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GAUSS-MANIN CONNECTIONS OF SCHLÄFLI TYPE
FOR HYPERSPHERE ARRANGEMENTS

by Kazuhiko AOMOTO

1. Introduction.

The theory of the hypergeometric integrals associated with hyper-
plane arrangements has been developed by many authors, like P. Orlik,
H. Terao , A. Varchenko, M. Yoshida, etc (see [9], [15]). An arrangement of
one hypersphere and many hyperplanes is also interesting from geometric
and combinatorial point of view. If we restrict this to the hypersphere, we
have a general hypersphere arrangement. The purpose of this note is to
present the Gauss-Manin connection of the hypergeometric integrals asso-
ciated with a "generic" hypersphere arrangement in the unit hypersphere
in an invariant form. This expression can be regarded as a natural exten-
sion of the classical Schlafli formula for a geodesic spherical simplex. The
author has given in [1] various formulae about the hypergeometric integrals
involved in quadratic exponentials. This note heavily depends on it. Espe-
cially we cite often the basic variational formulae stated in Propositions 1.3
and 2.3, and their consequences derived from contiguity relations stated in

[1] I.

We give here a further extension and an application of some results
in [1] in the case of hypersphere arrangements (See Theorems 5-8) . Finally
we raise some related questions (Questions 1 and 2).

Keywords: Hypersphere arrangements - Twisted cohomology - Gauss-Manin connection.
Math. classification: 32S22 - 32S40 - 33C70 - 39B32.
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2. Rational twisted de Rham cohomology
(terminologies and basic facts).

Consider the n dimensional complex hypersphere Q : fo (x) = 0 in
the complex affine space (Cn+1 for

Let be an arrangement of hyperplanes Hj defined by
for

The intersection ,~1.~ = {Q rl Hj)izjzm defines an arrangement of
(n - 1) dimensional hyperspheres in Q.

We denote by ail (1::Ç i, j  Tn), ajo = aoi (1::Ç i ::Ç m ) , the inner
product of f i and and ajo = uio respectively. We

put aoo = 1. These quantities are invariant under the action of O(n + 1, C),
the complex orthogonal group, which acts linearly in cn+1. Normalize fj
such that ajj = 1 for all j.

Let A be the (m + 1 ) x (m -f-1 ) symmetric matrix whose (i, j ) entries
are aij (0 ~ I, j x m) . We call A the configuration matrix associated with
,A.

For a pair of the p tuples of different ordered indices I == {iI, ... , ip}
and J = ~ j 1, ~ ~ ~ , jP ~ (1 ~ m) the subdeterminants ~4(~), ~4(~ ~)
are defined as 

~

In the same way, for I - and

denote by A ("") the subdeterminant
we

The determinants
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are identified with + A(0, 1) respectively.

For I = {i1, ... , 0,I denotes the deletion of the v-th element iv
from I : and ~j, 7} denotes the addition of the
new index j to III denotes p the size of I.

Let X = M(A) and Y = be the complements X = C’+’ -
and Y = Q - Q n Hj respectively.

We consider the twisted rational cohomology H* (X, V) in X with
respect to the covariant differentiation

and the twisted rational cohomologies H* (X, in X, H* (Y, in Y

with respect to the covariant differentiation

respectively.

We assume

(i) A(I ), A(0, J) ~ 0 for all 7,J c {1,2,-.,~} such that
n + 2, 1 respectively. (Remark that A(I) = 0 if + 3

and ~~+2.)

(ii) 2::jEI Aj V Z for all I C ~ 1, 2, ~ ~ ~ , m} and 2Ao + where

Aoo denotes F_m 1 Aj -
Then the following facts have essentially proved in [1] I (see also [5],

[12] for more general schemes).

THEOREM 1.

where

THEOREM 2.

(i)
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(ii)

As for the relative cohomology, we have

THEOREM 3.

so that

A basis of . can be given as

for where

We denote by cp ( Q~ ) the when I is empty.

On the other hand, a basis of Vo) can be given by p(I) for

with the following fundamental relations:

for arbitrary indices . t.

THEOREM 4. - A basis of H’(Y; Vo) can be given by

for where TQ
denotes the invariant n-form
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The fundamental relations are written as follows:

For arbitray (n + 2) indices J = ~ j1, ~ ~ ~ , ?~+2}?

Proof 1. - There exist uniquely the constants c,,, and c,~ such that

This identity gives (2.11). See (4.9), (4.11) in [1] I.

The Jacobi identities show

since A (0, J) = 0.

For general I == {i 1, ... , we denote further

whence

As a consequence of Theorem 4

COROLLARY 1. - Another basis of Hn(Y, Vo) can be given by the
n-forms:

n and the logarithmic forms d log fil A... A d log fin

with the fundamental relations

for arbitrary indices
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Proof 2. - See (4.12) [1] I.

(2.11) and (2.12) are equivalent to each other, since we have the
relations in Hn (Y, V ), for I = f i 1, - - - , 

and conversely for

3. Twisted cycles.

We put and so that

where define real polynomials.

The hypersphere Q is expressed as

The real part RQ is defined to be the subset of Q such that all the gj are
real.

We define the real symmetric configuration matrix A’ = 
with the entries

The subdeterminants . are defined as before.

Hence

Assume now

(?-L2) For all I (1 ~ III  n -~-1 ), A’ (I ) &#x3E; 0 (remark that -A’ (o, I ) &#x3E;

A’(I)).
Under the hypotheses (7~1), (7~2) we have
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PROPOSITION 1. - The real hyperplane arrangement
A’ = gives the real (n - 1) dimensional hypersphere arrange-
ment (HJ n in Q.

Let £-VJ and be the dual of the local systems in X - Y and Y
which are defined by the functions U’ and Uo :

respectively. Then H’+ 1 (X -Y; B7) and Hn+1 (X -Y; ,C_~,) gives the perfect
pairing of each other by integration,

where cp and C denote an (n+1) dimensional form and an (n+ 1 ) dimensional
twisted cycle in X - Y.

Similarly VO) and gives the perfect pairing of
each other

The common parts of non-compact connected components of Jaen+1 -
with Q gives a basis of twisted cycles in Hn (Y; 

The intersection of the closure of a non-compact connected component
with Q corresponds exactly to a connected component of SJRQ - n

H~ . The number of such connected components is equal to 11 which is also
equal to the absolute value of the Euler number of

Let A be a chamber in X - Y which is a common part of the inside
of and a non-compact chamber of A’.

We consider the hypergeometric pairings
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for

where

respectively.

Remark that

We have similar relations to (2.13) and (2.14) between

and the logarithmic forms

4. Basic invariant 1-forms
and Gauss-Manin connections (main results).

The arrangement ,~4’ has a singualrity if and only if

or

for a certain I = ~i 1, ~ ~ ~ , These

correspond to the singular loci

or

This observation seems to come as early as from F. Pham’s paper [11].

give a basis of linearly independent integrals for cp’
of (3.4).
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On the other hand, the integrals

for

for

give another equivalent system of (3.4). 
give two bases in the same cohomology Hn+1 (X -Y; V), the corresponding
integrals and are connected with each other by contiguity
relations.

The Gauss-Manin connection concerning cp’ (I ) can be expressed by
"closed 1-forms" as follows.

DEFINITION 1. - We define the closed 1-forms

(i)

or

for and j, l~ ~ I, j according
as

The closed 1-form

will be denoted by

(ii)

The fundamental hierarchical identities among them hold as a result

of Jacobi identities:

(i)ForICJand
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(ii)

Proof 3. - See (R-11) and (R.I2) in [1] I.

Under these notations, we have

THEOREM 5. - Regarded as functions of the configuration matrix

A’, the Gauss-Manin connections for cp’ (I ) can be expressed as

where F1, F2, F3, F4, F5, F6 are given as follows:

Case ~I~ = 2q
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Case

Similarly we can obtain an explicit expression of Gauss-Manin con-
nection for cp’ (I ) . But in this case it is not written in closed 1-forms.

Proof 4. - This theorem has been essentially proved in Proposition
2.4p, Propositon 2.4p, Proposition 2.4p in [1] by the homogenization of
the integrals (3.4) and (3.5) , also of (4.4) and (4.5). In fact, we put
tj = tozj 1 ~ ~ ~ 7~ -t- 1 and

and consider the homogeneous integrals

and
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respectively for I = ~il, ~ ~ ~ , ip~, iv &#x3E; 1. Then by the identification (3.1)
§3(1), ~(0,7) equal the integrals

integrated over suitable cycles C and C respectively. Here we put /10 =

-2Ao - A~o - ~ - 2. We apply Propositions 2.4p, 2.4p, 2.4p [1] I to

(~(7), ~(0,7) and obtain (4.8).

To get an explicit form of Gauss-Manin connection for ’PQ,* (1) we
first define the following 1-forms 9’ (§) in an inductive way.

DEFINITION 2.

{l,2,...,m}, (p~3).

One may point out an important property for 8’ ~~) .
LEMMA 1. - If p &#x3E; n -~ 2, then

This fact has been proved in [2] in an analytic way.
Furthermore one can make the following conjecture. For an arbitrary

I, we have

as module of differential forms, i.e., if A’ (o, I) = 0, then
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In fact, for p = 2 the following identity holds (see ~2~ ) :

We can write explicitly the Gauss-Manin connection for ~(0) by
using the 1-forms Of (~) .

THEOREM 6. - In X - Y, the integral (P’(0) satisfies the variational
formula

for J-to == -2Ào - A,,,, - n - 2, where I moves over the set of different indices
I C ~1,2, ~ ~ ~,m~.

Proof 5. - This follows from (E.IIIo) in [1] I and Lemma 1.

By taking the limit Ào -4 -1 and taking into consideration (3.6), we
have

THEOREM 7.

Here cp* and are defined by

One can get similar formulae for cp* (I ) although they are more

complicated.
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Suppose now

then

and whence reduce

respectively.

Furthermore if À1,..., Am tend to 0, (4.13), (4.14) reduce to the
Schalfli formula for the volume of a geodesic simplex.

5. Variational formulae for volumes.

The angle  i, I &#x3E; between the hyperplanes Hi and H~ subtended by
A is defined uniquely by the equation

 Z, 3 &#x3E; is also equal to the angle between the hyperspheres Hil rl RQ and
Hj n RQ subtended by the domain fi &#x3E; 0, 0 in RQ.

On the other hand, the normalized distance of H? and the origin
is equal to These quantities are invariant under the action of

We now consider the case where m - n + 1. By taking the limit
)’1, ... , An+1 - 0, (0) becomes the volume for the simplex A n Q in Q,

where
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We can apply the formulae (4.13), (4.14) to Vø. The intersection
= ~ ~ ~ fn+1 - 0 with Q is isomorphic up to similarity to the (n - p)

dimensional unit sphere:

The volume form Ti is given by

Then we have

Let Vi be the (n - p) dimensional volume

Let AI denote the
whose entries are:

configuration matrix

We can define the admissible 1-forms 9’ ( §) for We denote these forms

The hierarchical variational system for the volumes VI can be stated
in the following theorem which follows from Theorem 7, by taking Aj - 0.

THEOREM 8.
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Each VI has the lower dimensional variational formula

COROLLARY 2. can be expressed as iterated integrals of the

1-forms in the sense of K. T. Chen.

6. Degenerate cases and some questions.

Suppose A’ (I ) = 0, for some I, = p  n + 1, then the chamber

reduces to a point. This is a vanishing cycle in corresponding
to the sigularity

The rank of Vo) decreases by one. There arises a new linear relation
among the cohomology classes of This relation can be described as

follows, as a result of a series of contiguity relations (see (D.IIIp),(D.IVp)
[I] I). 

p p

There exists a system of rational functions ~(~) of ai~ and a’o such
that

Notice that

The special case where m = n + 2, and all A’
seems interesting, for example if n = 2, m = 4 then
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and 11 = 10 .

Finally one may ask the following general questions.

Question 1. Let O. be a subspace of closed forms on Y such that
Wa A Q C 0.. Then Vo can be defined on o. too so that we have the
subcomplex (Va, 0.),

In this situation one may ask "Does it exist Q such that the isomorphism

hold for a general hypersphere arrangement 

One can prove

PROPOSITION 2. - Under and ~?~2~,

where I denotes the set of indices ~i 1, - - - , and ~i 1, - - - , in ~ respectively.
Hence

As a corollary the Euler number x(Y) equals:

COROLLARY 3.

oyving to the identity

(ll was defined in (2.6)).
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We take as 0.:

then for a generic A - (À1,..., Am) we have (6.3) in view of Theorem 4
and its corollary.

Remark that (6.3) is valid in case of general hyperplane arrangements,
when we take as O. the space of logarithmic forms (the Orlik-Solomon
algebra)(see [9].) In case of general hypersphere arrangements, the first
summand of the RHS of (6.8) appears in the Orlik-Solomom algebra, while
the second recently appears in [7], [10], [14]. It seems interesting to discuss
them in relation to hypersphere arrangements.

Question 2. Let 6 be a rational flat connection, such that

Does there exist a rational matrix function ~ such that

is closed? In this situation, the integrability condition (6.9) becomes

algebraic:

Question 2 was answered affirmatively in case of hyperplane arrange-
ments of general position and their degeneration of codimension 1 and more
generally in non-resonance cases (see [13], [6]).
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