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EULER SYSTEM FOR GALOIS DEFORMATIONS

by Tadashi OCHIAI (*)

For a motive M over a number field, the relation between the size
of the Selmer groups for M and the special values of L-function for M

is one of the main theme of arithmetic geometry. In Iwasawa theory, we
are interested in the relation between the Selmer group and the p-adic
L-function for a Galois deformation of the p-adic realization of M . After
original works by Iwasawa for ideal class groups in the cyclotomic tower,
many people followed and generalized his philosophy to study elliptic curves,
modular forms or more general p-adic representations in the cyclotomic
tower. In early 90’s, Greenberg [Gr2] proposed a vast generalization and
reformulation of Iwasawa theory through Mazur’s theory of deformations
of Galois representations.

In this paper, we study the theory of Euler system for Galois
deformations to bound the size of the Selmer group of a Galois deformation
by the characteristic ideal of an Euler system. Such theory was first obtained
by Kolyvagin and it has been developed by Kato, Perrin-Riou and Rubin in
the case of cyclotomic deformations. However, the method of their theory
does not work well for Galois representations over general deformation
rings R. The difficulty comes from impossibility of finding nice system of
Frobenius elements which reflects the R-module structure of the Selmer
group except the case where R is the group algebra of a Zdp-extension. Thus,
the aim of this paper is to overcome these difficulties in Euler system theory
over a more general deformation ring R such as a nearly ordinary Hecke
algebra of Hida by introducing a new approach to the Euler system theory.
As a corollary, we show one of the inequalities predicted by the two-variable
Iwasawa main conjecture for a nearly ordinary Hida deformation. This

(*) The author is supported by Japan Society for Promotion of Science.
Keywords: Euler system, Hida theory, Iwasawa main conjecture.
Math. classification: 11G40, 11R23, 11R34, 11F80, 11F33.
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is the first example of such inequality of the generalized Iwasawa Main
conjecture proposed by Greenberg over a deformation ring which is not the
group algebra of Zdp-extension of a number field.

1. Two-variable Iwasawa main conjecture for
Hida deformation.

In this section, we shall introduce our main result in the case of Hida
deformations. To introduce our result, let us recall briefly Hida’s nearly
ordinary modular deformations.

We fix a prime number p ≥ 3 and a norm compatible system {ζpn}n≥1

of primitive pn-th roots of unity throughout the paper. Let Γ be the Galois
group Gal(Q∞/Q) of the cyclotomic Zp-extension Q∞/Q of the rational
number field Q. We denote by Γ′ the group of diamond operators for the
tower of modular curves {Y1(pt)}t≥1. We have the canonical isomorphisms

Γ ∼−→
χ

1 + pZp ⊂ Z×p , Γ′ ∼−→
χ′

1 + pZp ⊂ Z×p .
Fix a topological generator γ (resp. γ′) of Γ (resp. Γ′). From now on, we fix
an embedding of an algebraic closure Q into the field C of complex numbers
and an embedding of Q into a fixed algebraic closure Qp of the field Qp
of p-adic numbers simultaneously.

Let Hord
F be the quotient of the universal ordinary Hecke algebra with

certain fixed tame conductor, which corresponds to a certain Λ-adic eigen
newform F . The algebra Hord

F is a local domain finite flat over Zp[[Γ′]].
Hida’s nearly ordinary Hecke algebra Hn.o

F is defined to be the formal
tensor product of Hord

F and the cyclotomic Iwasawa algebra Zp[[Γ]] over Zp.
By this, Hn.o

F is isomorphic to Hord
F [[Γ]] and is a local domain finite flat

over Zp[[Γ× Γ′]].

In his celebrated paper [Hi1], Hida constructs a big Galois repre-
sentation ρ : GQ = Gal(Q/Q) → Aut(T̃ ), where T̃ is a finitely generated
torsion-free module of generic rank two over Hn.o

F . The representation T̃ is
presented as T̃ ord⊗̂Zp[[Γ]](χ̃), where χ̃ is the universal cyclotomic charac-
ter GQ →→ Γ ↪→ Zp[[Γ]]× and Zp[[Γ]](χ̃) is a rank 1 free Zp[[Γ]]-module
on which GQ acts via the character χ̃. We always assume the following
condition:

(F)



T̃ is free of rank 2 over Hn.o

F and the residual representation

T̃ /MT̃ of T̃ is an irreducible GQ-module, where M is the

maximal ideal of Hn.o
F .
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EULER SYSTEM FOR GALOIS DEFORMATIONS 115

We expect an equality between the ideal generated by the p-adic L-function
and the characteristic ideal of the Selmer group for Hida deformation
(Iwasawa Main Conjecture which will be proposed later). In this paper,
we shall show one of the inequalities between these two objects under
certain assumptions. In this section, we summarize briefly our main result
in this paper (Theorem C) and apply it to the Iwasawa Main Conjecture
by combining with our previous works (Theorem B).

Let us recall the following definition:

DEFINITION 1.1. — Let w be an integer. A point κ ∈ HomZp(H
ord
F ,Qp)

is called an arithmetic point of weight w if there exists an open subgroup U

of Γ′ such that the restriction κ Zp[[Γ′]] : Zp[[Γ
′]] −→ Qp sends u to χ′w(u)

for any u ∈ U . For an arithmetic point κ of Hord
F , we will denote by w(κ)

the weight of κ.

We briefly recall the properties of this Hida deformation T̃ (cf. [Hi1],
[Wi]):

Basic Property of Hida deformation. — Assume the condition (F).
Hida’s nearly ordinary deformation T̃ has the following properties:

1) T̃ is unramified outside a finite set of primes S of Q containing p

and the archimedean prime.

2) Let χ̃′ :GQ −→ Zp[[Γ′]]× be the universal character defined to be
the composite

GQ
χ̃−→ Zp[[Γ]]× ∼−→ Zp[[Γ′]]×

obtained by the canonical isomorphism Γ ∼→ Γ′. Then the determinant

representation GQ → Aut(
2
∧ T̃ ) ∼= (Hn.o

F )× coincides with the character

GQ
χ−1(χ̃2×χ̃′−1)−−−−−−−−−−→ O[[Γ× Γ′]] ↪−→ (Hn.o

F )×

modulo a character of finite order.

3) For each pair (j, κ) of integer j and an arithmetic point
κ ∈ HomZp(H

ord
F ,Qp) satisfying 1 ≤ j ≤ w(κ) + 1, we denote by T (j,κ)

the specialization of T̃ by the homomorphism

χj−1 ◦ κ : Hn.o
F = Hord

F [[Γ]] −→ κ(Hord
F )[[Γ]] −→ Qp.

Then there exists a normalized eigen cusp form fκ of weight w(κ) + 2
and T (j,κ) is the twist Tfκ ⊗ χj of Deligne’s Galois representation Tfκ
associated to fκ.

TOME 55 (2005), FASCICULE 1



116 Tadashi OCHIAI

4) If we restrict the action of GQ on T̃ to the decomposition group GQp
at p, T̃ has a filtration 0 → F+T̃ → T̃ → F−T̃ → 0 such that the graded
pieces F+T̃ and F−T̃ are free of rank 1 over Hn.o

F .

5) Further, the representation F+T̃ is isomorphic to

Zp[[Γ]](χ̃) ⊗̂ZpHord
F (α̃)

as a GQp-module, where α̃ is an unramified character GQp → (Hord
F )×

such that Ap = α̃(Frobp) ∈ Hord
F satisfies an interpolation property

κ(Ap) = ap(fκ) for each arithmetic point κ of w(κ) ≥ 0 and Hord
F (α̃)

is a rank one free Hord
F -module on which GQp acts via the character α̃.

In order to consider p-tame twist of the representation T̃ by a
power of the Teichmuller character ω, we will consider the nearly ordinary
deformation T = T̃ ⊗ ωi for 0 ≤ i ≤ p − 2. Let A be the discrete Galois
representation T ⊗Hn.o

F
HomZp(H

n.o
F ,Qp/Zp). We denote by QS the maximal

Galois extension of Q which is unramified outside S. The Selmer group
is defined as a subgroup of H1(QS/Q,A). Once we fix a local condition
H1

? (Qp,A) ⊂ H1(Qp,A) at p, we define a Selmer group Sel?T as follows:

Sel?T = Ker
[
H1(QS/Q,A)→

∏
�∈S,�
=p

H1(Q�,A)
H1

ur(Q�,A)
×H1(Qp,A)
H1

? (Qp,A)

]
.

Let us consider two important types of local conditions ? = Gr or BK.

1) Greenberg’s local condition H1
Gr(Qp,A) ⊂ H1(Qp,A) is defined

to be

H1
Gr(Qp,A) = Ker

[
H1(Qp,A)→ H1(Qur

p ,F
−A)

]
,

where Qur
p is the maximal unramified extension of Qp.

2) Let (j, k) be a pair of integers satisfying 1 ≤ j ≤ k − 1 and let
Φ(j,k)
s,t ⊂ Hn.o

F be a height 2 ideal (γp
s − χj−1(γp

s

), γ′p
t

− χ′k−2(γ′p
t

)).

We denote by A[Φ(j,k)
s,t ] the Φ(j,k)

s,t -torsion part of A, which is cofree
of finite rank over Zp. We define a Bloch-Kato type local condition
H1

BK(Qp,A) ⊂ H1(Qp,A) to be

H1
BK(Qp,A) = lim−→

s,t

H1
f

(
Qp,A[Φ(j,k)

s,t ]
)
,

where H1
f (Qp,A[Φ(j,k)

s,t ]) ⊂ H1(Qp,A[Φ(j,k)
s,t ]) is the “finite part” defined by

Bloch-Kato in their paper [BK] using Fontaine’s ring of p-adic periods.

First, we recall the following result concerning these Selmer groups:

ANNALES DE L’INSTITUT FOURIER



EULER SYSTEM FOR GALOIS DEFORMATIONS 117

PROPOSITION A. — Assume the condition (F) above. We have the

following statements:

1) Two Selmer groups SelBK
T and SelGr

T are equal as subgroups of

H1(QS/Q,A). Especially, the definition of SelBK
T does not depend on the

choice of (j ,k) as above.

2) The Pontryagin duals (SelBK
T )∨ and (SelGr

T )∨ of our Selmer groups

are torsion modules over Hn.o
F .

The first statement of the above proposition is proved in [Oc2], §4.
The second one is proved by a specialization of two variable Selmer group
to a certain weight k and by the use of results of Kato and Rubin
(cf. [Ka3] and [Ru1]) for cotorsion-ness of one-variable Selmer groups over
the cyclotomic tower. For such specialization argument of Selmer group,
see [Oc1]. By the above proposition, we will denote the Selmer group for T
simply by SelT no matter how it is Greenberg type or Bloch-Kato type.

Now we will relate the characteristic ideal of the above Selmer group
to a two-variable p-adic L-function for Hida deformation by using an Euler
system of Beilinson-Kato.

In order to introduce Beilinson-Kato elements, we need to prepare
notations. For each arithmetic point κ of weight w(κ) ≥ 0, we denote by

fκ =
∑
n>0

an(fκ)σqn

be the dual modular form of fκ =
∑
n>0 an(fκ)q

n where σ is a complex
conjugation. The dual modular form fκ is known to be a Hecke eigen cusp
form of weight k = w(κ) + 2 with Neben character dual of that of fκ. We
denote by Qfκ a finite extension of Q obtained by adjoining all Fourier
coefficients of fκ to Q. We associate the de Rham realization VdR(fκ) to fκ.
The de Rham realization VdR(fκ) has the following properties :

1) VdR(fκ) is a 2 dimensional vector space over Qfκ and is equipped
with a de Rham filtration FiliVdR(fκ) ⊂ VdR(fκ), which is a decreasing
filtration of Qfκ-vector spaces.

2) We have Fil0VdR(fκ) = VdR(fκ) and Filw(κ)+2VdR(fκ) = {0}.
For each j such that 1 ≤ j ≤ w(κ) + 1, FiljVdR(fκ) is naturally identified
with one-dimensional Qfκ-vector space Qfκ · fκ.

3) For each j such that 1 ≤ j ≤ w(κ)+1, Filw(κ)+2−jVdR(fκ)⊗Q
fκ
Q̂fκ

is naturally identified with Fil0 DdR((V (j,κ))∗(1)), where Q̂fκ is the p-adic

TOME 55 (2005), FASCICULE 1



118 Tadashi OCHIAI

completion of Qfκ in the fixed embedding Qfκ ↪→ Qp, V (j,κ) is T (j,κ)⊗ZpQp
and ( )∗ means the Qp-linear dual here.

For each 1 ≤ j ≤ w(κ) + 1, we denote by δdR
κ the Qfκ-basis of

Filw(κ)+2−jVdR(fκ) sent to fκ under the natural identification

Filw(κ)+2−jVdR(fκ) = Qfκ · fκ.
Kato [Ka3] constructs elements in the K2 of modular curves. By using his
elements, we have the following system of elements in Galois cohomology.

PROPOSITION 1.2 (see [Ka3]). — Assume the condition (F). Let R be

the set of all square-free natural numbers which are prime to S. Then we

have a collection of elements
{
Z(r) ∈ H1(Q/Q(ζr),T ∗(1))

}
r∈R satisfying

the following properties:

1) The element Z(r) is unramified outside primes of Q(ζr) over S

for each r ∈ R. Let r be a square-free number and let q be a prime

number such that (r,q) = 1. Then the norm NormQ(ζrq)/Q(ζr)Z(rq)
is equal to Pq(Frobq)Z(r), where Pq(X) ∈ Hn.o

F [X] is the polynomial

det(1 − FrobqX ;T ) and Frobq is ( the conjugacy class of) a geometric

Frobenius element at q in the Galois group Gal(Q(ζr)/Q).

2) For each pair (j ,κ) of an integer j and an arithmetic point κ

such that 1 ≤ j ≤ w(κ) + 1, let z(j ,κ)(1) ∈ H1(QS/Q,(T (j ,κ))∗(1)) be the

specialization of Z(1) ∈ H1(QS/Q,T ∗(1)) via χj−1 ◦ κ. If we denote by

loc/f (z(j ,κ)(1)) the image of z(j ,κ)(1) under the localization map

H1
(
QS/Q,(T (j ,κ))∗(1)

)
−→ H1

/f

(
Qp ,(T (j ,κ))∗(1)

)
:=

H1(Qp ,(T (j ,κ))∗(1))
H1
f (Qp ,(T (j ,κ))∗(1))

,

then exp∗(loc/f (z(j ,κ)(1))) is contained in

Filw(κ)+2−jVdR(fκ) ⊂ Fil0 DdR

(
(V (j ,κ))∗(1)

)
,

for the dual exponential map

H1
/f

(
Qp ,(T (j ,κ))∗(1)

) exp∗−−−→ Fil0 DdR

(
(V (j ,κ))∗(1)

)
defined by Kato (cf. [Ka1]).

3) Further, exp∗(loc/f (z(j ,κ)(1))) is equal to

L(p)(fκ ,ωi−j ,j)

(2
√
−1π)j−1C

(−1)i
∞,κ

· δdR
κ

where C±∞,κ ∈ C is a complex period (see [Oc2], §3 and [Oc3] for C±∞,κ).
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EULER SYSTEM FOR GALOIS DEFORMATIONS 119

Let H1
/f (Qp, T ∗(1)) be lim←−s,tH

1
/f (Qp, T ∗(1)/Φ(1,2)

s,t T ∗(1)). We also
denote by loc/f (Z(1)) the image of Z(1) under the localization map:

H1
(
Q, T ∗(1)

)
−→ H1

(
Qp, T ∗(1)

)
−→→ H1

/f

(
Qp, T ∗(1)

)
.

The main theorem in our previous paper [Oc2] is the construction of the
two-variable p-adic L-function Lp(T ) as follows:

THEOREM B (see [Oc2], Theorem 3.14). — We assume condition (F).
Assume further that Hn.o

F is integrally closed in its field of fraction. Then

we have a map

Ξ: H1
/f

(
Qp ,T ∗(1)

)
−→ Hn.o

F

such that Lp(T ): = Ξ(loc/f (Z(1))) has the following properties:

1) For each height 1 prime p of Hn.o
F , then we have the equality

length(Hn.o
F )p

(
H1
/f (Qp ,T ∗(1))/loc/f

(
Z(1)

))
p

= ordp

(
Lp(T )

)
.

2) We have the interpolation property :

(χj−1 ◦κ)
(
Lp(T )

)
/Cp,κ = (−1)j−1(j−1)!

(
1− ωi−j(p)pj−1

ap(fκ)

)( pj−1

ap(fκ)

)q(i,j)

×G(ωj−i)
L(fκ ,ωi−j ,j)

(2π
√
−1)j−1C

(−1)i
∞,κ

for each (j ,κ) with 0 ≤ j − 1 ≤ w(κ), where Cp,κ ∈ Q×p is a p-

adic period (see [Oc2] and [Oc3] for Cp,κ) at each arithmetic point

κ ∈ HomZp(H
ord
F ,Qp), G(ωj−i) is the Gauss sum and q(i,j) is equal to

the p-order of the conductor of ωi−j .

Remark 1.3. — The condition that Hn.o
F is normal in the above

theorem is necessary only to assure that the image of Ξ is contained in
the integral part Hn.o

F . Without this condition, we only know that the
localization of the image of Ξ is in the fraction field Frac(Hn.o

F ) of Hn.o
F is

contained in (Hn.o
F )p for each height 1 prime p of Hn.o

F . Then, interpolation
properties as above hold without the condition that Hn.o

F is integrally closed
(see the arguments in [Oc2], §5).

By the above Proposition A and Theorem B, we propose the following
conjecture which was first proposed by Greenberg [Gr2]:

TOME 55 (2005), FASCICULE 1



120 Tadashi OCHIAI

IWASAWA Main Conjecture. — We assume the condition (F). For each

height 1 prime p of Hn.o
F , we have the equality

length(Hn.o
F )p

(Sel∨T )p = ordp

(
Lp(T )

)
.

To relate our Euler system Z(1) to the Selmer group, we need to
develop the Euler system theory for Galois deformations which generalize
the Euler system theory for the cyclotomic tower proved by Kato [Ka4],
Perrin-Riou [Pe] and Rubin [Ru2]. The following theorem is the main result
of this paper (see Theorem 2.4 and Theorem 2.6):

THEOREM C. — We assume that Hn.o
F is isomorphic to a two-variable

power series algebra O[[X1 ,X2]] over the ring of the integers O of a certain

finite extension of Qp. Let us assume the condition (F) and the existence

of the elements τ ∈ GQ(µp∞ ) and τ ′ ∈ GQ which satisfy the following

properties:

1) The image of τ under the representation

GQ −→ Aut(T ) ∼= GL2(Hn.o
F )

has a presentation
(

1 Pτ
0 1

)
under certain choice of basis Aut(T ) ∼= GL2(Hn.o

F ),
where Pτ is a non-zero element of Hn.o

F .

2) The element τ ′ ∈ GQ acts on T via the multiplication by −1.

Then there exists an integer k ≥ 0 such that we have the following

inequality for each height 1 prime p of Hn.o
F :

length(Hn.o
F )p

(Sel∨T )p ≤ length(Hn.o
F )p

(
(H/f (Qp ,T ∗(1)

)
/loc/f

(
Z(1))Hn.o

F
)
p

+ ordp(P kτ ).

Finally, our results combining Proposition A, Theorem B and
Theorem C are summarized as follows.

THEOREM. — Let us assume the condition (F) and the existence of

elements τ ∈ GQ(µp∞ ) and τ ′ ∈ GQ satisfying the conditions 1) and 2)
stated in Theorem C. Assume further that the local ring Hn.o

F is isomorphic

to a two-variable power series algebra O[[X1 ,X2]]. Then:
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1) The Pontryagin dual Sel∨T of SelT is a finitely generated torsion

Hn.o
F -module.

2) If we assume the two conditions given in Theorem B, there exists

an integer k such that we have the following inequality for each height 1
prime p of Hn.o

F :

length(Hn.o
F )p

(Sel∨T )p ≤ ord(Hn.o
F )p

(Lp(T )) + ordp(P kτ ).

The key of the proof of the inequality in Theorem C consists of:

1) The specialization lemma (see Proposition 3.6 and Proposi-
tion 3.11), which recovers the characteristic ideal of a given torsion Iwasawa
module M over an n-variable Iwasawa algebra Λ(n) from the variation of
the sizes of the specializations Mα of M via a certain (well-chosen) family
of homomorphisms {α : Λ(n) → Qp}α∈A.

2) Induction argument (§4) using the above specialization lemma,
which reduces the problem of the Euler system theory over an n-variable
Iwasawa algebra to the Euler system theory over a discrete valuation ring
already studied by several people.

We remark that our approach via the specialization lemma makes the
proof of the Euler system theory easier even in the classical case of the
Euler system theory in a Zdp-extension (compare to [Ka4], [Pe] and [Ru2]).
One feature of our proof is the use of non-arithmetic specializations
α : Λ(n) → Qp such that the specialized Galois representations Tα are not
necessarily associated to motives. Over a one-variable Iwasawa algebra, a
similar idea of the simplification of the Euler system argument is given
also in a recent article [MR] by Mazur and Rubin. The specializations
of our result on the two variable main conjecture to other non-critical or
non-ordinary representations might give us some interesting consequences.
Thus, we expect that further inquiry of such systematic use of the
induction argument combined with the specializations will bring about
fruitful applications and new perspectives in the research of Iwasawa
theory for Galois deformations.

Notations. — For an integer r, we denote by µr the group of r-th
roots of unity and denote by Q(µr) the field obtained by adjoining µr to the
rational number field Q. We often denote by Q(µp∞) the field obtained by
adjoining all p-power roots of unity to the rational number field Q. For any
Galois extension L/Q and a prime number q which is unramified in L/Q, we
denote by Frobq ∈ Gal(L/Q) (resp. ϕq ∈ Gal(L/Q)) (a conjugate class of)
a geometric (resp. arithmetic) Frobenius element at q.

TOME 55 (2005), FASCICULE 1
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2. The main theorem for Euler system
and its applications.

Throughout the paper we denote by O the ring of the integers of
a finite extension K of Qp. For a natural number n, let Λ(n)

O be an n-
variable Iwasawa algebra over O. That is, Λ(n)

O is an n-variable power
series ring O[[X1, . . . , Xn]] over O. Let T be a free Λ(n)

O -module of rank 2
with continuous GQ-action. We denote the Kummer dual representation
Hom

Λ
(n)
O

(T ,Λ(n)
O )⊗Zp Zp(1) by T , where ⊗ZpZp(1) means the Tate twist.

The definition of the Euler system for Galois deformation is as follows:

DEFINITION 2.1. — Let T be a free Λ(n)
O -module of rank 2 with

continuous GQ-action which is unramified outside a finite set of primes S
which contains {p,∞}. We denote by R the set of all square-free natural
numbers which are prime to S. An Euler system for T is a collection
of cohomology classes {Z(r) ∈ H1(Q(µr),T )}r∈R with the following
properties:

1) The element Z(r) is unramified outside S ∪ {r} for each r ∈ R.

2) The norm NormQ(µrq)/Q(µr)Z(rq) is equal to Pq(Frobq)Z(r), where
Pq(X) ∈ Λ(n)

O [X] is a polynomial det(1 − FrobqX ;T ) and Frobq is a
(conjugacy class of) geometric Frobenius element at q in the Galois group
Gal(Q(µr)/Q).

DEFINITION 2.2. — Let M be a finitely generated torsion Λ(n)
O -module.

For each height 1 prime p of Λ(n)
O , we denote by -(M ;p) the length of Λ(n)

O,p-

module Mp, where Λ(n)
O,p (resp. Mp ) means the localization at p. Note

that -(M ;p) is an integer which is zero for almost all height 1 primes p

of Λ(n)
O . Then the characteristic ideal char

Λ
(n)
O

(M) of M is defined to be the
ideal

∏
p
p�(M ;p), where p runs all height 1 primes in Hn.o

F . A torsion Λ(n)
O -

module M is called pseudo-null if -(M ;p) is zero for all height 1 primes p

of Λ(n)
O .
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EULER SYSTEM FOR GALOIS DEFORMATIONS 123

DEFINITION 2.3. — We say that the representation T satisfies (Im)
if there exist τ ∈ GQ(µp∞ ) and τ ′ ∈ GQ such that the following two
conditions hold for the Galois image of τ and τ ′:

1) The image of τ under the representation GQ → Aut(T ) ∼=
GL2(Λ

(n)
O ) has a presentation

(
1 Pτ
0 1

)
under certain choice of basis

Aut(T ) ∼= GL2(Λ
(n)
O ), where Pτ is a non-zero element of Λ(n)

O .

2) The element τ ′ ∈ GQ acts on T via the multiplication by −1.

Let X2
S(T ) be the kernel of the restriction map

H2(QS/Q, T ) −→
⊕
v∈S

H2(Qv, T ).

Our main theorem is as follows:

THEOREM 2.4. — Let
{
Z(r) ∈ H1(Q(µr),T )

}
r∈R be an Euler system

for T . Assume the following conditions:

(i) The element Z(1) is not contained in the Λ(n)
O -torsion part of

H1(GS ,T ).

(ii) For each finite place v ∈ S, H2(Qv ,T ) is a torsion Λ(n)
O -module.

(iii) The images of the determinant representations GQ → Aut(
2
∧ T ) ∼=

(Λ(n)
O )× and GQ → Aut(

2
∧ T ) ∼= (Λ(n)

O )× contain elements of infinite order.

(iv) The residual representation T /(πO ,X1 , . . . ,Xn)T ∼= F⊕2 is an

irreducible representation of GQ.

(v) The ±-eigen spaces T ± of a complex conjugate element are both

rank 1 modules over Λ(n)
O .

Assume further the condition (Im) and fix τ ∈ GQ(µp∞ ) satisfying this

condition. Then we have the following statements:

1) The group X2
S(T ) is a finitely generated torsion Λ(n)

O -module.

2) Assume that the finitely generated Λ(n)
O -module X2

S(T ) admits a

set of generators consisting of k elements. Then the following inclusion of

the characteristic ideals holds:

(P kτ )char
Λ

(n)
O

(
H1(QS/Q,T )/Z(1)Λ(n)

O
)
⊂ char

Λ
(n)
O

(
X2
S(T )

)
.

Remark 2.5. — Though we assume that rank
Λ

(n)
O

(T ) = 2 throughout
the paper, it is not essential assumption for the proof of the above result.
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A few minor modification of the conditions in Theorem 2.4 and (Im)
allows us a similar result in the case rank

Λ
(n)
O

(T ) > 2. Since the application
to Hida deformation requires only the rank 2 case, we restrict ourselves to
this case in order to avoid complicated notations. We would like to discuss
the general case together with other generalization in a subsequent paper.

The proof of Theorem 2.4 is completed in §4 after preparation in §3.
Let us apply Theorem 2.4 to Hida’s nearly ordinary deformation T = T̃⊗ωi
explained in §1.

From now on throughout the section, we assume that Hn.o
F is iso-

morphic to a two-variable power series algebra O[[X1, X2]] over a complete
discrete valuation ring O which is finite flat over Zp.

THEOREM 2.6. — Assume the condition (F). We also assume that

T = T̃ ⊗ ωi satisfies the condition (Im) and fix τ ∈ GQ(µp∞ ) satisfying

this condition. Let Z(1) ∈ H1(QS/Q,T ∗(1)) be the Beilinson-Kato element

(see Proposition 1.2). Then, under the assumption that Hn.o
F is isomorphic

to O[[X1 ,X2]], we have the following statements :

1) The group X2
S(T ∗(1)) is a finitely generated torsion Hn.o

F -module.

2) Assume that the finitely generated Λ(n)
O -module X2

S(T ) admits a

set of generators consisting of k elements. Then the following inclusion of

the characteristic ideals holds:

(P kτ )charHn.o
F

(
H1(QS/Q,T ∗(1))/Z(1)

)
⊂ charHn.o

F

(
X2
S

(
T ∗(1)

))
.

Let us deduce Theorem 2.6 from Theorem 2.4.

Proof of Theorem 2.6. — It is sufficient to check that our Galois
module T and the Euler systemZ(1) satisfies the conditions in Theorem 2.4.
Condition (iv) is already assumed by the condition (F). Condition (v) is
due to the fact that the determinant of the representation associated to
an elliptic modular form is odd. For the condition (iii), we recall the basic
properties of Hida deformation introduced after Definition 1.1. The most
non-trivial condition is (i). We need the result in Theorem B that the
composite homomorphism

H1
(
QS/Q, T ∗(1)

)
−→ H1

/f

(
Qp, T ∗(1)

) Ξd−→ O[[X1, X2]]

sends Z(1) to Lp(T ). Since Lp(T ) ∈ O[[X1, X2]] is not zero, condition (i)
follows. This completes the proof.
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Let us deduce Theorem C stated in §1 from Theorem 2.6.

Proof of Theorem C. — By the global duality theorem, we have a four
term exact sequence:

0→ H1
(
QS/Q, T ∗(1)

)
/Z(1) −→ H1

/f

(
Qp, T ∗(1)

)
/
(
loc/f (Z(1))

)
−→ Sel∨T −→X2

S

(
T ∗(1)

)
→ 0.

Since H1
/f (Qp, T ∗(1)) is a torsion-free Hn.o

F -module of generic rank 1
by [Oc2], §4, H1

/f (Qp, T ∗(1))/loc/f (Z(1)) is a torsion Hn.o
F -module.

Hence by Theorem 2.6, Sel∨T is a torsion Hn.o
F -module. We see that the

inequality Theorem 2.6, 2) and the inequality in Theorem C are equivalent
by the exactness of the above sequence.

3. Iwasawa module and its specialization.

In this section, we discuss about a characterization of the characteristic
ideal of a given torsion Iwasawa module by the behavior of the orders of its
specializations. The results obtained in this section are used for the proof
of our main result in §4.

Before going into the main subject of this section, we give the following
lemma, which will be used in this section and the next:

LEMMA 3.1. — Let n ≥ 2 and let N be a pseudo-null Λ(n)
O -module.

Let I be a height 1 prime of Λ(n)
O such that Λ(n)

O /I is a regular local ring of

Krull dimension n. Then, we have the following equality between ideals

of Λ(n)
O /I :

char
Λ

(n)
O /I

(
N [I]

)
= char

Λ
(n)
O /I

(N/IN).

Especially, N [I] is a pseudo-null Λ(n)
O /I-module if and only if N/IN is a

pseudo-null Λ(n)
O /I-module.

Since we have no reference for this lemma, we briefly give a proof
here.

Proof. — Let us take arbitrary height 1 prime p of Λ(n)
O /I and let

p̃ ⊂ Λ(n)
O be the inverse image of p via Λ(n)

O → Λ(n)
O /I. Then p̃ is a height 2

prime of Λ(n)
O . We apply the functor ⊗

Λ
(n)
O

(Λ(n)
O )p̃ to the following exact

sequence:

0→ N [I] −→ N −→ N −→ N/IN → 0.
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Since a localization functor preserves an exact sequence, we have the
following:

(1) 0→ (N [I])p̃ −→ (N)p̃ −→ (N)p̃ −→ (N/IN)p̃ → 0.

Note that we have (N [I])p̃ = (N [I])p (resp. (N/IN)p̃ = (N/IN)p). We
have to prove the equality length

(Λ
(n)
O /I)p

(N [I])p = length
(Λ

(n)
O /I)p

(N/IN)p

or equivalently the equality

length
(Λ

(n)
O )p̃

(
N [I]

)
p̃

= length
(Λ

(n)
O )p̃

(N/IN)p̃.

Note that (N)p̃ is also a pseudo-null (Λ(n)
O )p̃-module. Since (Λ(n)

O )p̃ is of
Krull dimension 2, any pseudo-null (Λ(n)

O )p̃-module has finite length. Hence
by the above four term exact sequence (1), we have length

(Λ
(n)
O )p̃

(N [I])p̃ =
length

(Λ
(n)
O )p̃

(N/IN)p̃. This completes the proof of the lemma.

We introduce the following notations:

DEFINITION 3.2. — Let n ≥ 1 be an integer.

1) A linear element - in an n-variable Iwasawa algebra Λ(n)
O

∼=
O[[X1 , . . . ,Xn]] is a polynomial - = a0 + a1X1 + · · · + anXn ∈ Λ(n)

O with
ai ∈ O of degree at most 1 such that - is not divisible by πO and is not
invertible in Λ(n)

O . That is, - is a polynomial of degree at most 1 such that a0

is divisible by πO, but not all ai are divisible by πO.

2) We denote by L(n)
O the set of all linear ideals of Λ(n)

O . That is:

L(n)
O =

{
(-) ⊂ Λ(n)

O | - is a linear element in Λ(n)
O

}
.

3) Let n ≥ 2. For a torsion Λ(n)
O -module M , we denote by L(n)

O (M)
a subset of L(n)

O which consists of (-) ⊂ L(n)
O satisfying the following

conditions:

(a) the quotient M/(-)M is a torsion Λ(n)
O /(-)-module;

(b) the image of the characteristic ideal char
Λ

(n)
O

(M) ⊂ Λ(n)
O in Λ(n)

O /(-)
is equal to the characteristic ideal char

Λ
(n)
O /(�)

(M/(-)M) ⊂ Λ(n)
O /(-).

DEFINITION 3.3. — A linear transform σ of an n-variable Iwasawa
algebra O[[X1 , . . . ,Xn]] is an automorphism of O[[X1 , . . . ,Xn]] given
by σ(Xj) =

∑
1≤i≤n ti,jXi such that (ti,j)1≤i,j≤n is in GLn(O).
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Note that a linear element defined in Definition 3.2 is stable under
the action of a linear transform. Let x ∈ Λ(n)

O . Take arbitrary linear
transform σ of Λ(n)

O , σ(x) is a linear element in Λ(n)
O if and only if x is a

linear element in Λ(n)
O .

For a natural number m, we denote by Pm(O) the projective space of
dimension m. That is, Pm(O) is the set of ratios (x0 : · · · :xm) with xi ∈ O.
We have the following lemma:

LEMMA 3.4. — Let n ≥ 1 be an integer.

1) Let - and -′ be linear elements in Λ(n)
O . If - = u-′ holds for a certain

unit u ∈ (Λ(n)
O )×, u is necessarily a constant element contained in O×.

2) The set L(n)
O is (non-canonically) identified with MO × Pn−1(O).

3) Let n ≥ 2. For a torsion Λ(n)
O -module M , L(n)

O (M) is equal to

{
(-) ∈ L(n)

O |M/(-)M is a torsion Λ(n)
O /(-)-module

}
∩ L(n)
O (Mnull),

where Mnull is the largest pseudo-null sub-module of M .

Proof. — Let us prove the first statement. We take linear elements
- = a0 +

∑
1≤i≤n aiXi, -

′ = a′0 +
∑

1≤i≤n a
′
iXi and u ∈ (Λ(n)

O )×, where
ai (resp. a′i) is an element in O for each i. By the definition of linear
elements, one of the coefficients a′i of -′ is a unit of O. In order to
show that u is contained in O×, we may assume that a′n is a unit
without loss of generality. By multiplying an element of O×, we assume
that a′n = 1. We denote -′ − Xn ∈ O[[X1, . . . , Xn−1]] by α. By definition
α is contained in the maximal ideal M of O[[X1, . . . , Xn−1]]. Since
u ∈ Λ(n)

O = O[[X1, . . . , Xn−1]][[Xn]] has an expansion u =
∑

0≤j<∞ bjX
j
n,

where bj is an element inO[[X1, . . . , Xn−1]], we have the following expansion
of u-′ in O[[X1, . . . , Xn−1]][[Xn]] :

u-′ = (α+Xn)
( ∑

0≤j<∞
bjX

j
n

)
= αb0 +

∑
1≤j<∞

(αbj + bj−1)Xjn.

By the assumption that - = u-′, αbj + bj−1 must be zero for each j ≥ 2.
Thus we have an expression bj = (−α)rbj+r for arbitrary integers j, r ≥ 1.
Since bj is divisible by arbitrary large power of M, bj must be zero for
each j ≥ 1 (Note that

⋂
r≥1Mr = 0). Hence we have - = αb0 + b0Xn

in O[[X1, . . . , Xn−1]][[Xn]]. Since the coefficient of Xn must be con-
tained in O, we have b0 ∈ O. This completes the proof of the statement 1).
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By definition, the set of linear elements - ∈ Λ(n)
O is isomorphic

to MO × (O⊕n \ M⊕nO ). Let -, -′ ∈ Λ(n)
O be linear elements. As is

shown above, (-) = (-′) holds if and only if there exists a unit
u ∈ O× such that - = u-′. Thus the set of linear ideals L(n)

O is
isomorphic to (MO × (O⊕n \ M⊕nO ))/∼, where ∼ is the equivalence
relation under the diagonal action by the multiplication of the elements
of O×. Note that (O⊕n \ M⊕nO ))/∼ is isomorphic to Pn−1(O). We
consider a map MO × (O⊕n \ M⊕nO ) to MO × (O⊕n \ M⊕nO ) which
sends (m,x0, . . . , xn−1) to (mx−1

i , x0x
−1
i , . . . , xn−1x

−1
i ), where i is the

minimal integer such that xi is a unit of O. This induces a map(
MO × (O⊕n \M⊕nO )

)
/∼ toMO×(O⊕n\M⊕nO )/∼. It is checked that the

map L(n)
O −→MO × Pn−1(O) defined above is bijective. This completes

the proof of 2).

Let us consider the fundamental exact sequence:

0→M/Mnull −→
⊕

p

⊕
1≤i≤k(p)

Λ(n)
O /pei −→ N → 0,

where N is a pseudo-null Λ(n)
O -quotient. Let (-) ∈ L(n)

O be a linear ideal such
that M/(-)M is a torsion Λ(n)

O /(-)-module. Note that the multiplication
by - is injective on

⊕
p

⊕
1≤i≤k(p) Λ(n)

O /pei and that the characteristic
ideal of the Λ(n)

O /(-)-module of
⊕

p

⊕
1≤i≤k(p) Λ(n)

O /((-), pei) is equal to the
image of char

Λ
(n)
O

(M) in Λ(n)
O /(-) in this case. By the snake lemma, we have

the following exact sequence:

0→ N [-] −→ (M/Mnull)/(-)(M/Mnull)

−→
⊕

p

⊕
1≤i≤k(p)

Λ(n)
O /((-), pei) −→ N/(-)N → 0.

By Lemma 3.1, we have:

char
Λ

(n)
O /(�)

(
(M/Mnull)/(-)(M/Mnull)

)
= char

Λ
(n)
O /(�)

( ⊕
p

⊕
1≤i≤k(p)

Λ(n)
O /((-), pei)

)
.

On the other hand, since multiplication map by - is injective on M/Mnull,
we have the following exact sequence:

0→Mnull/(-)Mnull −→M/(-)M −→ (M/Mnull)/(-)(M/Mnull)→ 0.

Hence (-) is contained in L(n)
O (M) if and only if (-) ∈ L(n)

O (Mnull). This
completes the proof of 3).
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Let us investigate the set L(n)
O (N ) for a pseudo-null Λ(n)

O -module N .
For this purpose, we introduce the specialization map of L(n)

O . Let FO be
the residue field of O. We denote by SpO the following specialization map

L(n)
O
∼=MO × Pn−1(O) −→ Pn−1(FO),(

a, (x0 : · · · :xn−1)
)
!−→ (x0 : · · · :xn−1),

where xi ∈ FO is the reduction moduloMO of xi ∈ O for each 0 ≤ i ≤ n−1.

LEMMA 3.5. — Let n ≥ 2. We have the following statements:

1) Let N be a finitely generated pseudo-null Λ(n)
O -module and

let {Pj}1≤j≤k the set of the associated primes of height two for N .

Then we have :

L(n)
O (N ) =

⋂
1≤j≤k

L(n)
O (Λ(n)

O /Pi).

2) Let P be a height 2 prime of Λ(n)
O . The set L(n)

O (Λ(n)
O /P ) contains

(-) ∈ L(n)
O if and only if (-) is not a sub-ideal of P . The complement

L(n)
O \L(n)

O (Λ(n)
O /P ) is infinite if and only if P contains at least two different

ideals (-1),(-2) ∈ L(n)
O . Further, if L(n)

O \L(n)
O (Λ(n)

O /P ) is infinite, there exist

two linear elements -,-′ ∈ Λ(n)
O such that P is equal to (-,-′).

3) Let P = (-,-′) be a height 2 prime of Λ(n)
O generated by two linear

elements. If P contains the ideal (πO), there exists an element x ∈ Pn−1(FO)
such that the complement L(n)

O \L(n)
O (Λ(n)

O /P ) is equal to the inverse image

(SpO)−1(x) of x. If P does not contain the ideal (πO), the complement

L(n)
O \ L(n)

O (Λ(n)
O /P ) is isomorphic to P1(O).

Proof. — First, we show the assertion 1). If all prime ideals
in the set Ass

Λ
(n)
O

(N ) of the associated primes of a pseudo-null Λ(n)
O -

module N have height greater than 2, the set L(n)
O (N ) is equal to L(n)

O .
Hence we have nothing to prove in this case. If N is the extension
0 → N ′ → N → N ′′ → 0 of two pseudo-null Λ(n)

O -modules N ′ and N ′′,
we have L(n)

O (N ) ⊃ L(n)
O (N ′)∩L(n)

O (N ′′) by definition. For a linear element
- ∈ ΛO, consider the exact sequence:

N ′′[-] −→ N ′/(-)N ′ −→ N/(-)N −→ N ′′/(-)N ′′ → 0.

By the surjectivity of the last map, we have L(n)
O (N ) ⊂ L(n)

O (N ′′). If -
is contained in L(n)

O (N ) \ (L(n)
O (N ′) ∩ L(n)

O (N ′′)) = L(n)
O (N ) \ L(n)

O (N ′),
N ′′/(-)N ′′ andN ′′[-] must be a pseudo-null Λ(n)

O /(-)-module by Lemma 3.1.
Thus we have L(n)

O (N ) = L(n)
O (N ′) ∩ L(n)

O (N ′′). If Ass
Λ

(n)
O

(N ) contains a
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prime p ⊂ Λ(n)
O such that ht(p) ≥ 3,N has a submodule which is isomorphic

to Λ(n)
O /p (see [Ma], Theorem 6.4). Since L(n)

O (Λ(n)
O /p) = L(n)

O , we may
replace N by a quotient of N by Λ(n)

O /p in order to investigate the set N .
Since N is finitely generated, we may suppose that Ass

Λ
(n)
O

(N ) consists
only of prime ideals {Pj}1≤j≤k of height 2 by repeating the above process.
ThusN is a successive extension of a Λ(n)

O -module of type Λ(n)
O /Pi (see [Ma],

Theorem 6.4). This completes the proof of 1).

Let P be a height 2 prime of Λ(n)
O . The first two statements in 2) are

rather clear. Let us assume that P contains an ideal (f, g) such that (f)
and (g) are different linear ideals. If (f, g) is a prime, we must have P = (f, g)
since both ideals are of height 2. Suppose that (f, g) is not a prime. By
replacing (f, g) with a suitable linear transform (fσ, gσ) if necessary, we may
assume that f = Xn+a with a ∈ O. Let g ∈ Λ(n)

O /(f) = O[[X1, . . . , Xn−1]]
be the image of g by the specialization modulo (f). Since the degree of
g ∈ O[[X1, . . . , Xn−1]] is at most 1, g must be divisible by πO if (f, g) is not
a prime of Λ(n)

O . Let us write as g = πeO · g′ where g′ is not divisible by πO.
A height 1 primes of O[[X1, . . . , Xn−1]] which contains a principal ideal (g)
are only (πO) or (g′) (if g′ is not a unit). Hence P is either the inverse
image of (πO) or (g′) via Λ(n)

O → Λ(n)
O /(f). In the former case, P is equal

to (f, πO) = (f, f + πO). In the latter case, let us regard g′ as an element
of Λ(n)

O via the natural injection O[[X1, . . . , Xn−1]] ↪→ Λ(n)
O and denote it

by g′. Then (f, g′) is the inverse image of (g′) via Λ(n)
O −→ Λ(n)

O /(f). This
completes the proof of 2).

Let P = (-, -′) be a height 2 prime such that -, -′ are linear elements.
First, we suppose that P contains the ideal (πO). By this assump-
tion, P = (-, πO) for a suitable linear element -. If another linear
element f is contained in P , we have f = u- + u′πO with u, u′ ∈ Λ(n)

O .
Hence f is congruent to - modulo πO. If x ∈ Pn−1(FO) is the point
corresponding to the reduction modulo πO of -, (f) corresponds to a
point in (SpO)−1(x) ⊂ MO × Pn−1(O). Suppose P does not contain the
ideal (πO). By replacing (-, -′) with a suitable linear transform (-σ, -′σ) if
necessary, we may assume that - = Xn+awith a ∈ O and that -′ = Xn−1+b
with b ∈ O. If -′′ is an element of P , -′′ = u- + u′-′ with u, u′ ∈ Λ(n)

O . By
similar argument of comparison of coefficients as the proof of Lemma 3.4, 1),
we prove that u, u′ are contained in O. Hence (-′′) corresponds to a point
of O-⊕O-′/∼ ∼= P1(O). This completes the proof of 3).

We have the following proposition which characterizes the characte-
ristic ideal of a given torsion Λ(n)

O -module for n ≥ 2:
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PROPOSITION 3.6. — Let n ≥ 2 be an integer and let M and N

be a finitely generated torsion Λ(n)
O -modules. Then the following three

statements are equivalent:

1) We have char
Λ

(n)
O

(M) ⊃ char
Λ

(n)
O

(N).

2) Let O′ be arbitrary complete discrete valuation ring which is finite

flat over O. Then, for all but finitely many (-) ∈ L(n)
O′ (MO′) ∩ L

(n)
O′ (NO′),

we have the inclusion

char
Λ

(n)
O′ /(�)

(MO′/(-)MO′) ⊃ char
Λ

(n)
O′ /(�)

(NO′/(-)NO′).

3) There exists a complete discrete valuation ring O′ which is finite

flat over O such that we have the inclusion

char
Λ

(n)
O′ /(�)

(MO′/(-)MO′) ⊃ char
Λ

(n)
O′ /(�)

(NO′/(-)NO′)

for all but finitely many (-) ∈ L(n)
O′ (MO′) ∩ L

(n)
O′ (NO′).

We recall the following well-known lemma (see [Bo], Chapter 7, §3.8,
Proposition 6, or [NSW], Theorem 5.3.4):

LEMMA 3.7. — Let R be a complete Noetherian local ring with its

maximal ideal MR. Assume that R/MR is a finite field. Then we have the

following statements:

1) f(X) =
∑
i≥0 aiX

i ∈ R[[X]] is a unit in R[[X]] if and only if the

constant term a0 is a unit of R.

2) Assume that there exist integers i such that ai are units of R. Take

r ≥ 0 to be the minimal one among such i’s. Then there exists a unique

decomposition

f(X)u(X) = Xr + br−1X
r−1 + · · ·+ b1X + b0 ,

where u(X) is a unit in R[[X]] and bi is contained in MR for each

1 ≤ i ≤ r − 1.

We will prove the following lemma:

LEMMA 3.8 (weak preparation). — For n ≥ 2, let

f(X1 , . . . ,Xn) =
∑
r≥0

arX
r ∈ O[[X1 , . . . ,Xn]]
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(ar ∈ O is the coefficient of Xr = Xr11 · · ·Xrnn ) be a power series which is

not a unit of O[[X1 , . . . ,Xn]]. Assume that f(X) is not divisible by πO.

Then there exist a finite extension O′ of O and a linear transform σ

of O′[[X1 , . . . ,Xn]] such that

σ(f)(X) = u(X)
(
Xrn + br−1X

r−1
n + · · ·+ b1Xn + b0

)
,

with a unit u(X) in O′[[X1 , . . . ,Xn]] and an integer r, where bi belongs to

the maximal ideal of O′[[X1 , . . . ,Xn−1]] for 0 ≤ i ≤ r − 1.

Before the proof of this lemma, we give the following lemma:

LEMMA 3.9. — Let n ≥ 1 be an integer and let Vr,Fp be a Fp-

vector space
⊕

deg(r)=r Fp ·Xr11 · · ·Xrnn spanned by n-variable monomials of

degree r over Fp. Let us denote by pn the projection map Vr,Fp → Fp ·Xrn.
Then, for any non-zero element v ∈ Vr,Fp , there exists an element

σ ∈ GLn(Fp) such that pn(σ(v)) is not zero.

Proof. — For an element w ∈ Vr,Fp , the following statements are
equivalent:

1) The projection pn(w) ∈ Fp ·Xrn is not zero.

2) The value w(0, . . . 0, 1) ∈ Fp of w at (X1, . . . , Xn−1, Xn) =
(0, . . . , 0, 1) is not zero.

Let (α1, · · · , αn) ∈ Fnp be a point such that x(α1, . . . , αn) ∈ Fp is
not zero. We take σ = (ti,j)1≤i,j≤n ∈ GLn(Fp) such that tn,jαn = αj
for each 1 ≤ j ≤ n. Let us denote by σ(v) ∈ Vr,Fp the action given

by g · Xj =
∑

1≤i≤n ti,jXi for g = (ai,j)1≤i,j≤n ∈ GLn(Fp). Then
σ(v)(0, · · · , 0, 1) = v(α1, . . . , αn) $= 0. This completes the proof.

Let us return to the proof of Lemma 3.8.

Proof of Lemma 3.8. — Since f(X) is not divisible by πO, there exists
an n-tuple r = (r1, . . . , rn) such that ar ∈ O×. Let Vr,F be a F-vector space⊕

deg(r)=r F ·Xr11 · · ·Xrnn spanned by n-variable monomials of degree r. Let
v =

∑
deg(r)=r arX

r1
1 · · ·Xrnn ∈ Vr,F an element obtained by the modulo πO-

reduction of degree r-part of f(X). By the assumption, v is not zero. Hence,
by using the Lemma 3.9, after taking a finite extension F′ of F if necessary,
there exists σ ∈ GLn(F′) such that the coefficient of σ(v) at Xrn is not zero.
Let σ = (ti,j)1≤i,j≤n ∈ GLn(W (F′)) be a lift of σ = (ti,j)1≤i,j≤n ∈ GLn(F′)
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where ti,j ∈ W (F′) is the Teichmuller representative of ti,j . Let O′ be
a finite extension of O which contains W (F′). As a power series of Xn,
σ(f)(X) ∈ O′[[X1, . . . , Xn−1]][[Xn]] is presented as

b′0 + b′1Xn + · · ·+ b′r−1X
r−1
n + b′rX

r
n + (higher order terms)

where b′i is contained in the maximal ideal of O′[[X1, . . . , Xn−1]] for each
0 ≤ i ≤ r−1 and b′r is a unit of O′. By applying Lemma 3.7 for this σ(f)(X)
and for R = O[[X1, · · · , Xn−1]], we complete the proof of Lemma 3.8.

Let us return to the proof of Proposition 3.6.

Proof of Proposition 3.6. — The implications 1)⇒ 2)⇒ 3) are clear.
Let us show the implication 3)⇒ 1). Let us fix fundamental isomorphisms
for M and N :

M
fM−→

⊕
i

Λ(n)
O

/
(πµiO )⊕

⊕
j

Λ(n)
O

/
(fj(X))λj ,

N
fN−→

⊕
i′

Λ(n)
O

/
(π
µ′
i′
O )⊕

⊕
j′

Λ(n)
O

/
(gj′(X))λ

′
j′ ,

where Ker(fM ) (resp. Ker(fN )) and Coker(fM ) (resp. Coker(fN )) are
pseudo-null Λ(n)

O -modules and fj ’s and gj′ ’s are monic polynomials.
Let f(X) =

∏
j fj(X)nj (resp. g(X) =

∏
j′ gj′(X)n

′
j′ ) and let µ =

∑
i µi

(resp. µ′ =
∑
i′ µ
′
i′). In order to show that char

Λ
(n)
O

(M) ⊃ char
Λ

(n)
O

(N), it
suffices to show that the image of the ideal (g(X)) (resp. πµ

′

O ) is zero in
the ring Λ(n)

O /(f(X)) (resp. Λ(n)
O /(πµ

′

O )). If f(X) is a unit in Λ(n)
O , there is

nothing to prove. We assume that f(X) is not a unit in Λ(n)
O from now on.

By Lemma 3.8, after a finite base change O′ of O and change of the
coordinate by a linear transform, we may assume that f(X) is of the form
f(X) = (Xrn + br−1X

r−1
n + · · · + b1Xn + b0)u(X) where bi belongs to the

maximal ideal of O′[[X1, . . . , Xn−1]] for each 0 ≤ i ≤ r − 1 and u(X) is a
unit of Λ(n)

O′ . The algebra Λ(n)
O′ /(f(X)) is finite flat over O′[[X1, . . . , Xn−1]]

(⊂ Λ(n)
O′ = O′[[X1, . . . , Xn]]). We have the following claim:

CLAIM 3.10. — There exist a complete discrete valuation ring O′′
which is finite flat over O′ and a set {(-i) ∈ L(n)

O′′}1≤i<∞ satisfying the

following properties:

(i) the ideals (-i) are all different;

(ii) for each i ≥ 1, -i is contained in O′′[[X1 , . . . ,Xn−1]];

(iii) for each i, (-i) is contained in L(n)
O′′(MO′′) ∩ L

(n)
O′′(NO′′).
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By this claim, if we replace O′ by a sufficiently large extension of O′ if
necessary, we may suppose that we have a set {(-i) ∈ L(n)

O′ }1≤i<∞ satisfying
the above three properties. By the third condition of the claim, the image
of g(X) in Λ(n)

O′ /(f(X), -i) is zero for each i. By the first two conditions,
for each j ≥ 1 we have an injection

O′[[X1, . . . , Xn−1]]/(-1 · · · -j) ↪−→
∏

1≤i≤j
O′[[X1, . . . , Xn−1]]/(-i).

Since the extension Λ(n)
O′ /(f(X)) is finite flat over O′[[X1, . . . , Xn−1]], for

each j ≥ 1 we have an injection

Λ(n)
O′ /(f(X), -1 · · · -j) ↪−→

∏
1≤i≤j

Λ(n)
O′ /(f(X), -i).

Thus the image of g(X) in Λ(n)
O′ /(f(X), -1 · · · -j) is zero for each j ≥ 1.

By the completeness of Λ(n)
O′ /(f(X)), we have

lim←−
j

Λ(n)
O′ /(f(X), -1 · · · -j) ∼= Λ(n)

O′ /(f(X))

and g(X) must be zero in Λ(n)
O′ /(f(X)). As for the inclusion (πµO′) ⊃ (πµO′)

in Λ(n)
O′ , it suffices to find only one linear element - ∈ L(n)

O′ (MO′)∩L
(n)
O′ (NO′).

Then the element πµO′ (resp.πµO′) is equal to the highest power of πO
dividing the characteristic power series of MO′/(-)MO′ (resp. NO′/(-)NO′).
This completes the proof assuming the above claim.

Finally, we give the proof of Claim 3.10. By Lemma 3.4, 3),
L(n)
O′ (MO′) ∩ L

(n)
O′ (NO′) is equal to L(n)

O′ ((Mnull ⊕Mnull)O′), where Mnull

(resp. Nnull) is the largest pseudo-null submodule of M (resp. N). The set
of linear ideals of Λ(n−1)

O′ = O′[[X1, . . . , Xn−1]] is L(n)
O′ = MO′ × Pn−2(O′).

By Lemma 3.5, L(n)
O′ \ L

(n)
O′ ((Mnull ⊕Mnull)O′) is of the following form:

( ⋃
1≤i≤j

xi

)
∪

( ⋃
1≤i′≤j′

Sp−1
O′ (yi′)

)
∪

( ⋃
1≤i′′≤j′′

P1(O′)
)
,

where xi is an element of Pn−1(O′) for each i, yi′ is an element of
Pn−1(FO′) for each i′. Note that the inverse image Sp−1

O′ (P
n−2(FO′)) is

contained in L(n)
O′ . Let n ≥ 3. By replacing O′ by a sufficiently large

unramified extension if necessary, we choose x ∈ Pn−2(FO′) which is
equal to none of yi′ . Then Sp−1

O′ (x) ∩ (
⋃

1≤i′≤j′ Sp−1
O′ (yi′)) is empty and
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Sp−1
O′ (x)∩(

⋃
1≤i′′≤j′′ P

1(O′)) is finite. Thus, if we choose arbitrary sequence
of different linear ideals (-i) ∈ Sp−1

O′ (x)\(
⋃

1≤i≤j xi∪
⋃

1≤i′′≤j′′ P
1(O′)), this

satisfies the three conditions of the claim. Let n = 2. If one of yi′ ∈ P1(FO′)
coincides with the point y0 corresponding to SpO′(L

(1)
O′ ), we can not

choose x as in the case of n ≥ 3. Hence, if y0 coincides with one of yi′′ ,
we need to replace O′ by a sufficiently large unramified extension and
replace a transform σ in Lemma 3.9 so that SpO′(L

(1)
O′ ) is different

from all yi′ . If we choose arbitrary sequence of different linear ideals
(-i) ∈ Sp−1

O′ (y0) \ (
⋃

1≤i≤j xi ∪
⋃

1≤i′′≤j′′ P
1(O′)), this satisfies the three

conditions of the claim.

Next, we discuss how to recover the characteristic ideal of a torsion
Λ(n)
O -module in the case of n = 1. For short, we denote Λ(1)

O (resp. L(1)
O )

by ΛO (resp. LO), when n = 1.

Recall that a monic polynomial

E(X) = Xe + ae−1X
e−1 + · · ·+ a1X + a0 ∈ O[X]

is called an Eisenstein polynomial if the i-th coefficient ai is contained in the
maximal ideal MO of O for each 0 ≤ i ≤ e− 1 and πO divides a0 exactly.
It is known that OE = O[X]/(E(X)) is a complete discrete valuation ring
whose fraction field Frac(OE) is a totally ramified extension of Frac(O) and
that the image of X in OE is a uniformizer of OE . Note that an Eisenstein
polynomial E(X) ∈ O[X] is not a unit in a power series algebra O[[X]]
and O[X]/(E(X)) is isomorphic to O[[X]]/(E(X)).

A set of ideals EO = {Im ⊂ ΛO | m ∈ Z≥1} is called Eisenstein type
if Im = (Em(X)) where Em(X) is an Eisenstein polynomial of degree m

in O[X] for each m ≥ 1. The result is as follows:

PROPOSITION 3.11. — Let M and N be finitely generated torsion

O[[X]]-modules. We have the following:

1) The following conditions are equivalent:

(a) There exists an integer h ≥ 0 such that charΛO (M) ⊃
(πhO)charΛO (N).

(b) Let O′ be arbitrary complete discrete valuation ring which is

finite flat over O. Then there exists a constant c depending only

onMO′ andNO′ such that =(MO′/IMO′) divides c·=(NO′/INO′)
for all but finitely many I ∈ LO′ .
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2) As for the difference by the constant ideal (πhO), we have the

following equivalence:

(a) Let M(πO) (resp. N(πO)) be the localization of M (resp. N) at

the prime ideal (πO). Then we have

length(ΛO)(πO)

(
M(πO)

)
≤ length(ΛO)(πO)

(
N(πO)

)
.

(b) There exist a set of ideals EO = {Im | m ∈ Z≥1} of Eisenstein

type and a constant c depending only on M and N such that

=(M/ImM) divides c · =(N/ImN) for all but finitely many Im.

Proof. — Let us fix fundamental sequences for given torsion ΛO-
modules:

M
fM−−→

⊕
i

ΛO
/
(πµiO )⊕

⊕
j

ΛO
/
(fj(X))λj

N
fN−−→

⊕
i′

ΛO
/
(π
µ′
i′
O )⊕

⊕
j′

ΛO
/
(gj′(X))λ

′
j′ ,

where Ker(fM ) (resp. Ker(fN )) and Coker(fM ) (resp. Coker(fN )) are finite
groups and fj(X) (resp. gj′(X)) is a monic polynomial for each j (resp. j′).
Let O′ be arbitrary complete discrete valuation ring which is finite flat
over O. Let us denote

∏
fj(X) ∈ O[[X]] (resp.

∏
gj(X) ∈ O[[X]]) by f(X)

(resp. g(X)). Put µ =
∑
i µi (resp. µ′ =

∑
i′ µ
′
i′). By a simple diagram

chasing argument using the snake lemma, we see that

=(MO′/IMO′) = =ΛO′/((π
µ
O), I) · =ΛO′/((f(X)), I)

· =
(
Ker(fM )⊗O O′/IKer(fM )⊗O O′

)
,

=(NO′/INO′) = =ΛO′/((π
µ′

O ), I) · =ΛO′/((g(X)), I)

· =
(
Ker(fN )⊗O O′/IKer(fN )⊗O O′

)
for any I ∈ LO′ ∪ EO′ such that MO′/IMO′ and NO′/INO′ are finite.
Hence we may replace MO′ (resp. NO′) by a fundamental type module
ΛO′/(π

µ
O)⊕ ΛO′/(f(X)) (resp. ΛO′/(π

µ′

O )⊕ ΛO′/(g(X))) in order to show
the equivalence between (a) and (b). For the fundamental type modules
above, the implication (a) ⇒ (b) is easy to see in both cases (a) and (b).
In the rest of the proof, we show the implication (b) ⇒ (a) for such
fundamental type modules.

Let us consider the first statement 1). Take fundamental modules
M = ΛO/(π

µ
O) ⊕ ΛO/(f(X)) and N = ΛO/(π

µ′

O ) ⊕ ΛO/(g(X)). Suppose
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that f(X) does not divide g(X). We will deduce a contradiction to the
statement (b) from this assumption. Let O′ ⊂ Zp be a complete discrete
valuation ring which is finite flat over O which contains all roots of f(X)
and g(X). Thus we have a decomposition f(X) =

∏
(X − αi)si (resp.

g(X) =
∏

(X − βj)tj ) with αi ∈ O′ (resp. βj ∈ O′ ) such that αi $= αi′

(resp. βj $= βj′) if i $= i′ (resp. j $= j′).

If f(X) does not divide g(X), there exists i0 such that (X − αi0)
si0

does not divide g(X). For each m ≥ 1, we define (-m) ∈ LO′ to be (-m) =
(X − αi0 − pm). The order of ΛO′/(π

µ
O, -m) is bounded independent of m.

Thus the order ofMO′/(-m)MO′ = ΛO′/(π
µ
O, -m)⊕ΛO′/(f(X), -m)) is equal

to =(O′/pm)ai0 modulo a finite error bounded independent of m. On the
other hand, the order of NO′/(-m)NO′ = ΛO′/(π

µ′

O , -m) ⊕ ΛO′/(g(X), -m)
is equal to =(O′/pm)ti0 modulo a finite error bounded independent of m,
where the number ti0 ≥ 0 is the maximal integer such that (X − αi0)

ti0

divides g(X). Since we assume ti0 < si0 , =(NO′/(-m)NO′)/=(MO′/(-m)MO′)
converges to zero when m tends to∞. This contradicts to the statement (b)
of 1).

Next, we prove the statement 2). We assume that πµO does not
divides πµ

′

O , namely µ > µ′. In this case, we consider a sequence Im ∈ EO
such that the extension degree em of ΛO/Im over O tends to ∞.
The order of ΛO/(π

µ
O, Im) (resp. ΛO/(π

µ′

O , Im)) is equal to =(O/πO)emµ

(resp. =(O/πO)emµ
′
). On the other hand, the order of ΛO/(f(X), Im)

(resp. ΛO/(g(X), Im)) is bounded by a finite constant independent of m.
Hence =(N/ImN)/=(M/ImM) converges to zero when m tends to ∞. This
again contradicts to the statement (b) of 2). This completes the proof.

4. Proof of the main theorem.

In this section, we give a proof of Theorem 2.4 for an Euler system
over an n-variable Iwasawa algebra Λ(n)

O . We reduce Theorem 2.4 to the
Euler system theory over discrete valuation rings (Theorem 4.7) by using a
method of specializations of Iwasawa modules established in §3 (cf. Propo-
sition 3.6 and Proposition 3.11).

First, we prepare the following lemmas:

LEMMA 4.1. — Let n ≥ 1 and let M be a finitely generated Λ(n)
O -

module. We denote by Mtor (resp. Mnull) the largest torsion (resp. pseudo-

null) Λ(n)
O -submodule of M . Then, for each height 1 prime I of Λ(n)

O such
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that I is prime to the characteristic ideal of Mtor, we have an isomorphism

M [I] ∼= Mnull[I].

See [Oc1] for the proof of the above lemma in the case n = 1. We
prove the above lemma by using a fundamental isomorphism of torsion
Λ(n)
O -module (cf. [Bo], Chapter 7). Since the proof for general n is done

exactly in the same way as the case n = 1, we omit the proof here.

Let N be a finite discrete module with continuous GQ-action
unramified outside a finite set of primes S of Q. We define the Tate-
Shafarevich group Xi

S(N) to be the kernel of the restriction map
Hi(QS/Q, N) →

⊕
v∈S H

i(Qv, N). For an inductive system {Mj} (resp.
projective system {Nj}) of finite discrete GQ-modules, we define

Xi
S( lim−→

j

Mj)

(resp. Xi
S( lim←− j

Nj)) to be the inductive limit lim−→ j
(Xi

S(Mj)) (resp.
projective limit lim←− j

(Xi
S(Nj))).

Since lim−→ j
Hi(QS/Q,Mj) (resp. lim−→ j

Hi(Qv,Mj)) is isomorphic
to Hi(QS/Q, lim−→ j

Mj) (resp. Hi(Qv, lim−→ j
Mj)) (cf. [Se], Proposition 8),

Xi
S( lim−→ j

Mj) is equal to the kernel of

Hi(QS/Q, lim−→
j

Mj) −→
⊕
v∈S

Hi(Qv, lim−→
j

Mj).

Xi
S( lim←− j

Nj) is equal to the kernel of

Hi(QS/Q, lim←−
j

Nj) −→
⊕
v∈S

Hi(Qv, lim←−
j

Nj)

since lim←− j
Hi(QS/Q, Nj) (resp. lim←− j

Hi(Qv, Nj)) is isomorphic to
Hi(QS/Q, lim←− j

Nj) (resp. Hi(Qv, lim←− j
Nj)) by [Ta], Corollary (2.2).

The following proposition is a part of the global duality theorem
(cf. [NSW], Chapter VIII):

LEMMA 4.2. — For a finite discreteGQ-moduleM unramified outside a

finite set of primes S, the Tate-Shafarevich groups X1
S(N) and X2

S(N∨(1))
are finite and we have a canonical perfect pairing:

X1
S(N)×X2

S

(
N∨(1)

)
−→ Q/Z.

The following two lemmas will be a key to the reduction step of the
proof of Theorem 2.4:
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LEMMA 4.3. — Let the assumptions and the notations be as in

Theorem 2.4. We have the following statements:

1) Let I be a height 1 prime of Λ(n)
O . We denote by T I be the quotient

module T /IT . Then the natural map X2
S(T )/IX2

S(T )
pI−→ X2

S(T I)
is surjective. Especially, if (Λ(n)

O )-module X2
S(T ) admits a set of generators

consisting k elements, (Λ(n)
O /I)-module X2

S(T I) admits a set of gener-

ators consisting of k elements.

2) For all but finitely many height 1 prime ideals I of Λ(n)
O , Ker(pI)

is a torsion Λ(n)
O /I-module. Further, Ker(pI) is a subquotient of P[I] for all

but finitely many height 1 primes I. Here P is the largest pseudo-null Λ(n)
O -

submodule of
⊕
v∈S(T ∗)GQv , where T ∗ = Hom

Λ
(n)
O

(T ,Λ(n)
O ). Especially,

the order of the kernel of X2
S(T )/IX2

S(T )→X2
S(T I) is bounded by the

order of a finite group P for all but finitely many height 1 primes I of ΛO
when n = 1.

Proof. — By the global duality theorem (Proposition 4.2), X2
S(T )

is the Pontryagin dual of X1
S(A), where A is the discrete Galois repre-

sentation T ⊗
Λ

(n)
O

HomZp(Λ
(n)
O ,Qp/Zp). By taking the Pontryagin dual

of the map X2
S(T )/IX2

S(T ) → X2
S(T I), it suffices to prove that the

restriction map X1
S(A[I]) → X1

S(A)[I] is injective to prove (1). By the
irreducibility of the residual representation, we have

H0(QS/Q,A[M]) = H0(QS/Q,A)[M] = 0,

where M is the maximal ideal of Λ(n)
O . Hence H0(QS/Q,A) = 0 by

Nakayama’s lemma. Thus, we have the following commutative diagram:

0→ X1
S(A[I]) −−−→ H1(QS/Q,A[I]) −−−→

⊕
v∈S

H1(Qv,A[I])� �w1

�w2

0→ X1
S(A)[I] −−−→ H1(QS/Q,A)[I] −−−→

⊕
v∈S

H1(Qv,A)[I].

By the snake lemma, the kernel of the restriction map X1
S(A[I]) →

X1
S(A)[I] must be zero since the kernel of w1 is

H0(QS/Q,A)/IH0(QS/Q,A) = 0.

This proves the first statement 1).
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For the statement 2), we remark that the Pontryagin dual of
ker(w2) is

⊕
v∈S(T ∗)GQv [I]. By using again the snake lemma in the

above commutative diagram, we see that the cokernel of X1
S(A[I]) →

X1
S(A)[I] is a subquotient of the Pontryagin dual of

⊕
v∈S(T ∗)GQv [I].

Hence the kernel of X2
S(T )/IX2

S(T ) → X2
S(T I) is a subquotient of⊕

v∈S(T ∗)GQv [I]. We see that
⊕
v∈S(T ∗)GQv [I] is a torsion Λ(n)

O /I-module
if and only if I is relatively prime to the characteristic of a torsion Λ(n)

O -
module

⊕
v∈S(T ∗)GQv . Further,

⊕
v∈S(T ∗)GQv [I] is isomorphic to P[I]

by Lemma 4.1. This completes the proof of 2).

By Lemma 4.3, 1), the number k in the statement of Theorem 2.4 is
well-behaved under the specialization argument.

By similar arguments using the snake lemma, we prove the following:

LEMMA 4.4. — Let the assumptions and the notations be as in

Theorem 2.4. We have the following statements:

1) For any height 1 prime I of Λ(n)
O , the natural map:

(
H1(QS/Q,T )/Z(1)Λ(n)

O
)
/I(H1(QS/Q,T )/Z(1)Λ(n)

O )
qI−−→ H1(QS/Q,T I)/Z(1)I

is injective, where we denote byZ(1)I the image ofZ(1) byH1(QS/Q,T )→
H1(QS/Q,T I).

2) For all but finitely many height 1 prime ideals I of Λ(n)
O , Coker(qI)

is a torsion Λ(n)
O /I-module. Further, Coker(qI) is isomorphic to Q[I] for

all but finitely many height 1 primes I, where Q is the largest pseudo-null

Λ(n)
O -module of H2(QS/Q,T ). Especially, the order of Coker(qI) is bounded

by the order of a finite group Q for all but finitely many height 1 primes I

of ΛO when n = 1.

Recall the following lemma, which is an immediate consequence of the
definition of the characteristic ideal:

LEMMA 4.5. — Let M be a torsion Λ(n)
O -module and let O′ be a

complete discrete valuation ring which is finite flat over O. Then, we have

char
Λ

(n)
O′

(MO′) = char
Λ

(n)
O

(M)Λ(n)
O′ , where MO′ is the extension M ⊗O O′.

By this lemma, we may take an extension of the coefficient ring O
freely to prove Theorem 2.4.
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Let us return to the proof of Theorem 2.4. Our strategy for the proof
is an induction argument with respect to n by using the results in §3. The
case of n = 0 is already studied by several people. Let T be a free O-module
of rank 2 with continuous GQ-action and denote by T the Kummer dual
HomO(T,O) ⊗Zp Zp(1) of T . We assume that T is unramified outside a
finite set of primes S containing p and ∞. In this situation, we define an
Euler system as follows:

DEFINITION 4.6. — LetR be the set of all square-free natural numbers
which are prime to S. An Euler system for T is a collection of cohomology
classes {z(r) ∈ H1(Q(µr),T )}r∈R with the following properties:

1) The element z(r) is unramified outside p for each r ∈ R.

2) The norm NormQ(µrq)/Q(µr)z(rq) is equal to Pq(Frobq)z(r), where
Pq(X) ∈ O[X] is a polynomial det(1−FrobqX ;V ) and Frobq is (the conju-
gacy class of) a geometric Frobenius element at q in the Galois group
Gal(Q(µr)/Q).

Let us recall the following result on the Euler system theory over
discrete valuation rings (n = 0 case):

THEOREM 4.7. — Let the notations be as above and let {z(r) ∈
H1(Q(µr),T )}r∈R be an Euler system for T . Assume the following

conditions:

(i) The element z(1) is not contained in theO-torsion part ofH1(GS ,T ).

(ii) For each finite place v ∈ S, H2(Qv ,T ) is finite.

(iii) The images of the determinant representations GQ → Aut(
2
∧ T ) ∼=

O× and GQ → Aut(
2
∧ T ) ∼= O× both contain elements of infinite order.

(iv) The residual representation T/πT ∼= F⊕2 is an irreducible represen-

tation of GQ.

(v) The ±-eigen spaces T± of a complex conjugate element are both

rank one modules over O.

Assume further that there exist τ ∈ GQ(µp∞ ) and τ ′ ∈ GQ such that

the image of τ under the representation GQ → Aut(T ) ∼= GL2(O) has a

presentation
(

1 pτ
0 1

)
by pτ $= 0 under certain choice of basis of T and that τ ′

acts on T via the multiplication by −1. Then the following statements

hold:
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1) The group X2
S(T ) is finite.

2) =
(
X2
S(T )

)
divides =(O/(pkτ )) · =

(
H1(QS/Q,T

)
/Oz), where k is

the number of cyclic O-factors of X2
S(T ).

We omit the proof of the above result since the case over discrete
valuation rings with finite residue field was already discussed by several
authors. We refer the reader to [Ru2], Theorem 2.2.10. Though the
statement of [Ru2], Theorem 2.2.10 treats only the case where pτ is a
unit, careful reading of the argument of the proof in [Ru2], Chapter 5, gives
us the above slightly generalized version.

LetM = X2
S(T )⊕P andN = Λ(n)

O /(P kτ )⊕H1(QS/Q, T )/Z(1)⊕Q.
For the proof of Theorem 2.4, we need to show the following two statements:

1) The module M is a torsion Λ(n)
O -module.

2) The ideal char
Λ

(n)
O

(N) is contained in char
Λ

(n)
O

(M).

First, we prove the case where n = 1. We assume the conditions
from (i) to (v) and the condition (Im) which appeared in the statement
of Theorem 2.4. Let us take a complete discrete valuation ring O′ which
is finite flat over O. For height 1 prime ideals I ∈ LO′ , let us consider
the following conditions:

(I) The groupsNO′/INO′ andH2(QS/Q, T ⊗OO′)[I] are torsion ΛO′/I-
modules.

(II) The module
⊕
v∈S H

2(Qv, (T ⊗O O′)I) is a torsion ΛO′/I-module.

(III) The images of the determinant representations

GQ −→ Aut(
2
∧ (T ⊗O O′)I) ∼= (ΛO′/I)× and

GQ −→ Aut(
2
∧ (T ⊗O O′)I) ∼= (ΛO′/I)×

contain elements of infinite order.

Clearly (I) holds for all but finitely many I ∈ LO′ . Since we have an
exact sequence:

⊕
v∈S

H2(Qv, T ⊗O O′) ×I−→
⊕
v∈S

H2(Qv, T ⊗O O′)

−→
⊕
v∈S

H2(Qv, (T ⊗O O′)I)→ 0,

the condition (II) also holds for all but finitely many I ∈ LO′ . By the
condition (iii) of Theorem 2.4 in the case n = 1, there exists an element
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g ∈ GQ such that the image Ug ∈ (ΛO′)× of g via

GQ −→ Aut
( 2
∧ (T ⊗O O′)

) ∼= (ΛO′)×

is of infinite order. The image Ug,I ∈ (ΛO′/I)× of g via

GQ −→ Aut
( 2
∧ (T ⊗O O′)I

) ∼= (ΛO′/I)×

is the specialization of Ug modulo I. Note that we have

{
the group of roots of unity in ΛO′/I

}
=

{
the group of roots of unity in O′

}

for any I ∈ L(n)
O′ . Take a sufficiently big natural number r such that ζr = 1

for any root of unity ζ in O′. Hence Ug,I ∈ (ΛO′)× is of finite order if
and only if I divides Urg − 1. Since there are only finitely many I which

divide (Urg − 1), GQ → Aut(
2
∧ (T ⊗O O′)I) contains an element of infinite

order for all but finitely many I ∈ LO′ . By the exactly same argument, we
see that GQ → Aut(

2
∧ (T ⊗O O′)I) contains an element of infinite order for

almost all I ∈ LO′ . Hence (III) holds for all but finitely many I ∈ LO′ .
The conditions (iv) and (v) in Theorem 4.7 are trivially satisfied

for all TI by the conditions (iv) and (v) for n = 1 case of Theorem 2.4.
By Lemma 4.3, 3) and by Lemma 4.4, 3), the conditions from (I) to (III)
imply all assumptions in Theorem 4.7 for all but finitely many I ∈ LO′ . By
Theorem 4.7, the following statements hold for all but finitely many I ∈ LO′
for arbitrary complete discrete valuation ring O′ which is finite flat over O:

1) The module MO′/IMO′ is a torsion Λ(n)
O′ /I-module.

2) =(MO′/IMO′) divides c · =(NO′/INO′), where c is the order of the
finite group P ⊗O O′.

Since c is a constant which is independent of I ∈ LO′ , we deduce
that M is a torsion ΛO-module and that there exists an integer h

such that we have the inclusion charΛO (M) ⊃ (πhO)charΛO (M) by using
Proposition 3.11, 1).

To finish the proof of Theorem 2.4 for n = 1 case, we have to
show that the above constant h is zero. We take a sequence of ideals
EO = {Im | m ∈ Z≥1} of Eisenstein type in the sense of Proposition 3.11, 2).
As in the above argument, we consider the following conditions:
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(I) The groups N/ImN and H2(QS/Q, T )[Im] are torsion ΛO/Im-
modules.

(II) The module
⊕
v∈S H

2(Qv, T Im) is a torsion ΛO/Im-module.

(III) The images of the determinant representations GQ → Aut(
2
∧ TIm) ∼=

(ΛO/Im)× andGQ → Aut(
2
∧ T Im) ∼= (ΛO/Im)× contain elements of infinite

order.

The properties (I) and (II) hold for all but finitely many Im by exactly
the same argument as above. The difference from the above argument is
that (III) might fail to be true for infinitely many m if we take arbitrary
set of ideals EO of Eisenstein type. So we have to choose a set of ideals EO
of Eisenstein type so that

{
the group of roots of unity in ΛO/Im

}
=

{
the group of roots of unity in O

}

holds for all m. We may choose EO = {Im = (Xm−πO)}m∈Z≥1 for example
for EO with the above conditions. Then, we show that (III) holds for all
but finitely many Im by the same argument as in the case of LO′ . By
Lemma 4.3, 3) and by Lemma 4.4, 3), the conditions from (I) to (III) imply
all assumptions in Theorem 4.7 for all but finitely many Im. By Theorem 4.7,
the following statements hold for all but finitely many Im:

1) The module M/ImM is a torsion Λ(n)
O /Im-module.

2) =(M/ImM) divides c′ · =(N/ImN), where c′ is the order of the finite
group P.

Since c′ is a constant which is independent of Im, we deduce that h
is zero by Proposition 3.11, 2). This completes the proof of Theorem 2.4
when n = 1.

For general n, we reduce the proof of Theorem 2.4 for n ≥ 2 to the
case n−1 by induction. The induction argument for n ≥ 2 proceeds basically
in the same way as the proof of the case n = 1 by using Proposition 3.6
instead of Proposition 3.11. So we omit writing the process of arguments
for n ≥ 2.
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