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CALOGERO-MOSER SPACES AND

AN ADELIC W-ALGEBRA

by Emil HOROZOV

0. Introduction.

In this paper we give an alternative description of the phase spaces
of Calogero-Moser particle systems. In recent years they turned to be
connected to several objects: rational solutions of KP-hierarchy [1, 26];
Wilson’s adelic Grassmannian [38, 39]; isomorphism classes of right ideals
of the Weyl algebra [11, 9], etc. to mention few of them.

The motion of Calogero-Moser particle [12, 31] systems is governed
by the Hamiltonians

Hn =
1
2

n∑
i

p2i −
∑
i<j

1
(xi − xj)2

.

In the original papers on the subject the variables are real and collisions
(xi = xj) are avoided; however here we work with complex variables and
do allow collisions, which will be explained below (see [38, 25] for more
details).

In [25] Kazhdan, Kostant and Sternberg used Hamiltonian reduction
(in the opposite direction) to easily determine explicitly the Calogero-Moser
flows. We briefly recall their construction. Consider the sets Cn0, = 1, 2 . . .
of all pairs of complex matrices X,Z subject to the condition:

[X,Z] + I

Keywords: Fock spaces, bispectral operators, Sato’s theory for KP hierarchy.
Math. classification: 37K30, 37K35.



2070 Emil HOROZOV

has rank one. Here I is the identity matrix. LetCn be the quotient space
Cn = Cn/GL(n,C), where the group GL(n,C) acts by simultaneous conju-
gation. Denote by C ′N the subspace of pairs,such that X is diagonalizable.
In that case the pair can be conjugated to a pair of the form

X = diag(x1, . . . , xn), Zii = αi, Zij , for i �= j.

A matrix Z of that form is called Calogero-Moser matrix. The main result
of [25] is that the Calogero-Moser flows are quotients of the simple flows
(X,Z) → (X − tZ, Z). The last flows obviously make sense for any pair
of matrices. For this reason the Calogero-Moser flows can be continued on
the singular locus and the spaces Cn are completions of C ′N .

Our main objective in this paper will be to describe the spaces Cn
in terms of representations of a suitable Lie algebra. This will be done by
passing through an intermediate object - the so called bispectral operators.

Bispectral operators have been introduced by F. A. Grünbaum in
his work on medical imaging [18] ( see also [15]). An ordinary differential
operator L(x, ∂x) is called bispectral if there exists an infinite-dimensional
family of eigenfunctions ψ(x, z), which are also eigenfunctions of another
differential operator Λ(z, ∂z) in the spectral parameter z, i.e. for which the
following identities hold

L(x, ∂x)ψ(x, z) = f(z)ψ(x, z),

Λ(z, ∂z)ψ(x, z) = θ(x)ψ(x, z),

with some non constant functions f(z) and θ(x). G. Wilson [38] has
classified all bispectral operators of rank one (see the next section for
more details). Using slightly different terminology than in [38], they are
all operators with rational coefficients that are Darboux transformations
of operators with constant coefficients. Sato’s theory associates with each
operator (or rather with the maximal algebra of operators that commute
with it) a plane in Sato’s Grassmannian. The set of all planes corresponding
to the rank one bispectral algebras of operators has been called by G.Wilson
an adelic Grassmannian and denoted by Grad. Originally G. Wilson has
characterized the rank one bispectral algebras A as those whose spectral
curve SpecA is rational and its singularities are only cusps. Then in [39] he
found an isomorphism between the disjoin union

⋃
n�0 Cn and Grad.

In a different development [8] we have characterized those of bispectral
algebras whose spectral curve has only one cusp in terms of representations
of W1+∞-algebra. More precisely we have built certain bosonic highest
weight modules of W1+∞. Denote the module corresponding to the rank
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CALOGERO-MOSER SPACES AND AN ADELIC W-ALGEBRA 2071

one case by M0. Then the tau-functions of the bispectral operators (with
the above restriction) lie in M0 and vice versa - all the tau functions in
the module are tau-functions of bispectral operators.

A natural question (see [8]) is if a similar result holds for the entire
set of rank one bispectral operators. The present paper gives an affirmative
answer to this question. Obviously one has first to point out a suitable
generalization of the W1+∞-algebra. The most natural candidate does the
job - the algebra we look for is a central extension of the algebra of
differential operators with rational coefficients. We call this new algebra
an adelic W-algebra. Then we proceed as in [5, 8]. We construct a bosonic
representation Mad which is similar to a highest weight representation.
Then our main result is the following

Theorem 0.1. — If an element τ ∈ Mad is a tau-function then

the corresponding plane belongs to Grad. Conversely, if W ∈ Grad then

τW ∈Mad.

Returning to the realization of Grad as Calogero-Moser spaces we
obtain immediately

Theorem 0.2. — The points of the Calogero-Moser spaces are in

1:1 correspondence with the tau-functions inMad.

For other interpretations see [9, 10].

It would be interesting to find analogs of the present results for other
bispectral operators - both continuous and discrete . For example there
are particle systems connected to the bispectral operators from [34, 23].
Even more intriguing would be to consider particle systems comming from
discrete bispectral operators [19, 20, 21]. In this respect it seems to me that
the results of P. Iliev [24] will be very helpful.

Many of the constructions in the present paper are similar to those
of [8]. We skip some of the auxiliary results but repeat (with less details)
the main steps as there are some differences. The organization of the paper
is the following. Section 1. contains preliminaries on Sato’s Grassmannian,
Darboux transformations, bispectral operators, W1+∞-algebra. In Section
2. we introduce the adelic W-algebra together with a bosonic representation
Mad. In Section 3. we show that the tau-functions in the module Mad

correspond to planes in Grad. In Section 4. we give the inverse result.

Acknowledgments. — I wish to thank P. van Moerbeke and L. Haine
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for a number of remark and questions that helped me improve the paper.
This work was partially supported by Grant MM-1403/04 of NFSR of
Bulgarian Ministry of Education.

1. Preliminaries.

Here we have collected some facts and notation needed throughout
the paper. In particular we recall Sato’s theory, Darboux transforms and
the bispectral problem, W1+∞-algebra.

1.1. Sato’s theory of KP-hierarchy.

In this subsection we recall some facts and notation from Sato’s theory
of KP-hierarchy [36, 13, 35] needed in the paper. We use the approach of
V. Kac and D. Peterson based on infinite wedge products (see e.g. [27])
and the survey paper by P. van Moerbeke [36].

Consider the infinite-dimensional vector space of formal series

V =
{∑
k∈Z

akvk | ak = 0 for k � 0
}
.

Sato’s Grassmannian Gr (more precisely - its big cell) [36, 13] consists of
all subspaces (“planes”) W ⊂ V which have an admissible basis

wk = vk +
∑
i<k

wikvi, k = 0, 1, 2, . . .

Then define the fermionic Fock space F (0) consisting of formal infinite
sums of semi-infinite wedge monomials

vi0 ∧ vi1 ∧ · · ·
such that i0 < i1 < · · · and ik = k for k � 0. The wedge monomial

ψ0 = v0 ∧ v1 ∧ · · ·
plays a special role and is called the vacuum. The plane that corresponds
to it will be denoted by W0. There exists a well known linear isomorphism,
called a boson-fermion correspondence:

(1) σ:F (0) → B,

(see [29]), where B = C [[t1, t2, . . .]] is the bosonic Fock space.

ANNALES DE L’INSTITUT FOURIER
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To any plane W ∈ Gr one naturally associates a state |W 〉 ∈ F (0) as
follows

|W 〉 = w0 ∧ w1 ∧ w2 ∧ . . . ,

where w0, w1, . . . , form an admissible basis. One of the main objects of
Sato’s theory is the tau-function of W defined as the image of |W 〉 under
the boson-fermion correspondence (1)

τW (t) = σ(|W 〉) = σ(w0 ∧ w−1 ∧ w−2 ∧ · · ·).

It is a formal power series in the variables t1, t2, . . ., i.e. an element of
B := C [[t1, t2, . . .]]. In particular the tau-function corresponding to the
vacuum ψ0 is τ0 ≡ 1. Using the tau-function one can define the other
important function connected to W - the Baker or wave function

(2) ΨW (t, z) = e
∑∞

k=1
tkz

k τW
(
t− [z−1]

)
τW (t)

,

where [z−1] is the vector
(
z−1, z−2/2, . . .

)
. Introducing the vertex operator

X(t, z) = exp

( ∞∑
k=1

tkz
k

)
exp

(
−
∞∑
k=1

1
kzk

∂

∂tk

)
the above formula (2) can be written as

ΨW (t, z) =
X(t, z)τ(t)

τ(t)
.

We often use the formal series ΨW (x, z) = ΨW (t, z)
∣∣
t1=x,t2=t3=···=0

, which
we call again wave function. The wave function, corresponding to the
vacuum is

Ψ0(x, z) = exz.

The wave function ΨW (x, z) contains the whole information about W and
hence about τW , as the vectors w−k = ∂kxΨW (x, z)

∣∣
x=0

form an admissible
basis of W (if we take vk = zk as a basis of V).

1.2. Darboux transforms and bispectral operators.

We shall recall a version of Darboux transform from [6]

Definition 1.1. — We say that a plane W (or the corresponding

wave function ΨW (x, z), the tau-function τW ) is a Darboux transformation

of the vacuum (respectively - of the wave function Ψ0(x, z), the tau-function

TOME 55 (2005), FASCICULE 6



2074 Emil HOROZOV

τ0 ) iff there exist polynomials f(z), g(z) and differential operators P (x, ∂x),
Q(x, ∂x) such that

ΨW (x, z) =
1
g(z)

P (x, ∂x)Ψ0(x, z),

Ψ0(x, z) =
1
f(z)

Q(x, ∂x)ΨW (x, z).

The Darboux transformation is called polynomial iff the operators P (x, ∂x)
and Q(x, ∂x) have rational coefficients.

Obviously

Q(x, ∂x)P (x, ∂x)Ψ0 = g(z)f(z)Ψ0,

denoting the polynomial g(z)f(z) by h(z) and recalling that Ψ0 = exz we
see that

Q(x, ∂x)P (x, ∂x) = h(∂x).

On the other hand the wave function ΨW is an eigen-function of the
differential operator

L(x, ∂x) = P (x, ∂x)Q(x, ∂x).

Notice that the operator L is a traditional Darboux transform of the
operator h(∂x), which justifies the terminology of the definition. We will
also say that the operator L is a polynomial Darboux transform of the
operator ∂x.

We shall need a second definition of the polynomial Darboux trans-
formation. In the above notation let the polynomial h(∂x) factorize as:

h(∂x) =
m∏
j=1

(∂x − λj)dj ,

where λj are the different roots with multiplicities dj . Then the kernel of
h(∂x) is given by

kerh(∂x) =
m⊕
j=1

Wj ,

where
Wj =

{
eλjx, xeλjx, . . . , xdj−1eλjx

}
.

Definition 1.2. — The Darboux transform is polynomial iff the

kernel of P has the form

kerP =
m⊕
j=1

Kj ,

ANNALES DE L’INSTITUT FOURIER
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where Kj is a linear subspace of Wj .

The equivalence of the two definitions can be found in [7]. Each
nonzero element f ∈ Kj will be called (after Wilson) condition supported

at λj . The Darboux transform will be called monomial iff all the conditions
are supported at one point. Finally we recall the bispectral involution b,
which in this case maps the operators with polynomial coefficients in the
x-variable into operators with polynomial coefficients in the z-variable by
the formulas

b(∂x) = z, b(x) = ∂z,

i.e. in this case b is the formal Fourier transform. It will be used when the
differential operators are applied to Ψ0 as follows:

∂xΨ0 = zΨ0, xΨ0 = ∂zΨ0

We end this subsection with the following important result of G. Wilson
[38]:

Theorem 1.3. — Any polynomial Darboux transform of ∂x is a

rank one bispectral operator and vice versa.

This theorem is formulated by G. Wilson in a different terminology.
See [22] for an exposition using Darboux transforms.

Following G. Wilson we will call the set of all planes W ⊂ Gr that
are polynomial Darboux transforms of W0 the adelic Grassmannian and
denote it by Grad. In another paper [39] G. Wilson proved that there is a
bijection

β :
⋃
n�0

Cn → Grad

between the union of all Calogero-Moser spaces and the adelic Grassman-
nian. Thus it is enough to prove Theorem 0.2.

1.3. W1+∞-algebra.

In this subsection we recall the definition of W1+∞, and some of its
bosonic representations introduced in [5]. For more details see [28].

The algebra w∞ of the additional symmetries of the KP-hierarchy is
isomorphic to the Lie algebra of regular polynomial differential operators
on the circle

TOME 55 (2005), FASCICULE 6
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w∞ ≡ D = span{zα∂βz | α, β ∈ Z, β � 0}.

It was introduced in [16, 33] and was extensively studied by many authors
(see, e.g. [3, 14, 17, 32], etc. ). Its unique central extension is denoted by
W1+∞.

Denote by c the central element of W1+∞ and by W (A) the image of
A ∈ D under the natural embedding D ↪→ W1+∞ (as vector spaces). The
algebra W1+∞ has a basis

c, J lk = W (−zl+k∂lz), l, k ∈ Z, l � 0.

In [5] we constructed a family of highest weight modules of W1+∞.
Here we need the most elementary one of them, for which the next theorem
is an easy exercise.

Theorem 1.4. — The function τ0 satisfies the constraints

J lkτ0 = 0, k � 0, l � 0,

W
(
z−kPk(Dz)Dl

z

)
τ0 = 0, k > 0, l � 0,

where Pk(Dz) =
∏k−1
j=0 (Dz − j), Dz = z∂z.

The first constraint means that τ0 is a highest weight vector with
highest weight λ(J l0) = 0 of a representation of W1+∞ in the module

M0 = span
{
J l1k1 · · ·J

lp
kp
τ0 | k1 � · · · � kp < 0

}
.

One easily checks that the central charge c = 1. The second constraint
yields that the moduleM0 is quasifinite, i.e. it is finite-dimensional in each
level.

2. An adelic W-algebra.

The adelic W-algebra is a Lie algebra that we intend to introduce in
analogy with W1+∞. Most of the definitions and constructions are similar
to those of W1+∞. For that reason we list the facts but skip much of the
arguments.

Instead of the Lie algebra w∞ of regular operators on the circle
we start with the Lie algebra RD of differential operators with rational
coefficients on the complex line. We are going to use the following basis
of RD:

ANNALES DE L’INSTITUT FOURIER
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1) zn+l∂lz, n ∈ Z, l � 0;

2) (z − a)−n+l∂lz, −n+ l < 0, l � 0, a ∈ C− {0}.
Usually we shall consider the elements from RD as differential opera-

tors with coefficients that are Laurent series in z−1 by expanding (z−a)−n+l

around infinity. We would like to construct natural representations of RD.
We shall work with the space V where vk = zk. Obviously RD acts natu-
rally on V. Then we can associate with each operator A ∈ RD an infinite
matrix having only finite number of diagonals below the principal one but
having eventually infinite number above it. In other words the matrix (ai,j),
associated with A, has the property that ai,j = 0 for i − j � 0. The Lie
algebra of such matrices will be denoted by a′∞. It can be considered as
a completion of the algebra a∞ of matrices having only finite number of
diagonals (see [29]). Now we explain how to construct representations in
the fermionic Fock space F (0). We recall that in the case considered here
F (0) consists of formal series of semi-infinite wedge monomials:

zi0 ∧ zi1 ∧ zi2 ∧ · · · ,
with i0 < i1 < · · · and ik = k for k � 0. We can define the action of
A ∈ a′∞ by the standard definition (see [29]. First for matrices with only
finite number of entries define

r(A)(zi0 ∧ zi1 ∧ · · ·) = Azi0 ∧ zi1 ∧ · · ·

+ zi0 ∧Azi1 ∧ · · ·

· · ·
It is easy to check that if A ∈ a′∞ has no entries on the main diagonal r(A)
still makes sense, the image being infinite formal series. For matrices with
infinite number of entries on the main diagonal the above definition is no
longer meaningful. For that reason we need to modify it as follows. We put

r̂(Ei,j) = r(Ei,j) for i �= j or i = j > 0;

r̂(Ei,i) = r(Ei,i)− Id for i � 0.

See [29] for more details.

This defines a representation of the central extension a′∞ ⊕ Cc. The
corresponding central extension of the subalgebra RD of a

′
∞ will be called

adelic W -algebra. We will use the notation W ad. The terminology and the
notation are chosen to be similar to those of the adelic Grassmannian Grad.
The main result of the present paper naturally connects the two objects.

We shall describe in some more detailsW ad. ByW (A) we shall denote
the image of the element A ∈ RD under the natural embeddingRD ⊂W ad

TOME 55 (2005), FASCICULE 6
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(as vector spaces). Then for a ∈ C, l � 0, n ∈ Z put

(3) J ln(a) = W (−(z − a)n+l∂lz).

For a = 0 we also shall use the notation J ln = J ln(0). When a is fixed
the above operators (3) together with the central charge c form a copy of
W1+∞, which we shall denote by W1+∞(a). Recall that W1+∞(a) has a
grading: the elements J ln(a) have weight n. The elements with nonnegative
grading are common for all a. In fact the common part is much larger: for
all n + l � 0 the elements J ln(a) are common. Thus we have the following
basis for W ad:

1) J ln(0), l � 0 n+ l � 0;

2) J ln(a), n+ l < 0, a �= 0;

3) c.

In complete analogy to the case of W1+∞ we can construct a repre-
sentation of W ad in the Fock spaces using the vacuum. We formulate the
needed properties in the bosonic picture.

Theorem 2.1. — The tau-function τ0 satisfies the following con-

strains

1) J lnτ0 = 0, l � 0; n � 0

2) W ((z − a)−kPk((z − a)∂z))((z − a)∂z)lτ0 = 0,

where Pk(u) = u(u− 1) · · · (u− k + 1).

We set
W ad
− = span

{
J ln, a ∈ C, n < 0

}
.

Then define the W ad
− -module Mad by

Mad = span
{
J l1n1

(a1) · · ·J lmnm(am)τ0,
}

where nj + lj < 0 for aj �= 0 and nj < 0 for aj = 0.

Corollary 2.2. — The vector space Mad is a space of represen-

tation of the Lie algebra W ad.

Proof. — We need only to check that J ln(J
l1
n1

(a1) · · ·J lmnm(am)τ0) ∈
Mad. We proceed by induction. Let m = 1. Then we have

J lnJ
l1
n1

(a1) = J l1n1
(a1)J ln +

∑
bkJ

lk
nk

(a1) +
∑

J lsns ,

ANNALES DE L’INSTITUT FOURIER



CALOGERO-MOSER SPACES AND AN ADELIC W-ALGEBRA 2079

where the sums are finite. Then this expression when applied to τ0 by
Corollary 2.2 obviously gives an element ofMad. Proceeding by induction
we can push the elements of the type J ln to the right and again use the
theorem. ��

3. Tau-functions in the module Mad.

In this section we prove the first part of Theorem 0.1. More precisely
we will prove

Theorem 3.1. — If τ is a tau-function in the moduleMad then it

is polynomial Darboux transform of τ0.

Before giving the proof of the theorem we shall recall some results
from [8] as well as their modifications for the case of the adelic W -algebra.
We start with the commutation of the elements of W ad with the vertex
operator X(t, z). First we consider elements from W1+∞(0). The following
result has been proved in [8]

Lemma 3.2. — Let X(t, z) be the vertex operator. Then

X(t, z)J lk =
(
J lk + lJ l−1

k + δk,0δl,0 − zk+l∂lz
)
X(t, z).

See [8] for the proof. In order to give the analog of the above relation
for J ln(a) when a �= 0 we shall introduce some notation. Put

(4) J ln,−1(a) = W (−z−1(z − a)n+l∂lz).

The analog of Lemma 3.2 is

Lemma 3.3. — The commutation relation of the vertex operator

X(t, z) with J ln(a) is

(5) X(t, z)J ln(a) =
(
J ln(a) + lJ l−1

n+1,−1(a)− (z − a)n+l∂lz

)
X(t, z).

Proof. — The proof is a direct consequence of Lemma 3.2. We shall
present J ln(a) as infinite series:

J ln(a) = W (−(z − a)n+l∂lz) = W
( ∞∑
j=0

αjz
n+l−j∂lz

)
=
∞∑
j=0

αjJ
l
n−j .

TOME 55 (2005), FASCICULE 6
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Now apply Lemma 3.2 to (3.4)and recall that n+ l < 0. We get

X(t, z)J ln(a) =
∞∑
j=0

αj
(
J ln−j + lJ l−1

n−j − zn−j+l∂lz
)
X(t, z).

Then using the notation (4) we can rewrite the last formula as (5). ��

We also need the following result from [8] which we reformulate for
the present situation.

Lemma 3.4. — Let τ ∈Mad. Then τ = uτ0 where u is an element

of the universal enveloping algebra of W ad
− of the form:

u =
∑

bk,l,aJ
l1
−k1(a1) · · ·J lp−kp(ap)J

lp+1
−kp+1

· · ·J lp+r−kp+r ,

where lj < kj .

Finally we need some facts about the so called adjoint involution [37].
It is an involution defined on the planes of Sato’s Grassmannian. Introduce
after [13] a non-degenerate bilinear form B on the space V of formal Laurent
series in z−1 as follows

B(f, g) = −Res∞f(z)g(−z), f, g ∈ V.
If V is a plane in Gr then define aV to be the plane orthogonal to V with
respect to the bilinear form B, i.e.

aV =
{
g(z) ∈ V | B(f, g) = 0 for all f ∈ V

}
.

Obviously the adjoint involution has meaning on related objects. On
tau-functions it acts as

a(τV (t1, t2, . . .)) = τV (t1,−t2, . . . (−1)n−1tn . . .).

We can continue this action on the bosonic Fock space by linearity. We
need to continue it also on elements of W ad.

In [8] we proved that for U ∈W1+∞ it is well defined demanding

a(Uτ) = a(U)a(τ), τ ∈ B.
We will show that the same result holds for U ∈W ad. The above definitions
show that

a(J0
k ) = (−1)n−1J0

k .

Instead of working with the generators J lk of W1+∞ we will use fields (of
dimension l) or generating functions:

J l(z) =
∑
k∈Z

J lkz
−k−l−1.

ANNALES DE L’INSTITUT FOURIER
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In order to recall results from [8] we shall introduce other fields. Following
[4] put

(7) V l(z) =
(

2l
l

) l∑
k=0

(−1)k
(

2l − k
l

)
∂kJ l−k(z).

Then the modes V lk of the fields V l(z):

V l(z) =
∑
k∈Z

V lkz
−k−l−1

obviously also form a basis (together with c) ofW1+∞. In [8] we have proved
the following:

Lemma 3.5. — The adjoint involution a acts on V lk by the formula

(8) a(V l(z)) = V l(−z).

Now we want to continue the adjoint involution a to the adelic W -
algebra. We have to define it only for J ln(b) with l + n < 0 and b �= 0. But
first we shall compute a(J ln). We have

Lemma 3.6. — The adjoint involution a acts on J ln by the formula

(9) a(J ln) = (−1)n+l+1
(
J ln +

l−1∑
s=1

βl,s(n+ l + 1) · · · (n+ l − s+ 1)J l−sn

)
with some constants βl,s that do not depend on n.

Proof. — We will use induction on l. For l = 0 we have

V 0(z) = J0(z).

Hence in this case (9) holds. Suppose we have proved the formula for some
l. From (7) we have

(10) V l+1
n =

l+1∑
s=0

αl+1,s(n+ l − s+ 2) · · · (n+ l + 1)J l+1−s
n

with some constants αl+1,s that do not depend on n and αl+1,0 �= 0. Also
by (8) we have

(11) a(V l+1
n ) = (−1)n+l+2V l+1

n .

Now plug in (11) the expression for V l+1
n from (10). Then use linearity and

the induction hypothesis. This proves (9). ��
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The above formula (9) allows us to write down an expression for
a(J ln(b)) and hence to continue the involution on W ad. Recall that J ln(b)
should be considered as infinite sum and for each summand a is already
defined by (9).

Lemma 3.7. — Let n + l < 0 and b ∈ C be arbitrary. Then the

adjoint involution is well defined for a(J ln(b)). More precisely we have

(12)

a(J ln(b)) = (−1)k+l−1
(
J ln(−b) +

l∑
s=1

γl,s(n+ l) · · · (n+ l−s+ 1)J l−sn (−b)
)
.

Proof. — We have

J ln(b) =
∞∑
j=0

µjW (−zn+l−j∂lz)

where µj are the coefficients of the expansion around infinity of (z− b)n+l:

(z − b)n+l =
∞∑
j=0

µjz
n+l−j .

Formula (9) gives

a(
∞∑
j=0

µjJ
l
n−j) =

∞∑
j=0

µja(J ln−j)

=
∑

µj(−1)n+l−j−1
(
J ln−j +

l∑
s=1

βl,s(n+ l)

· · · (n+ l − s+ 1)J l−sn−j

)
.

Let us consider the sum

(13)
∑

µj(−1)n+l−j−1(n+ l) · · · (n+ l + s− 1)J l−sn−j .

It is equivalent to∑
µj(−1)n+l−j−1(n+ l) · · · (n+ l + s− 1)W (−zn−j+l−s∂l−sz ).

In order to simplify the notation we drop −∂l−s and the sign W . So we
have ∑

µj(−1)n+l−j−1(n+ l) · · · (n+ l + s− 1)zn−j+l−s

= (−1)n+l−1+s∂sz(z + b)k+l

= (−1)n+l+s−1(n+ l) . . . (n+ l − s+ 1)(z + b)n+l−s.
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This shows that (13) is equivalent to
(−1)n+l+s−1J l−sn (−b).

Thus we obtain (12). ��

Now we are ready to give the proof of Theorem 3.1.

Proof. — of Theorem 3.1. Let τW = uτ0 where u is an element of
the universal enveloping algebra of the form from Lemma 3.4. We express
the wave function ΨW (t, z) in terms of u:

(14) ΨW (t, z) =
X(t, z)uτ0

uτ0

∣∣
t1=x,t2=···=0

.

Using Lemma 3.2 and Lemma 3.3 we commute u and X(t, z) to obtain

ΨW =
U(t, z)X(t, z)τ0

uτ0

∣∣
t1=x,t2=···=0

,

where
U(t, z) =

∑
bk,l,a

(
J l1−k1(a1) + l1J

l1−1
−k1+1,−1 − (z − a1)−k1+l1∂l1z

)
· · ·

(
J
lp
−kp(ap) + lpJ

lp−1
−kp+1,−1 − (z − ap)−kp+lp∂lpz

)
· · ·

(
J
lp+1
−kp+1

+ lp+1J
lp−1
−kp+1

+ δkp+1,0δlp+1,0 − z−kp+1+lp+1∂lp+1
z

)
· · ·

(
J
lp+r
−kp+r + lp+rJ

lr−1
−kp+r + δkp+r,0δlp+r,0 − z−kp+r+lp+r∂lp+rz

)
.

Now we use that
J l−k

∣∣
t1=x,t2=t3=···=0

= xkδl+1,k if l < k.

The point is that there are no differentiations but only multiplications by
powers of x. From the above formula we can derive for J l−k(a) and for
J l−k+1,−1(a) the following ones:

J l−k(a)
∣∣
t1=x,t2=t3=···=0

= xkδl+1,k,

J l−k+1,−1(a)
∣∣
t1=x,t2=t3=0

= 0.

Both formulas follow from the expansion of the l.h.s. as infinite series and
the fact that l < k.

In this way we get
U(t, z)

∣∣
t1=x,t2=t3=···=0

=
∑

bk,l,a

(
xk1δl1+1,k1 − (z − a1)−k1+l1∂l1z

)
· · ·

(
xkp+r (δlp+r+1,kp+r + lp+rδlp+r,kp+r )− z−kp+r+lp+r∂lp+rz

)
= g(z)−1P (x, z, ∂z),
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where g(z) is a polynomial with roots at aj and 0 and P is a differential
operator in z with polynomial coefficients in x and z. In the same way
u
∣∣
t1=x,t2=t3=···=0

= p(x) is a polynomial in x. Thus (14) is equivalent to

ΨW =
P (x, z, ∂z)Ψ0

g(z)p(x)

or using the bispectral involution we finally obtain:

(15) ΨW =
P1(x, ∂x)Ψ0

g(z)
,

where P1 is an operator with rational coefficients.

We need also to express Ψ0(x, z) in terms of ΨW (x, z). We shall use
the adjoint involution a. From Lemma 3.7 we know that a(τW ) = a(u)τ0
is a tau-function in the moduleMad. The last formula (15) gives

(16) ΨaW (x, z) =
P2(x, ∂x)Ψ0

g2(z)

with some operator P2 and a polynomial g2(z). We shall use the following
simple lemma:

Lemma 3.8. — If the wave functions ΨW and ΨV satisfy

ΨW (x, z) =
P (x, ∂x)ΨV (x, z)

g(z)

then

ΨaV (x, z) =
P ∗(x, ∂x)ΨaW (x, z)

g(−z) .

where P ∗ is the formal adjoint operator of P .

The lemma and (16) imply

Ψ0(x, z) =
P ∗2 (x, ∂x)ΨW

g2(z)
,

which together with (15) gives the proof of the theorem. ��

4. The planes of the adelic Grassmannian.

In this section we shall prove the inverse of Theorem 3.1.

Theorem 4.1. — If a plane W ∈ Grad then the corresponding

tau-function τW ∈Mad.
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Proof. — To fix the notation let the Darboux transform be given by

ΨW (x, z) =
P (x, ∂x)Ψ0(x, z)

g(z)
(17)

Ψ0(x, z) =
Q(x, ∂x)ΨW (x, z)

f(z)
,(18)

where Q ◦ P = h(∂x) with some polynomial h. Let λ1, . . . , λm be the
different points, where the conditions are supported. Then we can suppose
that the polynomial h is:

h(z) =
m∏
j=0

(z − λj)dj .

Denote the degree of h by d. Let the number of the conditions supported
at the point λj be rj . Then

g(z) =
m∏
j=0

(z − λj)rj .

Put also deg g(z) = r = r1 + · · · rm. Let
{
Φi

}∣∣
i=1,...,d

be the standard basis
of kerh(z), i.e. {

Φi
}

=
m⋃
j=1

{
eλjx, . . . , xdj−1eλjx

}
.

Denote by f1, . . . , fr the functions forming the kernel of the operator P ,
i.e. defining the Darboux transform (17)–(18). Then

fl(x) =
d∑
i=1

al,iΦi(x), l = 1, . . . , r.

Denote by A the matrix formed by the above coefficients, i.e.

A = (al,i), l = 1, . . . , r , i = 1, . . . , d.

For any r-element subset I{i1, . . . , ir} ⊂ {1, . . . , d} denote by AI the
following minor of A

AI = (al,ik)
∣∣
l,k=1,...,r

.

Put Φ =
{
Φi1,...,ir

}
and

ΨI(x, z) =
Wr(ΦI ,Ψ0)
g(z)Wr(ΦI)

.

We need the following formula from [6]:

ΨW (x, z) =
∑
I detA

IWr(ΦI)ΨI(x, z)∑
I det

IWr(ΦI)
.
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Notice that for any I we have

Wr(ΦI ,Ψ0) = ex
∑

λjrjPI(x, ∂x) = ex
∑

λjrj

r∑
j=0

pI,j(x)∂jxe
xz,

where pI,j(x) are polynomials. Also we have:

Wr(ΦI) = ex
∑

λjrjqI(x),

where the polynomial qI(x) = pI,r(x). Notice that the exponential factor
is the same everywhere. Then we have

ΨW =
∑
I detA

IPI(x, ∂x)exz

g(z)
∑
I det

IqI(x)
.

Among the subsets I there is one that corresponds to the set of
following functions from the kernel of h(∂x)

f̃1(x) = eλ1x, . . . , f̃r1(x) = xr1−1eλ1x

...

f̃r−rm+1 = eλmx, . . . , f̃r = xrm−1eλrx.

Denote this subset by I0. Notice that PI0 =
∑r
j=0 βj∂

j
x, where bj ∈ C, i.e.

PI0 is an operator with constant coefficients. It is easy to check that PI0 ≡
g(∂x). Introduce the matrix A0 as follows. Let I0 =

(
i01 < i02, < · · · < i0r

)
.

Then let A0 =
(
aj,iδj,i0

k

)
. Now consider A as a deformation of A0:

A(ε) = εA+ (1− ε)A0.

Obviously aj,i(ε) = aj,i if i ∈ I0 and aj,i = εaj,i otherwise.

Let us consider first the case when detAI0 �= 0. We can assume that
detAI0 = 1. Then the wave function ΨW (ε) reads:

ΨW (ε) =
(g(∂x) +

∑
I �=I0 detA

I(ε)PI(x, ∂x))Ψ0

g(z)(1 +
∑
I �=I0 detA

I(ε)qI(x))
.

Using the bispectral involution and dividing by g(z) we can write the above
formula as

ΨW (ε) =

(
1 +

∑
detAI P̃I(z,∂z)g(z)

)
Ψ0

1 +
∑
detAI(ε)qI(x)

.

Notice that

P̃I(z, ∂z) =
r∑
j=0

zjpI,j(∂z) =
∑

p̃I,j(z)∂jz .
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Here deg p̃I,j � r. We also have

lim
z→∞

p̃I,0(z)
g(z)

= pI,r(0) = qI(0).

So we can put

1 +
∑

detAI(ε)
P̃I(z, ∂z)
g(z)

= 1 +
∑

detAI(ε)qI(0) +
∑

detAI(ε)QI(z, ∂z),

where W (QI(z, ∂z)) ∈W ad
− .

Having in mind that detAI(ε) is a polynomial in ε without a free term,
we can write ΨW (ε) in the following form:

ΨW (ε) =
(1 +

∑s
j=1 αjε

j +
∑s
j=1 βjε

jQj(z, ∂z))Ψ0(z, x)
1 +

∑s
j=1 αε

j +
∑s
j=1 γjε

j q̃j(x)

with q̃j(0) = 0. Now expand the above expression around ε = 0 and then
use once again the bispectral involution to get rid of x-dependence. We get

ΨW (ε) = (1 +
∞∑
j=1

εjPj(z, ∂z))Ψ0.

The important fact here is that all the operators Pj(z, ∂z) ∈ W ad
− . The

standard basis of W0 is given by wk = ∂kxΨ0 = zk, k = 0, 1, . . .. We need
to find expression for the basis of W (ε). We have

∂kxΨW (ε) = (1 +
∞∑
j=1

εjPj(z, ∂z))wk.

Using the boson-fermion correspondence σ we get the tau-function τW (ε):

τW (ε) =σ
(
(1 +

∞∑
j=1

εjPj(z, ∂z))w0 ∧ (1 +
∞∑
j=1

εjPj(z, ∂z))w1 ∧ · · ·
)

= τ0 + εr(P1)τ0 + ε2
(
r(P2) +

1
2
r(P1)2 −

1
2
r(P 2

1 )
)
τ0 + · · ·

Notice that the coefficients at the powers of ε are polynomials in r(P jk ),
applied to τ0. Hence all of them belong to the W ad-moduleMad. We shall
show that the entire series belong to it. Once again we need a formula from
[6] - this time for the tau-function. We have

τW (ε) =
1 +

∑
I �=I0 detA

I(ε)∆IτI

1 +
∑
I �=I0 detA

I(ε)∆I
,

where ∆I = Wr(ΦI)(0). We shall use the fact that the tau-function
is defined up to a multiplicative constant. So multiplying τW (ε) by the
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denominator, which is a polynomial in ε we get a polynomial in ε (the
numerator), which, having a finite number of terms that belong toMad by
the above argument, itself belongs toMad for all ε. In particular for ε = 1
we get that τW ∈Mad.

Next consider the case when detAI0 = 0. Put A(ζ) = ζA+ (1− ζ)A0.
For all but a finite number of values of ζ the expression detA(ζ) �= 0.
The argument above shows that for this values of ζ the corresponding tau-
function τW (ζ) ∈ Mad. Again consider the numerator of τW (ζ). It is a
polynomial in ζ. Hence τW (ζ) ∈Mad for all values of ζ. ��
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