p, q and C.

Now let M. be a 1-discretisation of M. Let Q be the quasi-diagonal
subset of M x M

{(x,y) eM xM :d(x,y) < 1},
and let dq be the function d%Q. Since

\K(x, y)\ < D (dQ(x, 2/))-a + ̂ D (1 + d(x, y))-\
it suffices to show that the operators S and T with kernels d^ and (l+d)"^
map A^(M) into A^(M). We treat these two operators separately.

First, for any a; in M,
^({y C M : \dQ(x, 2/)-°| > A}) = ^B(x, 1) H B^ A-1/0))

^Ci mi^l.A-170^
^ClA-77170 VAeIR"^,
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and similarly for any y in M,

^({x e M : ̂ (x.y)-^ > X}) ^ dA-^ VA C R^

From the generalisation of Young's theorem, the kernel operator <S is
bounded from L^M) to 77 (M). Further, the kernel of S vanishes off the
quasi-diagonal Q, so that

(^(/BQ/oO^BCro,!)^)

= \ XB(x^l)(x)d{x,y)-a^Q(x,y)^B(ya,l){y)f{y)^y:=Q
JM

unless d(xQ,yo) < 3. Thus

(Ejî îiO'-̂ EjK^ /̂.,,.,)),.,,,!;)"
s(E|| E /̂B.,,.))!!')1"

^xCM yeB{x,3) /

^(E( E ^(/B^))!!^)178
^xeM y(EB{x,3) /

<E(T.( E n/B^Diip)8)175
^eA^ yG5(a;,3) /

^^(E E ll̂ ,!)!!^^^))^)15

^eA^ i/e^(a;,3) /

< E ( ̂  ||/B(.,I) 1 1 ^ (# ̂ . 3))l+s/s/)l/s

^e^i /

V(7/2)/^ V/5

^JB ̂ (T72y (,2.11/w) lip J
- ' / 'xeM '

VW2)
^^^TT^"^-

To treat the operator T, we argue similarly. If a; e B(xo, 1) and
y € -B(yo,l), then

1 + d(xo, yo) ^ 3 + d(x, y) ̂  3(1 + d(x, y)).
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Hence, for XQ and yo in M. and x in M,

K^/BO/o,!)))^^,!)^)!

= /> (l+^^-^B^o,!)^)^^,!)^)/^)^
I J M

<,^ ( (1+ d(^o^o))~' XB^i)WXB{y^i)(y)\fWy
JM

= S^l +d(^o,2/o))~fcXB(^,l)(^) ll/BQ,o,i)lli
< 3bV(l)l/r (1 +^o,2/o))-&XB(.o,l)(^) II/B( ,̂I)II-

Thus

ira— (ElK^E/—)),,.,,,!!;)"
^GA^f i/eA^

<fE(Ell(r(^(^)))^l)ll-)s)l/s
\re.M y€Al /

< 36 vw^ (E (E (1 + ̂ - 2/))~'ii/B(,,i) iii)
i/s

^xCM yeM

Now for any x E A^ and A in R"*",

# { 2 / € ^ ( : ( l + d ( ^ 2 / ) ) - 6 > A }
=#^^-^-1)

f 0 when A > 1
^ \ V(X~l/b - l/2)/v(l/2) when A < 1

by Lemma 1.1. Thus the assumption on the size of large balls implies that

#{y e M : (1 + d{x, y))-" > A} ^ ——— A-"/",

whence, by the generalization of Young's inequality,

, A Vs / — \ V9^(E^+^y))"611.^,1) iii)5) ^(E IÎ ,D iii)
\i;6M yeM / \IEM /

^ E (E 11^,1) ll̂ ^
^^c Ayf ^

1/9

^eA^
as required. D
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2. Symmetric Gaussian semigroups.

In this section, we suppose that (M, d, fi) is a measured metric
space. We shall further suppose that (M,d,/^) is polynomial of order
(mo, mi; no^i)? by which we mean that

Co p7710 < v(p) < V(p) ^ Ci p7"1 when p < 1
Cop710 < v(p} < V{p) ̂  Ci p711 when p > 1.

These conditions imply immediately that M satisfies the uniform ball size
conditions (1.1). Consequently, the results of the previous section about
amalgams on M hold.

Let £ be a possibly unbounded positive self-adjoint operator on
L^M). Let {P\}\>o be the spectral resolution of the identity for which

r ° °
£= / Ad7^.

Jo
For positive t, we define the heat operator Ht by the rule

Utf = I00 e-^ dPxf V/ € L\M).
Jo

Clearly {T~it}t>o is a contraction semigroup on L^M). For such a semi-
group, we define, for any complex number a, the Riesz potential operator
T^Q of order a by the rule

7Za/== /^A-^dTV
Jo

for every / in the natural domain Dom(T^Q), which is equal to
( r ° ° ^
{f:j A-Read(/,^/)<oo}.

It is easy to check by spectral theory that

^cj = ——T^ F t^2-1 Htfdt V/ e Dom(7Z,).1 W^J Jo
This formula allows us to deduce information about T^a from information
about {Ht}t>o- (We only require that the generator be self-adjoint in order
to avoid difficulties with the definitions of Ht and T^a. However, it would be
enough to assume the existence of a reasonable functional calculus for £.)

We say that a semigroup {Ht}t>o on M is sub-Gaussian if there exist
constants A\ and B\ such that its kernel Ht satisfies the inequality

(2.2) \Ht(x,y)\ ̂  -l—e-51^^ ^y € M We R4-.
v{Vt)
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Similarly, we say that {Ht}t>o on M is super- Gaussian if there exist
constants Ao and Bo such that its kernel Hf is nonnegative and satisfies
the inequality

(2.3) Ht(x^ y) ^ A— e-^ d^)2/< V^ y e M W e R^y(vt)

THEOREM 2.1. — Suppose that (M,d,u) is polynomial of order
(mo,mi;no^i) as in f2.1), and that the semigroup {Ht}t>o on M is
sub-Gaussian as in (2.2). Suppose further that 0 < a < min(mo,no),
l < p < r < o o , l < g < 5 < o o ,

1 1 a + mi - nip l _ l a + ̂ i ~ ̂
P ^ ~ ^i ' g s ~ ^i '

Then the operator 7^ is bounded from A^(M) to A^(M).

Proof. — The main step of our proof is to show that there exists a
constant D such that the kernel R^ of the Riesz potential 7^ satisfies the
following inequalities:

(2.4) \R^x,y)\ ̂  Dd^x^-^ when d(x,y) < 1
(2.5) \Ra(x,y)\ ̂  Dd(x,y)a-no when d(x,y) ̂  1.

The theorem then follows from Theorem 1.5.

Recall that Ra may be expressed in terms of the heat kernel by the
formula

1 f°°

"-rwi '°/2-•H•d'•

By the upper bound for the heat kernel (2.2), for all x and y in M, we have
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A /*00

\R.(x,y)\ ̂  ——— / t0/2-1^)-^-5^)2/^1 WO ./o
< Al [ ^(a-mo)/2-l -Bid(:r,i/)2/t.,,

-Gor(a/2)7o
/t /»00

4- Al / ^(a-no)/2-l -B^d{x,y)2 / t 1.
+Co^(a/2)A

= ̂ rt/^^1^^^"^72 /l00 ^(mo-a)/2-le-tdtCoi-(a/2) JB^d(x,yV

A. rB-id(x,y)2

+ ————(B^y)2^-^2 \ t^-^^e-^tUoL(a/z) JQ
A r)(o;-mo)/2 »oo

= l l , ^ d(x, y)"-"1" / ^("zo-a)/2-i g-t ̂
00 i(a/2) JBid(x,y)2

4- D("-»o)/2 ,.Bid(x,y)2

+ l ^ ^ d(x, y)"-"" / (("o-a)/2-i ,-t ̂
Ooi^/^; Jo

^ D(o:-mo)/2

=-ioT(a72^d(a;'y)Q-T"o/o?y))

4 n(a-no)/2

+ Cor(a/2) ^)a-no^(^)).

say. It is easy to check that Io(d) converges to r((mo — Q/)/2) as d tends
to 0+ and decays exponentially as d tends to oo. Similarly, Ioo(d) converges
to r((no — °0/2) as d tends to oo and decays (f10"0' as d tends to 0+. This
proves the estimate (2.4), and hence the theorem. D

Remark 2.2. — Mutatis mutandis, the same argument also shows
that Ra is bounded from A^(M) to A^(M) for complex a. More precisely,
the argument used to show (2.4) also shows that

\Ra(x,y)\ < Dd{x,y)Rea-mo when d(x,y) < 1
\Ra(x,y)\ < Dd(x,y)Rea-no when d(x,y) ̂  1,

and the boundedness from A^(M) to A^(M) follows again by Theorem 1.5.

Remark 2.3. — Similarly, if the semigroup satisfies the super-Gaus-
sian bound (2.3), then, for real a, the kernel of the Riesz potential has a
lower bound of the form

R^ y) ̂  D' d(x, y^-^ when d(x, y) ̂  1
Ra(x, y) > D1 d{x, 2/)a-nl when d(x, y) > 1.
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Suppose that T^o; is bounded from A^M) to A^(M) and that formula
(2.6) holds. Take a 1-discretisation M. of M, XQ in A^, and po m (0,1). Then

^-aXB^o^o)^) = / Ra(x,y)d^(y)
J B{xo,po)

^ D"i^(B(xo,po)) (d(x,xo) +po)a-ml

if d(x,xo) <: 1. It follows from Proposition 1.2 and formula (2.6) that
\\'R-aXB(xo,po)\\A'^

^C7||(%aXB(^Po))B(^l)llr

/ \V -

^ D"fz(B(xo, po)) / (d(^, a;o) + po)^0-"^ d (̂a;)VB(^O,I) 7
= D"fi(B(xo, po)) (r(a - mi) y1^ + ̂ )'-("-"i)-i ̂ (B(^, p)) dp

vl/r

+(l+po)r(°-rol)^(B(a;o,l)))

^ D"^B(xo, po)) (r(a - mi) f\p + po)^0-"11^1 C'o p"10 dp)l/r

= D"^B(xo, po)) (r(a - mi) (7o ̂ °+^(a-m^

/'l;/po / ^ , \1/'"/ (1 +1)^01-^-1 f"0 dt) .
Jo '

As po tends to 0+, the last integral tends to B(r(a — mi) — mo,mo + 1)
(the Euler Beta function), provided that r(o; — mi) > mo, whence

||%»XB(.o,po)llA? ^ D"'n(B(xo,po))p^o/r+a-ml.
Hence, by using Proposition 1.2 again, we find that
,. _. l|^XB(.o,,o)llA? D"'^B(x^p,))p^o'r+a-ml
lim sup —r,—————r,—— -> lim sup ———————:———7—r,————
po-0 I|XB(^,PO)HA? ~ po^ ^(B^o^o))1715

> lim SUp D1"^-1^ C'"1 ^o(l-l/P+l/r)+a-m^
Po-^0

Since ̂  is bounded from A^(M) to A^(M), mo(l-l/p+l/r)+a-mi > 0,
i.e.,

1 1 OL -\- rriQ — m\
p r ~ mo

In the same way, by considering ^aXB(xo,po) as P ^en(^s to infinity and
using Proposition 1.2 to estimate the amalgam norms in terms of Lebesgue
norms, we may also show that

1 - 1 ^> a + no ~ nl

q s ~ no
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COROLLARY 2.4. — Suppose that M and {Ht}t>o satisfy the hy-
potheses of Theorem 2.1. Suppose also that there exist positive m and n
such that

^{B(x,p})^p^ Vpe(0,l] and ^{B(x,p)) ~ pn Vpe[l,oo).

IfO <a < min(m,n), l<p^r<oo,l<q<s<oo,

1 1 a 1 1 a---<-- and - - - > —
P r m q s ~ n

then the operator 7^ is bounded from A^(M) to A^(M).

Remark 2.5. — If the semigroup also satisfies the super-Gaussian
bound (2.3), then from Remark 2.3, we see that U^ is bounded from A^(M)
to A^(M) if and only if the conditions

l l . a 1 1 a- - - < _ and _ _ _ > _
P r m q s ~ n

are satisfied.

In particular, since A^(M) is isomorphic to LP(M), Corollary 2.4 says
that Kc, is bounded from LP(M) to A^(M) when

l - l = a . d 1 - 1 = a

p r m p s~ n'

Semigroup techniques [9] show that, if m < n, then Ka is bounded from
LP(M) to L^A^nL^M). As the amalgam A^(M) is continuously (strictly)
included in LT(M) n ̂ (M), the use of amalgams in Corollary 2.4 enables
a stronger and more succinct result to be formulated. On the other hand,
if m > n, then U^ is bounded from 27 (M) to Lr(M) + 27 (M), and this is
a sharper result than is obtained using amalgams.

Remark 2.6. — A specialisation of the result of Corollary 2.4 states
that if min(m, n) > 1 and

1 1 1 , 1 1 1- = - - — and - = - - -
r 2 m s 2 n

then the operator TZa is bounded from L^M) to A^(M). This may be
interpreted as a Sobolev embedding result: functions whose (distributional)
Laplacian lies in ^(M) must lie in A^(M).

Remark 2.7. — Finally, it is tempting to speculate that this theorem
must have a converse, at least for certain semigroups. If one could prove


