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UPPER ENVELOPES OF INNER PREMEASURES

by Heinz KONIG

In the recent book [18] on measure and integration (cited as MI) and
in subsequent papers [19] - [24] the present author attempted to restructure
the domain of their basic extension and representation procedures, and
to develop the implications on various issues in measure and integration
and beyond. There were essential connections with the work [7] [8] of
Gustave Choquet. Thus MI Section 10 obtained an extended version of his
capacitability theorem. The representation theories in MI chapter V and
[22] [24] were based on the Choquet integral introduced in [7] Section 48,
in form of the so-called horizontal integral of MI Section 11, while [24]
Section 1 obtained a comprehensive version of his fundamental theorem
[7] 54.1. The present paper wants to resume another theme initiated in [7]
Section 53.7, that is the representation of certain non-additive set functions
and functionals as upper envelopes of appropriate measures.

We quote the definitive result due to Tops0e [28] Section 8 Theorem 2,
subsequent to papers of Strassen [26], Dellacherie [9], Anger [3], Fuglede
[12], and Huber-Strassen [15]. See also Anger [4] [5], Dellacherie [10], and
Tops0e [29].

THEOREM. — Let X be a Hausdorff topological space with the ob-
vious set systems Comp(X) and Op(X). Assume that the set function
(3 : Comp(X) —> [0,oo[ is isotone with (3(0) = 0 and submodular, and
continuous from above in the sense that

for A € Comp(X) and e > 0 there exists U € Op(X) with A C U

such that f3{K) < (3(A) + e for all K e Comp(X) with K C U.

Keywords : Submodular isotone set functions - Inner premeasures - Supportive pro-
perties.
Math classification : 28A10 - 28A12 - 28A25 - 28C05 - 28C15 - 46A22.



402 HEINZ KONIG

Then for each A 6 Comp(X) there exists a Radon premeasure (p :
Comp(X) -^ [0,oo[ such that (p ^ /3 and (^(A) = /?(A). Likewise if
sup/? < oo then there exists a Radon premeasure (p : Comp(X) —> [0,oo[
such that ^p ^ f3 and supy? = sup (3.

Then Adamski [1] transferred the theorem to the frame of abstract
measures. He assumed certain pairs of lattices © and 1 of subsets in an
abstract set X to take the place of Comp(X) and Op(X). With new ideas
he was able to obtain fortified results. Now the present paper wants to
show that the frame of MI leads to even more fortified and simpler forms
of the results. One of the simplifications is that Adamski [1] assumed
G to be stable under countable intersections and the initial set function
f3 : © —>• [0, oo [ to be a continuous at 0, which at once leads to the level
of measures, whereas we shall see that the adequate level is the so-called
finitely additive one, that is the level of contents. Also we shall compare our
basic result with the main theorem of MI Section 18, at that place called
the extended Henry-Lembcke-Bachman-Sultan-Lipecki-Adamski theorem,
this time after Adamski [2]. There will be some remarkable consequences
and examples.

Besides measure and integration the basic methodical device for the
present area is an appropriate Hahn-Banach type theorem (or an equivalent
assertion), as it became clear in particular from Tops0e [28] Section 8. Now
the relevant Hahn-Banach theorems in the literature are of delicate nature
and proof; see the work of Anger-Lembcke [6] referred to in Tops0e [28],
or Fuchssteiner-Konig [II], and in particular the theorem of Rode [25] [17].
Thus it is perhaps not superfluous to present a certain special case of the
Rode theorem which suffices for the present purpose and has a short and
simple proof.

Basic notions and notations. — We adopt the terms of MI but
shall recall the less familiar ones. Let X be a nonvoid set. For S C X
the complement is denoted 5", and for a set system © in X we write
6-L := {S/ : S C ©}. For set systems 0 and (! in X we form the
transporter ©T? := {A C X : A D S e <! V5 6 ©}. For a set function
9 : VW —^ [°^ °°] with Q(0) = 0 we recall the Caratheodory class

€(Q) := {A C X : Q(M) = 9(M H A) + 6(M H A') for all M C X}.

€(0) turns out to be an algebra, and 9|(£(G) to be modular.
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UPPER ENVELOPES OF INNER PREMEASURES 403

The extension and representation theories in MI and in the subsequent
[22] [23] [24] come in three simultaneous versions. They are marked • = -A-CTT,
where * is to be read as finite^ a as sequential or countable, and r as
nonsequential or arbitrary (or as the respective adverbs). Moreover the
theories come in parallel outer and inner versions, that means in versions
which are based on outer and inner regularity. The extension theories for set
functions are summarized in [22] Section 1 and [23] Section 1. The present
paper will concentrate on the inner * version, but it is of course vital to
note the consequences for the inner or versions which result from routine
combinations with the means of MI.

We recall the relevant envelope formations: Let © be a lattice of
subsets of X with 0 € ©, and y : G —>• [O.oo] be an isotone set
function with ^(0) = 0. One defines the outer and inner -k envelopes
(^, ̂  : q3(X) -^ [0, oo] of ^ to be

(^-(A) = inf{(^(5') : S € 6 with S D A},
^(A) = sup{y?(6') : S eG with S C A}.

The inner versions require that ip : G —^ [0,oo[ be finite. We consider the
inner ^ version: One defines an inner -A- extension of (p to be a content
a : 21 —>• [0, oo] on a ring 21 D 0 which extends ^p and is inner regular 0.
One defines (p to be an inner -A- premeasure iff it admits inner * extensions.
The subsequent inner * theorem characterizes those (/? which are inner ^
premeasures, and then describes all inner * extensions of ip. The theorem
is in terms of y^; its essence can be found earlier in Tops0e [27] Section 4.

INNER -A- THEOREM.— Assume that ( / ? : © — > [0,oo[ is isotone with
(^(0) = 0. Then the following are equivalent:

1) (p is an inner -k premeasure.

2) (^|€((^.) is an inner -*- extension of (p.

3) (^*|^(^) is an extension of (p.

4) (p is supermodular, and inner -A- tight in the sense that
^p{B) ^ (/?(A) + (p^B \ A) for all A C B in G.

In this case all inner * extensions of(p are restrictions of(p^\€((p^). Moreover
6T£(^) C £(^).
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404 HEINZ KONIG

1. The Hahn-Banach type theorems.

The first theorem is an obvious special case of the Hahn-Banach
theorem due to Rode [25] (with Zusatz p. 480). The point here is its short
and simple proof.

THEOREM 1.1.— Assume that the nonvoid set E carries an asso-
ciative and commutative addition + and an order relation ^, which are
compatible in the sense that u ^ v = > u - { - x ^ v - ^ - x for all u, v^ x € E. Let

Q : E —>} —oo, oo] be subadditive and isotone,

P : E —>] —oo, oo] be super additive and isotone,

and P ^ Q. Then there exists an additive and isotone function f : E —>
] -oo, oo] such that P ^ f ̂  Q.

Proof. — Let Q : E —^]—oo, oo] be subadditive and isotone, and define
M(Q) to consist of all superadditive and isotone functions / : E —»]—oo, oo]
with / ^ Q.

0) M(Q) is upward inductive in the pointwise order. In fact, if H C
M(Q) is nonvoid and upward directed then the pointwise supremum
/ := svip^ffh is in M(Q). Thus each P e M(Q) has maximal members
/ € M(Q) with P ^ /. It remains to show that each maximal / € M(Q)
must be subadditive and hence additive.

1) We claim that f{nx) = Tif(x) for x C E and n G N, where of course
nx := x-\" • ' - } - x (n terms). First of all f(nx) ^ nf(x) and Q(nx) ^ nQ(x).
For fixed n C N now consider F : F{x) = ^f(nx) for x e E. Then
F e M(Q) and F ^ /, and hence F = / as claimed.

2) We claim that f{x 4- a) ^ f(x) + Q(a) for x, a 6 E. To see this fix
a E E with Q(a) < oo, and define F : E —^—oo, oo] to be

F(x) = sup{/(a; + no) - nQ{a) : n ̂  0} for x G E,

with the obvious role of n = 0. Then -F is isotone and F ^ f. We have
F ^ Q because

f(x + no) - nQ(a) ̂  Q(x + no) - nQ{d) ̂  Q{x} + Q(na) - nQ(a) ̂  Q(x),
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and F is superadditive because for u, v e E and m, n ̂  0 we have

F(zA + v) ̂  f((u + v) + (m + n)a) - (m + n)Q(a)

= /((z( + ma) -h (i; + na)) — (m + n)Q(a)

^ (/(zA + ma) - mQ(a)) + (/(v + no) - nQ(a)).

Thus F C M(Q) and F ^ f, and hence F = f. For n = 1 the assertion
follows.

3) We claim that f(x + a) ^ /(.r) + /(a) for x,a e E, which will
complete the proof. To see this fix a € F with /(a) < oo, and define
F : E ->} -00,00] to be

F(x) = sup{/(a* + no) — nf(a) : n ^ 1}

== lim [f(x + no) — nf(a)] for x € E\
n—>oo \ /

note that the expression in the last brackets increases with n ^ 1. Then F
is isotone and F ^ /, and F ^ Q from 1)2). As in 2) one proves that F is
superadditive. Thus F C M(Q) and F ^ /, and hence F = /. For n = 1
the assertion follows. D

We combine the above result with the sub/superadditivity theorem
for the Choquet integral in the version MI 11.11 to obtain our basic device.
This is a known theorem too; see Kindler [16] Section 5 Example 1 and MI
11.24. The present proof has been sketched in MI 11.14.

THEOREM 1.2.— Let © be a lattice of subsets in X with 0 e 6.
Assume that

(3 : G —» [0, oo] is isotone with (3(0) = 0 and submodular,
a : © —f [0, oo] is isotone with 0(0) = 0 and supermodular,

and a ^ f3. Then there exists an isotone and modular set function
y : G —> [0, oo] such that a ̂  ̂  ^ /3.

Proof.— Let E consist of the finite linear combinations of the
characteristic functions \s of the S € 6 with coefficients ^ 0, that is
E = S(©) in the sense of MI Section 11, equipped with pointwise addition
+ and order relation ^. Define Q^P : E —> [0,oo] to be Q(u) = -f- udf3
and P(u) = •f- uda for u € £', where f denotes the horizontal integral of
MI Section 11. After MI 11.11 then Q and P are as required in 1.1. Hence
there exists an additive and isotone functional / : E —^ [0, oo] such that

TOME 50 (2000), FASCICULE 2 (special Cinquantenaire)



406 HEINZ KONIG

P ^ f ̂  Q' Define y : © -^ [0, oo] to be (p(S) = /(^) for S C ©. Then (^
is isotone and modular and fulfils a ^ y? ^ /3. D

We conclude the section with a short supplement which will not be
needed in the sequel. The next assertion is the central result of Horn-Tarski
[14] specialized to lattices (but with the value oo admitted).

THEOREM 1.3.— Let © be a lattice in X with 0 € ©. Then each
isotone and modular set function ^p : 6 —> [0, oo] with y?(0) = 0 can be
extended to a content (f): ̂ (X) —» [0, oo] with 4>(X) = sup y?.

Proof. — The extension ^ : © U {X} —> [0, oo] of ^, in case X ^ 6
with 'ff(X) = supy?, retains the assumptions. The assertion then follows
from 1.2 applied to the pair ̂  ^ i^*. D

Example 1.4. — Let X = [0,1]. Define © to consist of 0 and of the
[0,t[ with 0 < ̂  1, and ^ : © -> [0,oo[ to be y?(0) = ^([0,^[) = 0 for
0 < t < 1 and <^([0, ![)=!. Thus 6 is totally ordered under the inclusion C
a.nd hence a lattice, and y? is isotone and modular. Let (f) : ̂ (X) —> [0, oo]
be as in 1.3, and '9 := 0[Comp(X). Then 'ff : Comp(X) —> [0, oo[ is isotone
and modular with ^(0) = 0, but not inner -A- tight, because ^([0,1]) = 1
and ?9({1}) == i9^([0,l[) = 0. Thus ^ is not an inner -A- premeasure, that is
not a Radon premeasure. We note that we have not seen such examples in
the literature so far. Their existence has been overlooked for example in
[27] p.4 1.14-24.

2. Some preliminaries.

The present section assumes a pair of lattices © and T in X with
0 € ©.I. An illustrative example is © = Comp(X) and 1 = Op(X)
in a Hausdorff topological space X, as discussed in the introduction and
resumed in 2.7 below. After some simple remarks we consider certain
properties of separation.

Remark 2.1. — For isotone set functions y?: © —> [0, oo] and ^ : T —>
[0, oo] with ^(0) = ^(0) = 0 we have ^[T ^ ^ <^> </? ^ ̂ |6.

Proof. — Both relations mean that all pairs 5 G © and T G T with
5 C T fulfil ^(6') ^ ^(T). D
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Remark 2.2. — For an isotone </? : © —> [0, oo] with ^(0) = 0 we have
(p ^ (^ll)*!®. Moreover <^ = (^ll)*!^ iff ^ = '0*|6 for some isotone
-0 : ? -^ [0, oo] with -0(0) = 0.

Proof. — The first assertion is clear from the definitions. We prove
the second one. =^) ^ := ^IT is as required. ^=) We have y^l? =
(^©^IT ^ ^ as in the first assertion, and hence (^^{(S ^ ̂ \G = y?.

D

Remark 2.3. — Assume that the isotone and submodular ^ : Ti —>
[0,oo] with ^(0) = 0 fulfils ^ := -0*|6 < oo, so that i? : © -> [0,oo[ is
isotone with ^(0) = 0. If T C (©T©)-L then '9 is inner ^ tight.

Proof. — To be shown is ^(B) ^ ^(A) + ̂ (B \ A) for A C B in ©.
For fixed c > ^(A) there exists T e ^ with T D A and ^(T) < c. Then
T' H B e G with r' n B c A' n B = B \ A. Therefore

^(B) = '0*(B) ^ ̂ {B U T) ^ ^(T) + ̂ (T' n B)
= ^(T) + ̂ (r' n B) < c + ̂ (^ \ A).

The assertion follows. D

We turn to the announced properties of separation. Let as before ©
and T be lattices in X with 0 € 6.T. We say as usual that T separates
G iff for each disjoint pair A, B € © there exists a disjoint pair [7, V G 1
with A C L7' and B C V. We need two further properties. On the one hand
we define a pair A, B C X to be separated T iff for each M e 1 with
A n B c M there exists a pair U, V € 1 with A C ^7 and B C V such that
UnV C M. On the other hand we define a pair A, B C X to be coseparated
© iff for each M e © with M C A U B there exists a pair P, Q € © with
P C A and Q C B such that M C P U Q. These two properties came up in
MI 4.2 and MI 6.4. We recall the consequences obtained at these places.

Remark 2.4.— 1) Let (p : © —> [0,oo] be isotone and submodular
with y?(0) = 0. If the pair A,B C X is coseparated © then

^(A U B) + <^(A n B) ̂  <^(A) + ̂ (B).

2) Let ^ : T —^ [0, oo] be isotone and supermodular with ^(0) = 0. If
the pair A, B C X is separated T then

^(A U B) + ̂ -(A n B) ^ ^-(A) + ̂ (B).

TOME 50 (2000), FASCICULE 2 (special Cinquantenaire)



408 HEINZ KONIG

Thus each time the semimodular behaviour carries over to the less
natural and unexpected '*' envelope. We come to the basic relations which
connect the notions defined above.

PROPOSITION 2.5.— Assume that 1 separates ©, and that <! C
(6T©)_L. 1) Each pair A, B € T is coseparated ©. 2) Each pair A, B e ©
is separated T.

Proof. — 1) Fix A, B e <! and M C © with M C A U B. Then
A',B' e ©T© and hence M D A',M H B' € ©, and these two sets are
disjoint. Hence there exist disjoint U, V € 1 with M D A' C U and
MHB' C V, that is with M C AUU and M C BUV. Thus P := MW C ©
and Q :== M H V € © fulfil P C A and Q C B. Moreover U ' U V = X
implies that P U Q = M.

2) Fix A, B e 0 and M e T with A D B C M. Then M' e ©T6 and
hence A D M',B D M' € ©, and these two sets are disjoint. Hence there
exist disjoint P, Q e T with A D M' C P and B D M' C Q, that is with
A C M U P and B C M U Q. Thus L ^ M U P e l a n d y ^ M u Q e l
are as required. D

CONSEQUENCE 2.6.— Assume that T separates ©, and that I C
(©T©)J_. 1) Let < / ? : © — > [0,oo] be isotone and submodular with
(p(0) = 0. Then ^IT is submodular. 2) Let ^ : T -^ [0,oo] be isotone
and supermodular with ̂ (0) = 0. Then ^*|© is supermodular.

Example 2.7. — Let X be a Hausdorff topological space. Then 6 :=
Comp(X) and T := Op(X) fulfil both (! C (0T©)J_ and © C (TTT)!,
and T separates 6.

We conclude the section with the overall remark that part of its results
can be extended to the common frame • = wr, while others lead to serious
problems. Thus the situation is different from [23] part I, but similar to MI
chapter VI.

3. The basic results.

As before we assume a pair of lattices 6 and 1 in X with 0 C 6, T.
For an isotone set function (p : 6 —> [0,oo] with y?(0) = 0 we write
(p := (^IT)*!^. Thus <f> : © —^ [0,oo] is isotone with (^(0) = 0. The
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above 2.2 says that (p ^ (p and has a simple equivalence for the case (p = (p,
in which case ^ is sometimes called semi-regular.

Example 3.1. — In a Hausdorff topological space X let © = Comp(X)
and ? = Op(X). Then for an isotone ^p : G —> [0,oo] with y?(0) == 0 the
relation (p = (p means that ^p is continuous from above as denned in the
theorem quoted in the introduction.

Example 3.2. — . Assume that (5 is upward enclosable T, denned to
mean that each member of 6 is contained in some member of T. Define
(p : G —> [0, oo[ to be (^(0) = 0 and ^(S) = 1 for nonvoid S € (3. Thus (^ is
isotone and submodular. It is immediate that y? = (p .

The next result extends [27] Lemma 2.4 and [1] Lemma 3.1(b)(c).
In its present form it can be considered as an abstract version of classical
results in Halmos [13] Sections 53-54.

PROPOSITION 3.3.— Assume that (! C (©T6)-L, and that 1 sepa-
rates 6. For an isotone (p : @ —> [0, oo[ with y?(0) = 0 then

if^p is modular and (p < oo: (p is an inner -A- premeasure.

Moreover

if(p is submodular: (p = (p ==^> ^p is inner ^ tight and (p < oo,

if^p is supermodular: (p = (p <^== (p is inner ^ tight and (p < oo;

both times the converse need not be true. In particular

if(p is modular: (p = (p ^==> (p is inner -*- tight and (p < oo.

Proof. — We have (p = ip*\G for '0 := ^IT, where ^ : T —> [0, oo] is
isotone with '0(0) = 0.

1) Let (p be supermodular. Then ip is supermodular, and hence (p is
supermodular by 2.6.2).

2) Let y? be submodular. Then ip is submodular by 2.6.1), and hence (p
is submodular. If moreover (p < oo, then (p is inner * tight by 2.3.

3) The first assertion follows from 1)2), and the second one from 2). We
turn to the third assertion. The converses will be dealt with in 3.4 below.

4) Let (p be supermodular and inner -k tight, that is an inner -A-
premeasure, with (p < oo. To be shown is (p ^ ^p. We fix S G 6, and
then T e ? with T D S and ^(T) < oo. For fixed e > 0 we take K e 6
with K C T \ S and ^p(K) > ̂ (T \ S) - e. In view of © C €(^) and
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410 HEINZ KONIG

T C (©T©)-L C C(^) the last relation can be written (p(S) > ̂ (T\K)-£.
Now for the two disjoint S^ K € 6 there exist disjoint U^ V C ^ with
S C U and Jf C V; we can of course assume that L ,̂ V C T. Then
£7 C T n V C T H ̂ ' = r \ K and hence

<^) ^ ^(£/) ^ (^(T \ K) < ̂ (S) + ^.

The assertion follows. D

Example 3.4. — There are simple counterexamples which disprove
the two converse assertions.

1) Assume that G contains the one-point subsets of X, and fix a subset
K e © which is not in T. Define (p : 6 -^ [0,oo[ to be (^(S') = 0 for
S C K and <^(5') == 1 for S (f. K. Then y? is isotone and submodular, and
one verifies that (p is inner -A- tight and (p ^ 1 < oo. But ^(-^) = 0 and
(p(K) = 1, so that ip ̂  (p.

2) In a set X of more than one element let © consist of the finite
subsets and T D ©; then 6 and 1 are as required. Define (p : © —> [0, oo[
to be (p(S) = (#(5))2 for 5' € 6. Then (^ is isotone with (p(0) = 0, and
^ = (p < oo in view of (! 3 ©. For A,B e G with #(A) = m, #(B) = n
and #(A D B) = p we have

<^(A U B) + (^(A n B) - (p(A) - (p(B) = (m + n - p)2 + p2 - m2 - n2

=2(m-p)(n-p).

Thus (p is supermodular. But since © is a ring the case p = 0 shows that
(/? is not inner -A- tight.

For the remainder of the section we fix an isotone set function
(3 : 6 —> [0,oo[ with (3(0) = 0. We define M{/3) to consist of the isotone
and supermodular set functions ^p : 6 —> [0, oo[ with (p ^ f3.

Remark 3.5. — 1) M(/3) is upward inductive in the setwise order.

2) If (3 is submodular then each maximal member ofM{f3) is modular.

Proof. — 1) If H C M(/3) is nonvoid and upward directed then the
setwise supremum i9 := supy,^ y? is in M(/?).

2) Follows from the Hahn-Banach Theorem 1.2. D

The next theorem and the subsequent consequence are the basic
results in the present context.
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UPPER ENVELOPES OF INNER PREMEASURES 411

THEOREM 3.6.— Assume that T C (©T©)J_, and that T separates
(3. Let (3 be submodular and (3 = (3. Then each maximal member (p G M(/3)
is an inner ^ premeasure and fulfils ^p = (p .

Proof. — i) We see from 3.5.2) that (p is submodular.

ii) ^ := ^l? is supermodular, and hence (p = '0*|6 is supermodular
by 2.6.2). Moreover (p ^ (p ^ f3 = f3. Therefore (p = (p.

iii) From i)ii) combined with 3.3 we see that (p is inner -A- tight and hence
an inner -*- premeasure. D

CONSEQUENCE 3.7.— Assume thatc! C (6T6)_L, and that 1 sepa-
rates G. Let (3 be submodular and ( 3 = ( 3 . I f y j l C © i s a lattice such that
/3|9Jt is modular then there exists an inner -*- premeasure ^p : G —^ [0,oo[
with y ^ ( 3 and ^|9Jt = (3\W.

Proof.— We can assume that 0 6 9Jt. Then a := (/3|9Jt)^|© is in
M(/3). Thus there exists a maximal member (p 6 M(/?) with a ^ (^ ^ /3,
that is with (^ ^ /? and ^|W = /?|9Jl. D

SPECIALIZATION 3.8.— Assume that 1 C (©T©)±, and that 1
separates 6. Let (3 be submodular and (3 = (3. IfWc © is nonvoid and
totally ordered under inclusion then there exists an inner -A- premeasure
ip : © -^ [0, oo[ with y ^ (3 and ^|9Jt == /3|9Jt.

The case 9DZ = {A} C © in the special situation of Example 3.1 is
the first assertion in the theorem of Tops0e [28] quoted in the introduction.
Its second assertion is contained in 3.9 below. The case that 9JI consists of
the members of a sequence 5'i C • • • C Sn C • • • in © is in Adamski [1]
Corollary 3.7, in essence under fortified assumptions. This special case has
the consequence which follows.

CONSEQUENCE 3.9.— Assume that T C (©T©)_L, and that 1 sepa-
rates ©. Let f3 be submodular and f3 = f3. For each M C X there exists an
inner -k premeasure ^ : © —> [0, oo[ with (p ^ (3 and <^(M) = /3*(M).

Proof. — Fix a sequence 5'i C • • • C Sn C • • • C M in © such that
/?(5n) T ^(M). The result follows from 3.8 applied to 9Jt := {Sn : n 6 N}.

D

So far the basic results in the present context. It is of interest to
compare 3.6 with the main theorem MI 18.10 of MI Section 18. We
present this result (in the so-called conventional situation of MI) in the
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reformulation which follows. Let as above 6 and 1 be lattices in X with
0 € ©, T and (3 : © -^ [0, oo[ be isotone with (3(0) = 0.

THEOREM 3.10. — Assume that (3 == f3. Then each maximal member
(p € M(/3) such that (/^l? is an inner * premeasure is itself an inner -*-
premeasure.

It is not obvious that the above 3.10 is equivalent to MI 18.10.
Therefore we shall include the proof of this equivalence. For an isotone
and supermodular set function ^ : T —>• [0,oo[ with ^(0) = 0 let -*'('0) as
in MI Section 18 consist of the isotone and supermodular ^ : © —> [0, oo[
with y?(0) = 0 such that ^*|T == '0. Then MI 18.4 says that ^(if^) is upward
inductive in the setwise order, and MI 18.10 can be formulated as follows:
Assume that © is upward enclosable T. If ̂  : ? —^ [0,oo[ is an inner *
premeasure, then each maximal member y? : © —> [0, oo[ of^-(^) is an inner
-Ar premeasure.

Proof of MI 18.10 =^ 3.10. — Let (3 and (p be as assumed in 3.10. Then
first of all f3 < oo implies that © is upward enclosable T. By assumption
^ := (^IT is an inner -A- premeasure, and by definition ^p € *(^). It suffices to
show that y? is a maximal member of-A-('0). Thus let i9 6 -*-(^) with (p ^ i9. To
be shown is (/? == ^. From ̂ |T = ip and 2.1 we have ' ^^ '0 '* ' |©==(^^ /3=/?
and hence ^ € M(/?). By assumption y? is a maximal member of M(/3), and
hence y? = ^. D

Proof of 3.10 => MI 18.10.— Assume that © is upward enclosable
^T, and let '0 and y? be as assumed in MI 18.10. Then f3 := '0*|© is < oo
and isotone with (3(0) = 0, and (3 = (3 by 2.2. From ^l? = ^ and 2.1 we
have (p ^ ^\6 = (3 and hence (/? 6 M(/?). It remains to show that (p is a
maximal member of M(/3). Thus let ^ € M(/?) with (/? ^ ^. To be shown
is ^ = ^9. We have ^ = ̂ |^ ^ ^1^ ^ ^1^; and from (3 = ̂ \6 and 2.1
also /^IT ^ '0. Thus ^IT = -0 and hence t9 e ^(VQ' By assumption y? is a
maximal member of -*'('0), and hence (p = ̂ . D

In MI sections 18 and 19 there were numerous applications of MI
18.10. In the present context of 3.10 we shall restrict ourselves to the
particular case T := {0, X}, because then each set function ^ : 1 —^ [0, oo[
with ^(0) = 0 is an inner '*' premeasure. In this case (3 = (3 means that
f3(S) = sup (3 < oo for all nonvoid S e ©. Thus we fix f3 : © -^ [0, oo[ to
be f3(0) = 0 and (3(S) = 1 for S + 0. Then 3.10 says that each maximal
member of M(/3) is an inner * premeasure. We emphasize one particular
consequence.
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