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ISOSPECTRAL DEFORMATIONS OF THE
LAGRANGIAN GRASSMANNIANS

by Jacques GASQUI & Hubert GOLDSCHMIDT

Abstract. — We study the special Lagrangian Grassmannian SU(n)/SO(n),
with n > 3, and its reduced space, the reduced Lagrangian Grassmannian X.
The latter is an irreducible symmetric space of rank n − 1 and is the quotient of
the Grassmannian SU(n)/SO(n) under the action of a cyclic group of isometries of
order n. The main result of this paper asserts that the symmetric space X possesses
non-trivial infinitesimal isospectral deformations. Thus we obtain the first example
of an irreducible symmetric space of arbitrary rank > 2, which is both reduced
and non-infinitesimally rigid. Our result may be viewed as a generalization of the
construction which we had given previously for the reduced Grassmannian of 3-
planes in R6; in fact, this space is isometric to the reduced space of SU(4)/SO(4).

Résumé. — Nous étudions la grassmannienne lagrangienne spéciale SU(n)/
SO(n), avec n > 3, et son espace réduit X, qui est l’espace symétrique irréduc-
tible de rang n − 1 quotient de SU(n)/SO(n) par l’action d’un groupe cyclique
d’isometries d’ordre n. Notre résultat principal est la construction de déformations
infinitésimales isospectrales non triviales de X. Nous obtenons ainsi les premiers
exemples en rang quelconque > 2 d’espaces symétriques irréductibles réduits et
non infinitésimalement rigides. Notre résultat peut être vu comme une générali-
sation de la construction que nous avions donnée dans un précédent papier pour
la grassmannienne réduite des 3-plans de R6, espace qui est en fait isométrique à
l’espace réduit de SU(4)/SO(4).

Introduction

In [2], we introduced the space I(X) of infinitesimal isospectral deforma-
tions of a Riemannian symmetric space (X, g) of compact type. We were
motivated by a criterion due to Guillemin [3] for the infinitesimal isospec-
tral rigidity of such a space. Our definition of I(X) involves the Radon

Keywords: Symmetric space, special Lagrangian Grassmannian, reduced Lagrangian
Grassmannian, Radon transform, infinitesimal isospectral deformation, symmetric form,
Guillemin condition.
Math. classification: 44A12, 53C35, 58A10, 58J53.



2144 Jacques GASQUI & Hubert GOLDSCHMIDT

transform for symmetric 2-forms, considered in [1] and defined in terms of
integration over the maximal flat totally geodesic tori of X; we say that
a symmetric 2-form on X satisfies the Guillemin condition if it belongs to
the kernel N2 of this Radon transform. The space I(X) is the orthogonal
complement of the space of Lie derivatives of the metric g in N2. If I(X)
vanishes, or equivalently if every symmetric 2-form on X satisfying the
Guillemin condition is a Lie derivative of the metric, we say that (X, g) is
rigid in the sense of Guillemin; in this case, a isospectral deformation of
the metric g is trivial to first-order.

We shall henceforth suppose that X is irreducible. The reduced space
of X constructed in [2] is a symmetric space covered by X and which
is not the cover of another symmetric space. We say that X is reduced
if it is equal to its reduced space. If X is not reduced, in [2] we proved
that the space I(X) does not vanish. The fundamental problem concerning
infinitesimal isospectral deformations for our class of symmetric spaces may
be formulated as follows: determine the space of infinitesimal isospectral
deformations of an irreducible reduced space. We refer the reader to the
introduction of the paper [2] for more details concerning the definitions and
results mentioned above.

The Grassmannian GK
m,n of m-planes in Km+n, where K is a division

algebra over R, is a symmetric space of compact type which is both irre-
ducible and reduced if and only if m 6= n and m,n > 1; if this last condition
holds, we know that this Grassmannian is rigid (see [1]).

In [2], we gave the first example of an irreducible reduced symmetric
space which is not rigid in the sense of Guillemin; it is the reduced space
ḠR

3,3 of the Grassmannian GR
3,3 of 3-planes in R6.

Let n > 3 be a given integer and consider the group G = SU(n) and its
subgroup K = SO(n). The special Lagrangian Grassmannian X = G/K

is an irreducible symmetric space. Its reduced space Y , which we call the
reduced Lagrangian Grassmannian, is the quotient of X by the action of a
cyclic group Σ of order n consisting of isometries which commute with the
action of G on X; it is an irreducible symmetric space of rank n − 1. We
prove that this reduced space Y is not rigid in the sense of Guillemin. Thus
we obtain the first example of an irreducible symmetric space of arbitrary
rank > 2, which is both reduced and non-infinitesimally rigid. Since the
universal cover of the Grassmannian GR

3,3 is isometric to the Lagrangian
Grassmannian SU(4)/SO(4), we recover the non-rigidity of ḠR

3,3.
We now describe our construction of non-trivial infinitesimal isospectral

deformations of the reduced Lagrangian Grassmannian Y . We consider an
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explicit subspace FY of the space of real-valued functions on Y which is of
finite codimension and orthogonal to the subspace of constant functions,
and then show that there exists an injective mapping

FY → I(Y ).

For p > 2, the symmetric space X carries a natural symmetric p-form σp

which is invariant under its group of isometries and is therefore parallel.
Indeed, the tangent space of X at the coset of the identity element of G
is isomorphic as a K-module to the subspace p0 of the Lie algebra su(n)
consisting of all purely imaginary n×n matrices with trace zero. The form
σp is induced by the G-invariant homogeneous polynomial qp of degree p
on the space p0 defined by

qp(A) = (−i)p Tr Ap,

for all A ∈ p0. It is well-known that the algebra of all K-invariant polynomi-
als on p0 is generated by the n− 1 algebraically independent homogeneous
polynomials {qp}, with 2 6 p 6 n. In fact, the form σ2 is equal to the
Riemannian metric g of X and the form σ3 is up to a constant the only
G-invariant symmetric 3-form on X (see [2, §2]). Also the form σp induces
a G-invariant symmetric p-form σY,p on Y .

In [1], we introduced the Guillemin condition for symmetric forms of
arbitrary degree on a symmetric space. Let σ be a symmetric p-form,
with p > 3, on a symmetric space Z; the form σ determines a mapping
σ̃ from the space of 1-forms on Z to the space of symmetric (p− 1)-forms
on Z. We now suppose that the pair (Z, σ) is equal either to (X,σp) or
to (Y, σY,p); then the mapping σ̃ is injective. We show that a 1-form θ on Z
satisfies the Guillemin condition if and only if the symmetric (p− 1)-form
σ̃(θ) on Z satisfies the Guillemin condition. Thus if f is a real-valued
function on Z, the symmetric (p − 1)-form σ̃(df) satisfies the Guillemin
condition. Moreover if p = 3, the element σ̃(df) gives rise to an element
of I(Z). If f is a non-zero element of FY , we prove that the symmetric
2-form σ̃Y,3(df) on Y is not a Lie derivative of the metric of Y and thus
this function f gives rise to a non-zero element of I(Y ).

The symmetric 3-form σ on the universal cover of GR
3,3, which we intro-

duced in [2], can be viewed as a constant multiple of the symmetric 3-form
on SU(4)/SO(4) induced by σ3, when we identify these two spaces (see
[2, §11]). Our construction of infinitesimal isospectral deformations of the
reduced space of SU(4)/SO(4) is totally equivalent to the one given in [2]
for the space ḠR

3,3.
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2146 Jacques GASQUI & Hubert GOLDSCHMIDT

Harmonic analysis on the homogeneous space X of the group G plays
an important role in the proof of our result concerning the isospectral de-
formations of Y . We consider the G-module C∞(X) of complex-valued
functions on X and its irreducible submodules. We introduce explicit func-
tions on X which arise from K-invariant functions on the group G and
show that the highest weight vectors of these irreducible submodules occur
among these functions. We determine all the highest weight vectors of an
isotypic component of the space of complex 1-forms on X corresponding to
one of these irreducible submodules of C∞(X), and express these vectors
in terms of our family of functions. Our description allows us to say which
of these highest weight vectors arise from objects defined on the quotient
space Y of X. We prove that the space F ′ of functions f ∈ C∞(X) for
which the symmetric 2-form σ̃3(df) is a Lie derivative of the metric g is
the sum of two irreducible G-submodules of C∞(X). In order to demon-
strate this fact, it suffices to consider the 1-forms on X corresponding to
the highest weight vectors of the irreducible G-submodules of C∞(X). The
necessary verifications are carried out in §9; we require an elementary al-
gebraic result presented in §8, a section which can be read independently
of the rest of this paper. We thus obtain a subspace of I(X) isomorphic
to the infinite-dimensional space of real-valued functions on X orthogonal
to F ′. In fact, all of the functions belonging to F ′ are induced by functions
on Y ; the latter form a finite-dimensional space F ′

Y of functions on Y .
Consequently, for the reduced Lagrangian Grassmannian Y , the space FY

giving rise to elements of I(Y ) is the space of real-valued functions on Y

orthogonal to F ′
Y .

Finally, we wish to point out that the only results of [2] which we require
here are Lemma 1.1 and Propositions 1.2 and 10.1.

1. Riemannian manifolds

Let X be a differentiable manifold, whose tangent and cotangent bundles
we denote by T = TX and T ∗ = T ∗X , respectively. We consider the space
of complex-valued functions C∞(X) (resp. real-valued functions C∞

R (X))
on X. Let R(X) denote the subspace of C∞

R (X) consisting of the constant
functions on X. Let E be a vector bundle over X; we denote by EC its
complexification, by E the sheaf of sections of E over X and by C∞(E) the
space of global sections of E over X. By

⊗k
E, SlE,

∧j
E, we shall mean

the k-th tensor product, the l-th symmetric product and the j-th exterior
product of the vector bundle E, respectively. We shall identify SkT ∗ and

ANNALES DE L’INSTITUT FOURIER
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∧k
T ∗ with sub-bundles of

⊗k
T ∗ as in §1, Chapter I of [1]. In particular,

if α, β ∈ T ∗, the symmetric product α · β is identified with the element
α⊗ β + β ⊗ α of

⊗2
T ∗. If u is a section of SpT ∗ over X, we consider the

morphism of vector bundles

u[ : T → Sp−1T ∗,

defined by
(u[ξ)(η1, . . . , ηp−1) = u(ξ, η1, . . . , ηp−1),

for ξ, η1, . . . , ηp−1 ∈ T .
Let g be a Riemannian metric on X. We denote by g] : T ∗ → T the

inverse of the isomorphism g[ : T → T ∗. If u is a section of SpT ∗ over X,
we consider the morphism of vector bundles

ũ = u[ · g] : T ∗ → Sp−1T ∗.

We also consider the scalar products on the spaces C∞(X), C∞(T ) and
C∞(S2T ∗), defined in terms of the Riemannian measure of X and the
scalar products on the vector bundles T and S2T ∗ induced by the metric g.
We denote by C∞

R,0(X) the orthogonal complement of the subspace R(X)
of C∞

R (X).
Let ∇ be the Levi-Civita connection of (X, g). We consider the sym-

metrized covariant derivative

D1 : T ∗ → S2T ∗,

defined by
(D1θ)(ξ, η) = 1

2 ((∇θ)(ξ, η) + (∇θ)(η, ξ)),

for θ ∈ T ∗, ξ, η ∈ T . If f is a real-valued function on X, the Hessian Hess f
of f is equal to D1df = ∇df . The Killing operator

D0 : T → S2T ∗

of (X, g), which sends a vector field ξ into the Lie derivative Lξg of g along
ξ of g along ξ, and the operator D1 are related by the formula

(1.1) 1
2 D0ξ = D1g[(ξ),

for ξ ∈ T . We easily see that

(1.2) D1(f1df2) = 1
2 df1 · df2 + f1 Hess f2,

for all f1, f2 ∈ C∞(X). We also consider the divergence operator

div : S2T ∗ → T ∗,

TOME 57 (2007), FASCICULE 7



2148 Jacques GASQUI & Hubert GOLDSCHMIDT

as defined in §1, Chapter I of [1]; we recall that the formal adjoint of D0

is equal to 2g] · div : S2T ∗ → T . When X is compact, since the operator
D0 is elliptic, we therefore have the orthogonal decomposition

(1.3) C∞(S2T ∗) = D0C
∞(T )⊕

{
h ∈ C∞(S2T ∗) | div h = 0

}
given by the relation (1.11) of [1]; we denote by

P : C∞(S2T ∗) →
{
h ∈ C∞(S2T ∗) | div h = 0

}
the projection determined by the decomposition (1.3).

We now suppose that X is a symmetric space of compact type. We say
that a symmetric p-form u on X satisfies the Guillemin condition if, for
every maximal flat totally geodesic torus Z contained in X and for all
parallel vector fields ζ on Z, the integral∫

Z

u(ζ, ζ, . . . , ζ) dZ

vanishes, where dZ is the Riemannian measure of Z. We consider the sub-
space Np of C∞(SpT ∗) consisting of all symmetric p-forms satisfying the
Guillemin condition and recall that D0C

∞(T ) is a subspace of N2 (see
Lemma 2.10 of [1]). We then define the space of infinitesimal isospectral
deformations of g by

I(X) = {h ∈ N2 | div h = 0} .

>From the decomposition (1.3), we obtain the orthogonal decomposition

(1.4) N2 = D0C
∞(T )⊕ I(X);

moreover, the orthogonal projection of N2 onto I(X) is equal to the re-
striction of the projection P to N2. Thus the vanishing of the space I(X)
is equivalent to the fact that the space X is rigid in the sense of Guillemin.
Moreover if there exists a symmetric 2-form on X belonging to N2 which
is not equal to a Lie derivative of the metric g, the space I(X) does not
vanish.

The connected component G of the group of isometries of X is a compact
semi-simple Lie group. Let σ be a G-invariant symmetric p-form on X,
with p > 2; clearly, σ is parallel and so we have

∇σ = 0.

The morphisms

σ[ : T → Sp−1T ∗, σ̃ : T ∗ → Sp−1T ∗

induced by σ are G-equivariant; if X is irreducible and σ is non-zero, they
are monomorphisms of vector bundles.

ANNALES DE L’INSTITUT FOURIER
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We now suppose that p = 3 and assume that the following is true: if a
1-form ϕ on X satisfies the Guillemin condition, the symmetric 2-form σ̃(ϕ)
also satisfies the Guillemin condition. Then if f is an element of C∞

R (X),
the symmetric 2-form σ̃(df) satisfies the Guillemin condition. Thus if P
is the orthogonal projection corresponding to the decomposition (1.3), the
mapping

Pσ : Pσ̃d : C∞
R (X) → I(X)

is well-defined. Clearly, if f is an element of C∞
R (X), then σ̃df is a Lie

derivative of the metric if and only if Pσf = 0.

2. A decomposition of a space of tensors

If V is a real finite-dimensional vector space, we denote by
⊗k

V , SlV ,∧j
V the k-th tensor product, the l-th symmetric product and the j-th

exterior product of V , respectively; we shall identify SkV ∗ and
∧k

V ∗ with
subspaces of

⊗k
V ∗. Let n > 3 be a given integer and let U be a real vector

space of dimension n endowed with a positive definite scalar product q.
The scalar product q induces a scalar product on an arbitrary subspace
of

⊗k
U∗. We consider the group SL(U) consisting of all automorphisms

of U whose determinants are equal to 1 and its subgroup SO(U) consisting
of those elements of SL(U) which preserve the scalar product q.

Let B(U) be the subspace of
∧2
U∗ ⊗

∧2
U∗ consisting of those elements

v of
∧2
U∗ ⊗

∧2
U∗ which satisfy the first Bianchi identity

v(ξ1, ξ2, ξ3, ξ4) + v(ξ2, ξ3, ξ1, ξ4) + v(ξ3, ξ1, ξ2, ξ4) = 0,

for all ξ1, ξ2, ξ3, ξ4 ∈ U ; it is well-known that B(U) is an irreducible SL(U)-
submodule of S2(

∧2
U∗) equal to the image of the morphism

τ : S2U∗ ⊗ S2U∗ → S2(
∧2
U∗)

of SL(U)-modules defined by

(τu)(ξ1, ξ2, ξ3, ξ4) =
1
2
(
u(ξ1, ξ3, ξ2, ξ4) + u(ξ2, ξ4, ξ1, ξ3)

− u(ξ1, ξ4, ξ2, ξ3)− u(ξ2, ξ3, ξ1, ξ4)
)
,

for all u ∈ S2U∗ ⊗ S2U∗ and ξ1, ξ2, ξ3, ξ4 ∈ U . The morphism

ψ :
∧2
U∗ ⊗

∧2
U∗ → S2(S2U∗)

TOME 57 (2007), FASCICULE 7



2150 Jacques GASQUI & Hubert GOLDSCHMIDT

of SL(U)-modules is well-defined by

(ψv)(ξ1, ξ2, ξ3, ξ4) =
1
2
(
v(ξ1, ξ3, ξ2, ξ4) + v(ξ2, ξ4, ξ1, ξ3)

+ v(ξ1, ξ4, ξ2, ξ3) + v(ξ2, ξ3, ξ1, ξ4)
)
,

for all v ∈
∧2
U∗ ⊗

∧2
U∗ and ξ1, ξ2, ξ3, ξ4 ∈ U , and its restriction to the

subspace B(U) of
∧2
U∗ ⊗

∧2
U∗ is given by

(ψv)(ξ1, ξ2, ξ3, ξ4) = v(ξ1, ξ4, ξ2, ξ3) + v(ξ1, ξ3, ξ2, ξ4),

for all v ∈ B(U) and ξ1, ξ2, ξ3, ξ4 ∈ U . We then verify that the restriction
of the morphism 1

3 τ ◦ψ to B(U) is equal to the identity mapping of B(U).
Hence the morphism ψ : B(U) → S2(S2U∗) is injective.

For k > 2, the kernels Sk
0U

∗ and B0(U) of the trace mappings

Tr : SkU∗ → Sk−2U∗, Tr : B(U) → S2U∗,

defined by

(Tr u)(ξ1, . . . , ξk−2) =
n∑

j=1

u(tj , tj , ξ1, . . . , ξk−2),

(Tr v)(η1, η2) =
n∑

j=1

v(tj , η1, tj , η2),

for u ∈ SkU∗, v ∈ B(U) and ξ1, . . . , ξk−2, η1, η2 ∈ U , where {t1, . . . , tn}
is an orthonormal basis of U , are SO(U)-modules of SkU∗ and B(U),
respectively. In fact, Sk

0U
∗ is an irreducible SO(U)-submodule of SkU∗.

Thus the image of S4
0U

∗ under the natural monomorphism

S4U∗ → S2(S2U∗)

of SL(U)-modules is an irreducible SO(U)-submodule of S2(S2
0U

∗); we
shall identify S4

0U
∗ with this submodule.

It is easily verified that the morphism

φ : S2U∗ → S2(S2U∗)

of SO(U)-modules defined by

(φh)(ξ1, ξ2, ξ3, ξ4) = n
(
q(ξ1, ξ3)h(ξ2, ξ4) + q(ξ2, ξ4)h(ξ1, ξ3)

+ q(ξ1, ξ4)h(ξ2, ξ3) + q(ξ2, ξ3)h(ξ1, ξ4)
)

− 4
(
q(ξ1, ξ2)h(ξ3, ξ4) + q(ξ3, ξ4)h(ξ1, ξ2)

)
,

ANNALES DE L’INSTITUT FOURIER



DEFORMATIONS OF THE LAGRANGIAN GRASSMANNIANS 2151

for all h ∈ S2U∗ and ξ1, ξ2, ξ3, ξ4 ∈ U , is injective. The image of S2
0U

∗

under the morphism φ is a submodule of S2(S2
0U

∗); thus φ(S2
0U

∗) is an
irreducible SO(U)-submodule of S2(S2

0U
∗).

We know that B0(U) vanishes when n = 3 and is an irreducible SO(U)-
module when n > 5; on the other hand, when n = 4, the space B0(U)
admits a decomposition

(2.1) B0(U) = B0
+(U)⊕B0

−(U),

where B0
+(U) and B0

−(U) are irreducible SO(U)-submodules. We easily
verify that ψ(B0(U)) is an SO(U)-submodule of S2(S2

0U
∗).

We identify the scalar product on S2
0U

∗ induced by q with an element
Q of S2(S2

0U
∗); the one-dimensional subspace {Q} of S2(S2

0U
∗) gener-

ated by Q is a trivial SO(U)-submodule. The sum of the dimensions of
the SO(U)-modules {Q}, S2

0U
∗, S4

0U
∗ and B0(U) is equal to the dimen-

sion of S2(S2
0U

∗). The SO(U)-modules {Q}, S2
0U

∗, S4
0U

∗ are irreducible
and pairwise non-isomorphic; when n > 5, the irreducible SO(U)-module
B0(U) is not isomorphic to any one of these modules. Moreover when n = 4,
the SO(U)-modules {Q}, S2

0U
∗, S4

0U
∗, B0

+(U) and B0
−(U) are irreducible

and pairwise non-isomorphic. Thus we obtain the direct sum decomposition

(2.2) S2(S2
0U

∗) = {Q} ⊕ S4
0U

∗ ⊕ ψ(B0(U))⊕ φ(S2
0U

∗)

of S2(S2
0U

∗) into SO(U)-submodules.

3. The special unitary group

Let n be a given integer > 3. We consider the special unitary group
G = SU(n) and we suppose that X = G. If B denotes the Killing form of
the Lie algebra g0 = su(n), we endow X with the bi-invariant Riemannian
metric g0 induced by −B. Endowed with this metric g0, the manifold X

is an irreducible symmetric space. As usual, we identify the G-module g0

with the tangent space of X at the identity element e0 = In of G.
If k > 1 is a given integer, we consider the space Mk of all k×k complex

matrices. For 1 6 j, k 6 n, let Ejk = (clr) be the element of Mn determined
by cjk = 1 and clr = 0 whenever (l, r) 6= (j, k). If 1 6 j, k 6 n and
1 6 l 6 n− 1 are integers, with j 6= k, the matrices

Ajk = Ejk − Ekj , Bjk = i(Ejk + Ekj), Cl = i(Ell − El+1,l+1)

of Mn belong to g0; in fact, the set of all these matrices {Ajk, Bjk, Cl},
with 1 6 j < k 6 n and 1 6 l 6 n − 1, form a basis of g0. For 1 6 j 6 n,

TOME 57 (2007), FASCICULE 7



2152 Jacques GASQUI & Hubert GOLDSCHMIDT

we consider the element

C̃j =
1
n

(n−1∑
k=j

(n− k)Ck −
j−1∑
k=1

kCk

)
of g0; then we verify that

(3.1) Cj = C̃j − C̃j+1,

for 1 6 j 6 n− 1.
For p > 2, the homogeneous polynomial Qp on g0 defined by

Qp(ξ) = (−i)p Tr ξp,

for all ξ ∈ g0, is G-invariant, non-zero and real-valued; therefore it gives
rise to a non-zero bi-invariant symmetric p-form σ′p on X. We know that
the metric g0 is equal to the symmetric 2-form 2n · σ′2 (see [2, §2]).

We shall always consider the symmetric space X = SU(n), with n > 3,
endowed with the Riemannian metric g′ = σ′2. We easily verify that the
product of matrices Cj · Ck is equal to 0, for all 1 6 j, k 6 n − 1, with
j < k + 1, and hence that

(3.2) g′(Cj , Cj) = 2, g′(Cl, Cl+1) = −1, g′(Ck, Cq) = 0,

for all 1 6 j, k, q 6 n− 1 and 1 6 l 6 n− 2, with q > k + 2.
We identify an element of g0 with the left-invariant vector field on G that

it determines. Throughout the remainder of this section, by Cj and C̃l we
shall always mean the left-invariant vector fields on G determined by the
corresponding elements of g0.

For p > 3, we consider the monomorphism

σ̃′p : T ∗ → Sp−1T ∗

induced by the symmetric p-form σ′p. We shall write σ′ = σ′3 and σ̃′ = σ̃′3.
Let ϕ be an element of T ∗e0

and let A = (ajk) be the matrix −ig′](ϕ)
of sl(n,C); for 1 6 j 6 n, we know that ajj is real. Then we see that

ϕ(Cj) = ajj − aj+1,j+1,

for 1 6 j 6 n− 1; it follows that

(3.3) ϕ(C̃j) = ajj ,

for 1 6 j 6 n. If p > 3 is a given integer, by (3.3) we easily verify that

(3.4) σ̃′p(ϕ)(Cj1 , Cj2 , . . . , Cjp−1) = 0,

for 1 6 j1, j2, . . . , jp−1 6 n− 1, with j1 > j2 + 1, and that

(3.5) σ̃′p(ϕ)(Cj , . . . , Cj) = ϕ(C̃j) + (−1)p+1ϕ(C̃j+1),
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for all 1 6 j 6 n− 1; moreover, for all 1 6 j 6 n− 2 and 1 6 k 6 p− 1, we
have

(3.6) σ̃′p(ϕ)(Cj , . . . , Cj , Cj+1, . . . , Cj+1) = (−1)kϕ(C̃j+1),

if the tangent vector Cj appears k times in the left-hand side of this equa-
tion. If p is an odd integer, by (3.3) we see that

(3.7) σ̃′p(ϕ)(Ajk, . . . , Ajk) = σ̃′p(ϕ)(Bjk, . . . , Bjk) = ϕ(C̃j + C̃k),

for 1 6 j < k 6 n. >From the G-invariance of the form σ′p, we now infer
that the relations (3.4)–(3.7) hold on G for all ϕ ∈ C∞(T ∗).

We now consider the mapping

ι′ : Rn−1 → G,

which sends θ = (θ1, . . . , θn−1) ∈ Rn−1 into the diagonal matrix

ι′(θ) = diag
(
eix1 , . . . , eixn

)
of G, where

(3.8) x1 = θ1, xj = θj − θj−1, xn = −θn−1,

for 2 6 j 6 n − 1. If {e′1, . . . , e′n−1} is the standard basis of Rn−1 and Λ′

is the lattice of Rn−1 generated by the basis {2πe′j}16j6n−1 of Rn−1, the
mapping ι′ induces by passage to the quotient an imbedding

ι′ : Rn−1/Λ′ → G.

The image of the mappings ι′ is the maximal torus H of the group G

which consists of all diagonal matrices of G and is therefore a maximal
flat totally geodesic torus of G viewed as a symmetric space. Clearly we
have ι′(0) = e0.

We consider the standard coordinate system (θ1, . . . , θn−1) on Rn−1 and
endow this space with the Riemannian metric

g̃ =
n−1∑
j=1

dθj · dθj −
n−2∑
j=1

dθj · dθj+1.

For 1 6 j 6 n − 1, we consider the vector field ξj = ∂/∂θj on Rn−1. The
vector field ζ ′j on H, determined by

(3.9) ι′∗(ξj(θ)) = ζ ′j(ι
′(θ)),

for θ ∈ Rn−1, is invariant under the action of the group H; when we identify
Te0 with g0, we easily verify that ζ ′j(e0) = Cj . It follows that ζ ′j is equal to
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the restriction of the vector field Cj to H. Since {C1, . . . , Cn−1} is a frame
for the submanifold H of G, by (3.2) and (3.9) we see that

(3.10) ι′∗g′ = g̃.

Hence the mapping ι′ : Rn−1 → H is an isometric imbedding. If f is a
function on X, we now easily see that

(3.11)
∫

Z

f dZ =
√
n

∫ 2π

0

· · ·
∫ 2π

0

f(ι′(θ)) dθ1 . . . dθn−1,

where θ = (θ1, . . . , θn−1) ∈ Rn−1. Moreover, from the above remarks we
infer that {ζ ′1, . . . , ζ ′n−1} is a basis for the space of parallel vector fields
on H. Since all maximal flat totally geodesic tori of X are conjugate under
the left action of G, from the relations (3.1) and (3.4)–(3.6) we now deduce
the following result:

Lemma 3.1. — Let n, p > 3 be given integers and let X be the sym-
metric space SU(n). A 1-form ϕ on X satisfies the Guillemin condition if
and only if the symmetric (p− 1)-form σ̃′p(ϕ) on X satisfies the Guillemin
condition.

4. Functions on the special unitary group

Let k > 1 be a given integer. For 1 6 j, l 6 k, we denote by zjl the
function on the space of matrices Mk which sends a matrix of Mk into its
(j, l)-th entry. We also consider the complex-valued function ∆(k)

jl on Mk

defined as follows. If k = 1, the function ∆(1)
11 is identically equal to 1;

if k > 2, the value of the function ∆(k)
jl at a matrix A ∈Mk is the cofactor

of the entry zjl(A) in A, which is equal to (−1)j+l times the determinant
of the (k−1)× (k−1) matrix obtained from A by deleting its j-th row and
its l-th column. We note that, if A ∈ Mk is a symmetric matrix, then we
have ∆(k)

jl (A) = ∆(k)
lj (A). If detk denotes the function on Mk which sends

a matrix of Mk into its determinant, we recall that

(4.1)
k∑

r=1

zjr ∆(k)
lr = δjl detk,

for all 1 6 j, l 6 k. Thus we obtain the relation

(4.2)
∂

∂zjl
detk = ∆(k)

jl ,

for all 1 6 j, l 6 k.
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We consider the group G = SU(n), with n > 3, as a real submanifold of
the complex manifold Mn. The left action of the group G on the manifold
Mn induces a morphism Φ from g0 to the Lie algebra of vector fields on Mn,
which are tangent to the submanifold G of Mn. The mapping Φ extends to
a C-linear morphism from the complexification g of g0 to the space of all
complex vector fields on Mn.

The functions {zjk} on Mn defined above, with 1 6 j, k 6 n, form a
holomorphic coordinate system for Mn. We consider the Cn-valued function
Zj on Mn which sends a matrix of Mn into its j-th row; then we have
Zj = (zj1, . . . , zjn). For 1 6 j, k 6 n, the complex vector field

ξjk =
n∑

l=1

zjl
∂

∂zkl

on Mn satisfies

(4.3) ξjkZl = δklZj , ξjkZ̄l = 0,

for all 1 6 l 6 n. For 1 6 j, k 6 n, with j 6= k, and 1 6 l 6 n− 1, we verify
that

Φ(Ajk) = ξ̄jk − ξ̄kj + ξjk − ξkj , Φ(Bjk) = i(ξ̄jk + ξ̄kj − ξjk − ξkj),

Φ(Cl) = i(ξ̄ll − ξ̄l+1,l+1 + ξl+1,l+1 − ξll).

If 1 6 j, k 6 n, with j 6= k, since Ejk is equal to 1
2 (Ajk−iBjk), the complex

vector field ηjk = Φ(Ejk) on Mn is given by

ηjk = ξ̄jk − ξkj ,

and so we have

(4.4) η̄jk = −ηkj .

If z = (z1, . . . , zn) and w = (w1, . . . , wn) are elements of Cn, we write

〈z, w〉 =
n∑

j=1

zjwj .

Let 1 6 k 6 n− 1 be a given integer. We consider the Mk-valued function
Ak on Mn defined by

Ak =
(
〈Zj , Zl〉

)
16j,l6k

,

and the complex-valued function

fk = detAk
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on Mn. If ι′ : Rn−1 → G is the mapping defined in §3, for all θ ∈ Rn−1

and 1 6 j, l 6 n, we have

〈Zj , Zl〉(ι′(θ)) = e2ixjδjl,

where xj is given by (3.8); hence we have the equality

(4.5) fk(ι′(θ)) = e2iθk .

Lemma 4.1. — Let 1 6 k 6 n − 1 and 1 6 j, l 6 n be given integers.
The equalities

ξjlfk = 0

hold on Mn whenever l > k, and the equalities

ξjlfk = 2δjlfk

hold on Mn whenever 1 6 j, l 6 k.

Proof. — The first equalities are immediate. We now suppose that the
integers j, l satisfy 1 6 j, l 6 k. Since the function Ak takes its values in
the space of symmetric matrices, according to (4.2) and (4.3) we have

ξjlfk =
k∑

p,q=1

∆(k)
pq (Ak) · ξjl〈Zp, Zq〉 = 2

k∑
p,q=1

∆(k)
pq (Ak)〈Zj , Zq〉δpl;

by (4.1) it follows that

ξjlfk = 2
k∑

q=1

(∆(k)
lq zjq)(Bk) = 2δjlfk.

�

Let 1 6 k 6 n − 1 and 1 6 j < l 6 n be given integers. The preceding
lemma implies that

ηljfk = −ξjlfk = 0,(4.6)

Φ(Cj)fk = −2iδjkfk.(4.7)

5. Highest weight vectors

We consider the maximal torus H of the simple group G introduced in §3
and its Lie algebra h0, and also the complexification g = sl(n,C) of the Lie
algebra g0 of G. The complexification h of h0 is equal to the Cartan subalge-
bra of the simple Lie algebra g consisting of all diagonal matrices of g, and
the matrices {C1, . . . , Cn−1} form a basis of h0. For 1 6 j 6 n, the linear
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form λj : h → C, sending the diagonal matrix with a1, . . . , an ∈ C as its di-
agonal entries into aj , is purely imaginary on h0. We write αj = λj − λj+1,
for 1 6 j 6 n− 1. Then{

λj − λk | 1 6 j, k 6 n and j 6= k
}

is the system of roots of g with respect to h. We take {α1, . . . , αn−1} as a
system of simple roots of g; the corresponding system of positive roots is

∆+ =
{
λj − λk | 1 6 j < k 6 n

}
.

If α is the root λj − λk, with 1 6 j, k 6 n and j 6= k, the root sub-
space gα corresponding to α is generated by Ejk (over C). We have the
decomposition

g = n− ⊕ h⊕ n+,

where
n+ =

⊕
α∈∆+

gα, n− =
⊕

α∈∆+
g−α.

The corresponding fundamental weights are

$j = λ1 + · · ·+ λj ,

with 1 6 j 6 n− 1; in fact, we have

(5.1) $k(Cj) = iδjk,

for 1 6 j, k 6 n−1. The unique element w0 of the Weyl group of g satisfying

w0(∆+) = −∆+

is the involutive automorphism determined by

w0(αj) = −αn−j ,

for 1 6 j 6 n− 1; we verify that

(5.2) w0($j) = −$n−j ,

for 1 6 j 6 n − 1. A dominant integral form λ for the simply-connected
group G is a linear form on h which can be written in the form

λ = b1λ1 + b2λ2 + · · ·+ bnλn,

where b1, b2 . . . , bn are integers satisfying

b1 > b2 > · · · > bn;

if
λ = c1λ1 + c2λ2 + · · ·+ cnλn
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is another expression for the linear form λ, where c1, c2, . . . , cn are integers
satisfying c1 > c2 > · · · > cn, then there exists an integer c such that

cj = bj + c,

for all 1 6 j 6 n. Therefore a dominant integral form λ for G may be
written in a unique way

(5.3) λ = γr1,...,rn−1 = r1$1 + · · ·+ rn−1$n−1,

where r1, . . . , rn−1 are non-negative integers. Thus the highest weight of an
irreducible (complex) G-module has a unique expression of this form and
we may identify the dual Γ of G with the set of all linear forms on h which
can be written in the form (5.3).

Let γ = γr1,r2,...,rn−1 be an element of Γ, where r1, . . . , rn−1 are non-
negative integers; by (5.2), the unique element γ̄ of Γ determined by

w0(γ) = −γ̄

is equal to γrn−1,...,r2,r1 . In particular, if γ is the element $k of Γ, we
have γ̄ = $n−k.

If E is a finite-dimensional G-module and v is a highest weight vector
of E, then we know that n+v = {0}; thus we have

(5.4) Ejkv = 0,

for all 1 6 j < k 6 n.
The action of G on the vector space V = Cn endows V with the structure

of a G-module. We denote by ρ the representations of G and g on the k-th
tensor product

⊗k
V of V . We shall consider the k-th symmetric product

of the vector space V as a G-submodule of
⊗k

V ; the k-th symmetric power
vk of v ∈ V may then be viewed as an element of

⊗k
V . Let {e1, . . . , en}

be the standard basis of V .
The center of G is the cyclic subgroup

(5.5) S =
{
e2ikπ/nIn | 0 6 k 6 n− 1

}
of order n. If E is a G-module, we denote by ES the G-submodule of E
consisting of all S-invariant elements of E.

Lemma 5.1. — Let r1, . . . , rn−1 > 0 be given integers. Let E be an
irreducible G-module corresponding to the element γr1,...,rn−1 of Γ and let
v be a highest weight vector of E.

(i) If rn−1 = 0, then we have

(5.6) En,n−1v = 0, An−1,nv = 0.
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(ii) The equality E = ES holds if and only if

(5.7) r1 + 2r2 + · · ·+ (n− 1)rn−1 ≡ 0 mod n.

Proof. — For 1 6 k 6 n − 1, we write ck =
∑n−1

j=k rj and q =
∑n−1

k=1 ck.
The Young symmetrizer Φ corresponding to the partition (c1, c2, . . . , cn−1)
is an endomorphism of the G-module

⊗q
V . We know that the image W

of Φ is a G-submodule of
⊗q

V isomorphic to E and that the image of the
element

w = ec1
1 ⊗ ec2

2 ⊗ · · · ⊗ e
cn−1
n−1

of
⊗q

V under the morphism Φ is a highest weight vector of W . If rn−1 = 0,
we have cn−1 = 0 and ρ(En,n−1)w = 0; the relations (5.6) are a consequence
of the latter equality and (5.4). If s is the element e2iπ/nIn of S, we easily
see that

ρ(s)w = e2ilπ/nw,

where l = r1+2r2+· · ·+(n−1)rn−1. By Schur’s lemma, we see that the ele-
ment s of S acts on E by multiplication by the scalar e2ilπ/n. Assertion (ii)
is a direct consequence of this observation. �

The space C∞(G) inherits a G-module structure from the left action
of G on X; the corresponding representation π of G or of the Lie algebra g

on C∞(G) is the left regular representation. If γ is an element of Γ and Eγ

is an irreducible G-module corresponding to γ, according to the Peter-Weyl
theorem the isotypic component C∞

γ (G) of C∞(G) corresponding to γ is
isomorphic to k copies of Eγ , where the integer k is equal to the dimension
of Eγ (over C). For all ξ ∈ g0 and f ∈ C∞(G), we have

π(ξ) · f = Φ(ξ) · f.

If γ = γr1,...,rn−1 is an element of Γ, where r1, . . . , rn−1 are non-negative
integers, from Lemma 5.1, (ii) we deduce that C∞

γ (G) is a G-submodule
of C∞(G)S if and only if the integers r1, . . . , rn−1 satisfy the relation (5.7).

If γ ∈ Γ, a linear form λ on h is a weight of the G-module C∞
γ (G) if and

only if −λ is a weight of the complex conjugate C∞
γ (G) of the space C∞

γ (G).
Therefore we have the equality

(5.8) C∞
γ̄ (G) = C∞

γ (G)

of G-modules.
Let 1 6 k 6 n− 1 be a given integer. Throughout the remainder of this

paper, by fk we shall always often mean the restriction of the function fk
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on Mn to the submanifold G. From the relations (4.6), (4.7) and (5.1), we
infer that the equalities

(5.9) Φ(Cj)fk = −2$k(Cj)fk, Φ(Erj)fk = 0,

hold on Mn for all integers 1 6 j < r 6 n. From the relations (5.9)
and (4.4), it follows that

(5.10) π(ξ)f̄k = 2$k(ξ)f̄k, π(η)f̄k = 0,

for all ξ ∈ h0 and η ∈ n+. Thus the function f̄k is a highest weight vector
of the isotypic component C∞

2$k
(G); moreover according to (5.8), we know

that fk is an element of C∞
2$n−k

(G).
Let r1, . . . , rn−1 > 0 be given integers and γ be the element

γ1
r1,...,rn−1

= 2γr1,...,rn−1

of Γ; we consider the complex-valued function fr1,...,rn−1 on G defined by

fr1,...,rn−1 =
n−1∏
k=1

frk

k .

Since f̄k is a highest weight vector of the G-module C∞
2$k

(G), we know that
f̄r1,...,rn−1 is a highest weight vector of the G-module C∞

γ (G).

6. The special Lagrangian Grassmannians

Let n be a given integer > 3. Let G be the group SU(n) and let K be the
subgroup SO(n), which is equal to the set of fixed points of the involution
s of G sending a matrix into its complex conjugate. Then (G,K) is a
Riemannian symmetric pair. In the Cartan decomposition

g0 = k0 ⊕ p0

of the Lie algebra g0 of G corresponding to this involution, we know that
k0 is the Lie algebra of K and that the K-submodule p0 is the space of all
symmetric purely imaginary n× n matrices of trace zero. If B denotes the
Killing form of the Lie algebra g0, the restriction of −B to p0 induces a
G-invariant Riemannian metric g0 on the homogeneous space X = G/K.
Endowed with this metric g0, the manifold X is an irreducible symmetric
space called the special Lagrangian Grassmannian. We identify the K-
module p0 with the tangent space of X at the coset x0 of the identity
element In of G.

The matrices {Bjk, Cl}, with 1 6 j < k 6 n and 1 6 l 6 n − 1, form
a basis of p0, while the matrices {Ajk}, with 1 6 j < k 6 n, form a basis
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of k0. The restriction qp of the homogeneous polynomial Qp on g0 defined
in §3 to p0 is K-invariant and therefore gives rise to a G-invariant sym-
metric p-form σp on X. It is well-known that the algebra of all K-invariant
polynomials on g0 is generated by the polynomials qp, with 2 6 p 6 n, and
that these polynomials are algebraically independent. We know that the
metric g0 is equal to the symmetric 2-form 2n · σ2 and that σ3 is up to a
constant the unique G-invariant symmetric 3-form on X; in fact, we have

σ3(ξ1, ξ2, ξ3) = i Tr (ξ1 · ξ2 · ξ3),

for all ξ1, ξ2, ξ3 ∈ p0 (see [2, §2]).
Throughout the remainder of this paper, we consider the irreducible sym-

metric space X = SU(n)/SO(n), with n > 3, endowed with the Riemann-
ian metric g = σ2. We consider the line bundle {g} generated by the section
g of S2T ∗. According to (3.2), we have

(6.1) g(Cj , Cj) = 2, g(Cl, Cl+1) = −1, g(Ck, Cq) = 0,

for all 1 6 j, k, q 6 n− 1 and 1 6 l 6 n− 2, with q > k + 2.
For p > 3, we consider the G-equivariant monomorphism

σ̃p : T ∗ → Sp−1T ∗

induced by the symmetric p-form σp. We shall write σ = σ3 and σ̃ = σ̃3.
Let U be the vector space Rn endowed with its standard Euclidean scalar

product q and let {e1, . . . , en} be the standard basis of U . We consider the
objects which we associated with U and q in §2. We consider the morphism
of K-modules

p0 → S2U,

which sends the symmetric n× n matrix (iajk) of p0, where ajk ∈ R, into
the element

∑n
j,k=1 ajkej ⊗ ek of S2U . The restriction to S2

0U
∗ of the dual

of this morphism is an isomorphism

µ : S2
0U

∗ → p∗0

of K-modules. We shall consider the isomorphism

µ′ : S2(S2
0U

∗) → S2T ∗x0

of K-modules induced by µ; then if Q is the element of S2(S2
0U

∗) corre-
sponding to the scalar product on S2

0U
∗ and if u is an element of S2

0U
∗, we

see that the equalities

(6.2) µ′(Q) = g(x0), 4nσ̃(µu) = µ′φ(u)

hold among elements of S2T ∗x0
. By means of the isomorphism µ′, the decom-

positions (2.1) and (2.2) give us a decomposition of the fiber of the vector
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bundle S2T ∗ at x0 into irreducible K-submodules. Since a K-submodule
E0 of S2T ∗x0

gives rise to a unique G-invariant sub-bundle E of S2T ∗ such
that Ex0 = E0, from the decomposition (2.2) and the relations (6.2) we
obtain the G-invariant decomposition

(6.3) S2T ∗ = {g} ⊕ E1 ⊕ E2 ⊕ σ̃(T ∗)

of the bundle S2T ∗, where E1 and E2 are the G-invariant sub-bundles
of S2T ∗ satisfying E1,x0 = µ′(S4

0U
∗) and E2,x0 = µ′ψ(B0(U)). When n = 3,

we know that E2 = {0}. On the other hand, when n = 4, the K-module
E2,x0 decomposes into the sum of two non-trivial irreducible K-modules
neither of which is isomorphic to S2

0U
∗. We denote by Skp the k-th sym-

metric product of the complexification p of the K-module p0; since the
K-modules p0 and p∗0 are isomorphic, from the preceding observations and
the remarks made in §2 concerning the irreducible SO(U)-modules appear-
ing in the decompositions (2.1) and (2.2), we obtain the following result:

Lemma 6.1. — We have

dim HomK(p, S2p) = dim HomK(p, S2T ∗C,x0
) = 1.

The lattice Λ of Rn−1 generated by the basis {πe′j}16j6n−1 of Rn−1

contains the lattice Λ′ of Rn−1 defined in §3. We consider the mapping
ι′ : Rn−1 → G whose image is the maximal torus H of the group G. We
denote by ρ : G → X the natural projection. Two elements a and b of G,
which belong to the image of ι′, have the same image in X under ρ if and
only if there exists an element λ ∈ Λ such that a = bι′(λ). Thus there is an
injective mapping

ι : Rn−1/Λ → X

such that the diagram

Rn−1/Λ′ ι′−−−−→ Gy yρ

Rn−1/Λ ι−−−−→ X

is commutative. We also denote by ι the mapping ρ ◦ ι′ : Rn−1 → X. The
subgroup H ′ = H ∩ K of H is equal to ι′(Λ) and the image Z of the
mappings ι is a maximal flat totally geodesic torus of X, which is equal
to ρ(H) = H/H ′. Clearly we have ι(0) = ρ(e0) = x0. If g̃ is the Riemannian
metric on Rn−1 defined in §3, by (3.10) we have the equality

(6.4) ι∗g = g̃;
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hence the mapping ι : Rn−1/Λ → Z is an isometric imbedding. If f is a
function on X, we now easily see that

(6.5)
∫

Z

f dZ =
√
n

∫ π

0

· · ·
∫ π

0

f(ι(θ)) dθ1 . . . dθn−1,

where θ = (θ1, . . . , θn−1) ∈ Rn−1.
For 1 6 j 6 n− 1, we consider the vector field ξj = ∂/∂θj on Rn−1; the

vector field ζj on Z, which is determined by

(6.6) ι∗(ξj(θ)) = ζj(ι(θ)),

for θ ∈ Rn−1, is invariant under the action of the group H on Z. The
vector field ζ ′j on H is ρ-projectable and we have ρ∗ζ

′
j = ζj . Moreover,

{ζ1, . . . , ζn−1} is a basis for the space of parallel vector fields on Z. When
we identify Tx0 with p0, by (3.9) we see that

(6.7) ζj(x0) = Cj ,

and so ζ ′j(x0) is equal to the vector ζj(x0) of p0 viewed as an element of g0.
For 1 6 j 6 n, by (6.7) the parallel vector field

ηj =
1
n

(n−1∑
k=j

(n− k)ζk −
j−1∑
k=1

kζk

)
on Z satisfies ηj(x0) = C̃j ; then we verify that

(6.8) ζj = ηj − ηj+1,

for 1 6 j 6 n− 1, and that

(6.9)
n∑

j=1

ηj = 0.

Let ϕ be an element of T ∗x0
; then there is a unique element ζ ∈ p0 such

that ϕ = g[(ζ). Since we have g′(p0, k0) = 0, the element ρ∗ϕ of T ∗G,e0
is

equal to g′[(ζ ′), where ζ ′ is equal to the vector ζ viewed as an element of g0.
If p > 3 be a given integer, we therefore have the equalities

ϕ(y1) = (ρ∗ϕ)(y′1), σ̃p(ϕ)(y1, . . . , yp−1) = σ̃′p(ρ
∗ϕ)(y′1, . . . , y

′
p−1),

for all y1, . . . , yp−1 ∈ p0, where y′j is equal to the vector yj considered as an
element of g0. Then from the equalities (3.4)–(3.6), we obtain the relation

(6.10) σ̃p(ϕ)(ζj1 , ζj2 , . . . , ζjp−1) = 0,

for 1 6 j1, j2, . . . , jp−1 6 n− 1, with j1 > j2 + 1, and the relations

(6.11) σ̃p(ϕ)(ζj , . . . , ζj) = ϕ(ηj) + (−1)p+1ϕ(ηj+1),
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for all 1 6 j 6 n− 1; moreover, for all 1 6 j 6 n− 2 and 1 6 k 6 p− 1, we
have

(6.12) σ̃p(ϕ)(ζj , . . . , ζj , ζj+1, . . . , ζj+1) = (−1)kϕ(ηj+1),

if the vector field ζj appears k times in the left-hand side of this equation.
Because the vector fields ζj are invariant under the action of the group H,
the relations (6.10)–(6.12) hold for all ϕ ∈ C∞(T ∗). Since {ζ1, . . . , ζn−1} is
a basis for the space of parallel vector fields on Z, and since all maximal
flat totally geodesic tori of X are conjugate under the action of G on X,
from the relations (6.8) and (6.10)–(6.12) we deduce the following result:

Lemma 6.2. — Let n, p > 3 be given integers and let X be the symmet-
ric space SU(n)/SO(n). A 1-form ϕ on X satisfies the Guillemin condition
if and only if the symmetric (p−1)-form σ̃p(ϕ) on X satisfies the Guillemin
condition.

The equalities (11.1) of [2] and the preceding lemma, with n = 4 and
p = 3, give us precisely the assertion of Lemma 4.1 of [2], with n = 3.

According to (6.9), (6.11) and (6.12), we easily see that an arbitrary
element h of the sub-bundle σ̃(T ∗) of S2T ∗ satisfies the relation

(6.13)
n−1∑
j=1

h(ζj , ζj) +
n−2∑
j=1

h(ζj , ζj+1) = 0.

If ϕ is a 1-form on X, since the mapping ι is totally geodesic, by (6.6)
and the definition of the operator D1 we have the equality

(6.14) 2 ι∗(D1ϕ)(ζj , ζk) = ξj ·〈ξk, ι∗ϕ〉+ ξk ·〈ξj , ι∗ϕ〉

of functions on Rn−1, for 1 6 j, k 6 n− 1.

7. Functions on the special Lagrangian Grassmannians

As in §6, we consider the groupsG = SU(n) andK = SO(n), with n > 3.
If γ is an element of Γ, we consider an irreducible G-module Eγ corre-
sponding to γ. We shall denote by Γ0 the subset of Γ consisting of all
elements γ1

r1,...,rn−1
of Γ, where r1, . . . , rn−1 > 0 are integers. Since the

group G is a real form of the group SL(n,C) and the subgroup K is equal
to G∩SO(n,C), from Proposition 10.1 of [2] we deduce the following result:

Proposition 7.1. — Let G be the group SU(n) and K be its sub-
group SO(n), with n > 3. Let γ = γr1,...,rn−1 be an element of Γ, where
r1, . . . , rn−1 are integers > 0. The multiplicity of the trivial K-module in
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the decomposition of the G-module Eγ , viewed as a K-module, is equal to 1
if γ belongs to Γ0 and to 0 otherwise. If γ belongs to Γ0, the multiplicity
of the K-module p in the decomposition of the G-module Eγ , viewed as a
K-module, is equal to the number of non-zero integers rj .

We consider the Lagrangian Grassmannian X = G/K and the natu-
ral projection ρ : G → X. Let F be a G-invariant sub-bundle of SpT ∗.
The spaces C∞(X), C∞

R (X), C∞(F ) and C∞(FC) inherit structures of
G-modules from the action of G on X. If γ is an element of Γ, we de-
note by C∞

γ (X) (resp. C∞
γ (FC)) the isotypic component of the (complex)

G-module C∞(X) (resp. C∞(FC)) corresponding to γ. For γ ∈ Γ, we recall
that the multiplicity of the G-module C∞

γ (SpT ∗C) is equal to the dimension
of the weight subspace of the G-module C∞

γ (SpT ∗C) corresponding to γ (see
§2, Chapter II of [1]).

If γ ∈ Γ, a linear form λ on h is a weight of the G-module C∞
γ (SpT ∗C)

if and only if −λ is a weight of the complex conjugate C∞
γ (SpT ∗C) of the

space C∞
γ (SpT ∗C); therefore we have the equality

(7.1) C∞
γ̄ (SpT ∗C) = C∞

γ (SpT ∗C)

of G-modules.
If E is aG-submodule of C∞(G), we denote by EK theG-submodule of E

consisting of all functions of E which are invariant under the right action
of K on G. The natural projection ρ : G→ X induces an isomorphism

ρ∗ : C∞(X) → C∞(G)K

of G-modules, which sends a function f ∈ C∞(X) into the function ρ∗f

on G. If γ is an element of Γ, this mapping ρ∗ induces a monomorphism

ρ∗ : C∞
γ (X) → C∞

γ (G)K .

A function f on G which is invariant under the right action of K on G

determines a function f̃ on X satisfying ρ∗f̃ = f .
Let H denote the space of functions on Mn generated by the complex-

valued functions 〈Zj , Zl〉, with 1 6 j, l 6 n. A function f belonging to
H is invariant under the right action of K on Mn; hence its restriction
to G induces by passage to the quotient a function f̃ on X. Therefore
for 1 6 k 6 n− 1, the complex-valued function fk on Mn is invariant un-
der the right action of K on Mn; its restriction to G induces by passage
to the quotient a function f̃k on X. The complex conjugate f̂k of the func-
tion f̃k is equal to the function on X induced by the function f̄k on G.

TOME 57 (2007), FASCICULE 7



2166 Jacques GASQUI & Hubert GOLDSCHMIDT

If r1, . . . , rn−1 > 0 are integers, the function

f̃r1,...,rn−1 =
n−1∏
k=1

f̃rk

k

is equal to the function on X induced by the function fr1,...,rn−1 on G;
its complex conjugate f̂r1,...,rn−1 is equal to the function on X induced by
the function f̄r1,...,rn−1 on G. If r1, . . . , rn−1 ∈ Z, when at least one of the
integers is < 0, we set

f̃r1,...,rn−1 = 0.

If γ is an element of Γ, by the Frobenius reciprocity theorem the first
assertion of Proposition 7.1 tells us that the isotypic component C∞

γ (X)
of C∞(X) corresponding to γ is irreducible if γ belongs to Γ0 and vanishes
whenever γ does not belong to Γ0.

If r1, . . . , rn−1 > 0 are given integers and γ is the element γ1
r1,...,rn−1

of Γ0, since f̄r1,...,rn−1 is a highest weight vector of the G-module C∞
γ (G),

the function f̂r1,...,rn−1 is a highest weight vector of the irreducible G-
module C∞

γ (X). In particular, for 1 6 k 6 n− 1, we know that f̂k is a
highest weight vector of the irreducible G-module C∞

2$k
(X).

If γ ∈ Γ0, according to (5.8) or (7.1) we have the equality

(7.2) C∞
γ̄ (X) = C∞

γ (X)

of G-modules. Hence f̃k is an element of C∞
2$n−k

(X), for 1 6 k 6 n − 1.
The element γ = γ1

1,0,...,0,1 = 2$1 + 2$n−1 of Γ0 satisfies γ̄ = γ; thus
according to (7.2), the G-module B = C∞

γ (X) is invariant under complex
conjugation, and hence is equal to the complexification of the G-submodule

BR =
{
f ∈ B | f = f̄

}
of C∞

R (X). Since the function f̂1 · f̂n−1 is a highest weight vector of B, its
complex conjugate f̃1 ·f̃n−1 is also an element of B.

Let r1, . . . , rn−1 > 0 be given integers and γ be the element γ1
r1,...,rn−1

of Γ0; by the Frobenius reciprocity theorem and the second assertion of
Proposition 7.1, we see that the multiplicity of the isotypic component
C∞

γ (T ∗C) of C∞(T ∗C) is equal to the number of non-zero integers r1, . . . , rn−1.
Since f̂k is not a constant function, we know that df̂k is a highest weight
vector of the G-module C∞

2$k
(T ∗C). Therefore the section f̂r1,...,rn−1df̂k is a

highest weight vector of the G-module C∞
γ′ (T

∗
C), where

γ′ = γ1
r1,...,rk−1,rk+1,rk+1,...,rn−1

= 2$k + γ1
r1,...,rn−1

.
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We consider the sections ϕ1, . . . , ϕn−1 of T ∗C defined by

ϕk = f̃r1,...,rk−1,rk−1,rk+1,...,rn−1df̃k,

for 1 6 k 6 n − 1. Note that ϕk is non-zero if and only if the integer
rk is non-zero. If ϕk is non-zero, we have just seen that the complex con-
jugate ϕ̄k of ϕk is a highest weight vector of the G-module C∞

γ (T ∗C). In
the next section, we shall verify that the non-zero elements of the family
{ϕ1, . . . , ϕn−1} are linearly independent. We know that the number of such
elements of this family is equal to the number of non-zero integers rk. On
the other hand, we remarked above that the latter number is equal to the
multiplicity of the isotypic component C∞

γ (T ∗C). This multiplicity is also
equal to the dimension of the weight subspace Wγ of C∞

γ (T ∗C) correspond-
ing to its highest weight γ. Therefore we have the following result:

Lemma 7.2. — Let r1, . . . , rn−1 > 0 be given integers and let γ be
the element γ1

r1,...,rn−1
of Γ0. Then the non-zero members of the family

{ϕ̄1, . . . , ϕ̄n−1} associated with the integers r1, . . . , rn−1 form a basis for
the space Wγ .

We consider the element γ1 = 2$1 of Γ0. By Lemma 7.2, we know that
the G-module C∞

γ1
(T ∗C) is irreducible and we have the equality

(7.3) C∞
γ1

(T ∗C) = dC∞
γ1

(X).

The complexification UC of U = Rn is a G-module, and so the k-th
symmetric products SkUC and SkU∗

C inherit structures of G-modules. In
fact, the highest weight of the irreducible G-module S2UC is equal to γ1 and
this module viewed as a K-module is isomorphic to S2U∗

C. We consider the
standard Euclidean scalar product of U as an element q of S2U∗. If {q} is
the complex subspace of S2U∗

C generated by q, we have the decomposition

S2U∗
C = S2

0U
∗
C ⊕ {q}

of the G-module S2U∗
C into irreducible K-modules; according to remarks

made in §§2 and 6, we then see that

HomK(E1,x0,C, S
2U∗

C) = HomK(E2,x0,C, S
2U∗

C) = {0}.

Therefore from the Frobenius reciprocity theorem, we obtain the following
result:

Lemma 7.3. — We have

C∞
γ1

(E1,C) = C∞
γ1

(E2,C) = {0}.
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>From Lemma 7.3, the equality (7.3) and the decomposition (6.3), we
obtain the decomposition

(7.4) C∞
γ1

(S2T ∗C) = C∞
γ1

(X) ·g ⊕ σ̃dC∞
γ1

(X).

Thus the multiplicity of the isotypic component C∞
γ1

(S2T ∗C) is equal to 2
and the weight subspace of this G-module corresponding to its highest
weight γ1 is generated by the sections f̂1g and σ̃(df̂1).

8. An algebraic result

Let n > 3 be a given integer and let r1, . . . , rn−1 > 0 be given integers
which are not all zero. We set

(8.1) dk =
1
n

(n−1∑
j=k

(n− j)rj −
k−1∑
j=1

jrj

)
,

for 1 6 k 6 n. We note that

d1 + d2 =
1
n

(
(n− 2)r1 + 2

n−1∑
k=2

(n− k)rk

)
,

dn−1 + dn = − 1
n

(
(n− 2)rn−1 + 2

n−2∑
k=1

krk

)
;

thus the first of these two numbers is always positive, while the second one
is always negative.

In the next section, we shall require the following result:

Proposition 8.1. — Let r1, . . . , rn−1 > 0 be given integers which are
not all zero. Let a1, . . . , an−1 be given complex numbers satisfying

(8.2) akrj + ajrk = 0,

for all 1 6 j, k 6 n− 1 with j + 2 6 k 6 n− 1. Let c be a complex number
satisfying the relations

(8.3) 2iakrk = c(dk + dk+1),

for 1 6 k 6 n− 1, and

(8.4) i(akrk+1 + ak+1rk) = −cdk+1,

for 1 6 k 6 n− 2. Then either the complex number c vanishes or we have

rk = 0, r1 = rn−1, a1 = −an−1, c = 2ia1,

for all 2 6 k 6 n− 2.
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We now begin our proof of Proposition 8.1, which will be in several steps.
Let a1, . . . , an−1 be given complex numbers. If rk > 1, with 1 6 k 6 n− 1,
we write ck = ak/rk. Let 1 6 j, k 6 n− 1 be integers satisfying k > j + 2;
if the integers rj and rk are non-zero, then the relation (8.2) implies that

(8.5) cj = −ck.

Lemma 8.2. — Let r1, . . . , rn−1 > 0 be given integers which are not all
zero, and let a1, . . . , an−1, c be given complex numbers. Then the coefficient
c vanishes whenever one of the following two conditions holds:

(i) The relations (8.3) hold and at least one of the integers r1 and rn−1

vanishes.
(ii) The relations (8.2) and (8.3) hold, the integers r1 and rn−1 are non-

zero and there exists an integer 3 6 k 6 n− 3 such that rk > 1.

Proof. — Under the hypotheses of (i), the inequalities d1 + d2 > 0 and
dn−1 + dn < 0 imply that c = 0. Under the assumptions of (ii), according
to the relations (8.5) the coefficients c1, ck and cn−1 vanish. Since we have
a1 = 0 and d1 +d2 > 0, from the equality (8.3), with k = 1, we then deduce
the vanishing of c. �

We now suppose that the hypotheses of Proposition 8.1 hold; according
to Lemma 8.2, we know that the assertions of this proposition hold except
possibly in the following cases:

(i) We have n > 5 and the integers r1, r2, rn−2 and rn−1 are the only
non-zero integers of the family {r1, . . . , rn−1}.

(ii) We have n > 5 and the integers r1, rn−2 and rn−1 are the only
non-zero integers of the family {r1, . . . , rn−1}.

(iii) We have n > 5 and the integers r1, r2 and rn−1 are the only non-
zero integers of the family {r1, . . . , rn−1}.

(iv) We have n = 4 and the three integers r1, r2 and r3 are non-zero.
(v) We have n > 3, the integers r1 and rn−1 are the only non-zero

integers of the family {r1, . . . , rn−1} and r1 6= rn−1.
(vi) We have n > 3, the integers r1 and rn−1 are the only non-zero

integers of the family {r1, . . . , rn−1} and r1 = rn−1.
We now proceed to show that the complex number vanishes c whenever

one of the hypotheses (i)–(v) holds. In the following lemmas, we shall always
assume that the hypotheses of Proposition 8.1 hold.

Lemma 8.3. — Suppose that n > 5 and that rk = 0, for 3 6 k 6 n− 3.
Assume that

(8.6) r1 + 2r2 = 2rn−2 + rn−1.
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Then if either r2 6= 0 or rn−2 6= 0, the coefficient c vanishes.

Proof. — According to (8.3), we have

2ia1r1 = c(r1 + 2r2), 2ian−1rn−1 = −c(2rn−2 + rn−1),

2ia2r2 = cr2, 2ian−2rn−2 = −crn−2;

by (8.4), we see that

i(a1r2 + a2r1) = −cr2, i(an−2rn−1 + an−1rn−2) = −crn−2.

Since the determinant of the matrix2r1 0 −r1 − 2r2
0 2r2 −r2
r2 r1 r2


is equal to

2r2(r1 + r2)(r1 + 2r2),

when r2 is non-zero, the equalities

2ia1r1 = c(r1 + 2r2), 2ia2r2 = cr2, i(a1r2 + a2r1) = −cr2

imply that the coefficients a1, a2 and c vanish. The determinant D of the
matrix 2rn−1 0 rn−1 + 2rn−2

0 2rn−2 rn−2

rn−2 rn−1 rn−2


satisfies

D = −2rn−2(r2n−1 + 2r2n−2 − rn−1rn−2) 6 −2r3n−2;

thus when rn−2 is non-zero, the equalities

2ian−1rn−1 = −c(2rn−2 + rn−1),

2ian−2rn−2 = −crn−2 = i(an−2rn−1 + an−1rn−2)

imply that the coefficients an−2, an−1 and c vanish. �

Lemma 8.4. — Suppose that n > 5 and that rk = 0, for 3 6 k 6 n− 3.
Suppose that one of the following conditions holds:

(i) We have r2 = 0 or rn−2 = 0.
(ii) We have n > 6.
(iii) We have n = 5 and the integers r1, r2, r3, r4 are non-zero.

Then either the coefficient c vanishes or the equality (8.6) holds.
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Proof. — By (8.3), with k = 2 and r2 = 0, we see that

c(d2 + d3) =
2c
n

(−r1 + 2rn−2 + rn−1) = 0;

on the other hand, by (8.3), with k = n− 2 and rn−2 = 0, we see that

c(dn−2 + dn−1) =
2c
n

(−r1 − 2r2 + rn−1) = 0.

If n > 6, our hypothesis tells us that rn−3 = 0; then the relation (8.3),
with k = n− 3, implies that

c(dn−3 + dn−2) =
2c
n

(−r1 − 2r2 + 2rn−2 + rn−1) = 0.

Finally, suppose that (iii) holds. Then by (8.5), we have

c2 = −c4 = c1 = −c3.

Hence from (8.4), we obtain

0 = i(a2r3 + a3r2) = −cd3 =
c

n
(r1 + 2r2 − 2rn−2 − rn−1).

�

Lemma 8.5. — Suppose that n = 4 and that the integers r1 and r3 are
non-zero. Then either the coefficient c vanishes, or we have the equalities

r2 = 0, r1 = r3.

Proof. — By (8.3), we have

4ia1r1 = c(r1 + 2r2 + r3) = −4ia3r3(8.7)

4ia2r2 = c(r3 − r1);(8.8)

by (8.4), we also see that

(8.9) 4i(a1r2 + a2r1) = c(r1 − 2r2 − r3).

>From (8.7), we deduce that

4ic1 =
c

r21
(r1 + 2r2 + r3), 4ic3 = − c

r23
(r1 + 2r2 + r3).

According to (8.5), we also have the equality

c3 = −c1.

The previous equations imply that
c

r21
=

c

r23
;
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thus either the coefficient c vanishes or the equality r1 = r3 holds. We now
suppose that r1 = r3. According to (8.7), we have

2ia1r1 = c(r1 + r2).

When r2 6= 0, by (8.8) we see that a2 = 0. Then the equation (8.9) says
that

c+ 2ia1 = 0.

>From the two preceding equations, we infer that

c(2r1 + r2) = 0,

and so the coefficient c also vanishes in this case. �

>From Lemmas 8.3–8.5, we deduce that the coefficient c vanishes when-
ever one of the hypotheses (i)–(iv) holds.

Lemma 8.6. — Suppose that n = 3 and that the integers r1 and r2 are
non-zero. Then either the coefficient c vanishes, or we have the equalities

r1 = r2, a1 + a2 = 0, c = 2ia1.

Proof. — From (8.3) and (8.4), we obtain the equalities

(8.10)
6ia1r1 = c(r1 + 2r2), 6ia2r2 = −c(2r1 + r2),

3i(a1r2 + a2r1) = c(r1 − r2).

Since the determinant of the matrixr1 0 −r1 − 2r2
0 r2 2r1 + r2
r2 r1 2(r2 − r1)


is equal to

(r2 − r1)(2r21 + 3r1r2 + 2r22),

when r2 6= r1, the coefficients a1, a2 and c vanish. If r1 = r2, then the
equations (8.10) tell us that a1 + a2 = 0 and c = 2ia1. �

Lemma 8.7. — Suppose that n > 3. Assume that the integers r1 and
rn−1 are non-zero, and that rk = 0, for 2 6 k 6 n − 2. Then either the
coefficient c vanishes, or we have the equalities

(8.11) r1 = rn−1, a1 + an−1 = 0, c = 2ia1.

Proof. — Lemma 8.6 gives us the desired result when n = 3. We now
suppose that n > 4. Then from Lemmas 8.4 and 8.5, either the coefficient
c vanishes or we have the equality r1 = rn−1. We now suppose that this
last relation is true; then by (8.2), we have a1 + an−1 = 0. On the other
hand, the relation (8.3), with k = 1, says that 2ia1r1 = cr1. �
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Finally, note that Lemma 8.7 tells us that the assertions of Proposi-
tion 8.1 hold under the hypotheses (v) or (vi). This concludes the proof of
this proposition.

9. Isospectral deformations of the Lagrangian
Grassmannians

We pursue our study of the Lagrangian Grassmannian X = G/K. This
section is devoted to the proof of the following proposition:

Proposition 9.1. — We have

D0C
∞(T ) ∩ σ̃dC∞

R (X) = σ̃dBR, D0C
∞(TC) ∩ σ̃dC∞(X) = σ̃dB.

We consider the orthogonal complement F of the finite-dimensional sub-
space F ′ = R(X)⊕BR of C∞

R (X). According to Lemma 6.2, we know that
the mapping

Pσ = P σ̃d : C∞
R (X) → I(X)

is well-defined. Proposition 9.1 tells us that the kernel of Pσ is the finite-
dimensional space F ′ and that the mapping Pσ : F → I(X) is injective.

Let r1, . . . , rn−1 > 0 be given integers which are not all zero. We consider
the element γ = γ1

r1,...,rn−1
of Γ and the subspace Vγ of C∞(T ∗C) generated

by the 1-forms {ϕ1, . . . , ϕn−1}, which we associated in §7 with the integers
r1, . . . , rn−1. According to Lemma 7.2, the complex conjugate of the space
Vγ is equal to the highest weight subspace Wγ of C∞

γ (T ∗C). We consider the
section

ϕ =
n−1∑
k=1

akϕk

of T ∗C , where a1, . . . , an−1 are given complex numbers, and the 1-form

ϑ = df̃r1,...,rn−1 =
n−1∑
k=1

rkϕk

on X, which is also an element of Vγ . For our proof of Proposition 9.1, we
shall require the following result:

Lemma 9.2. — Let r1, . . . , rn−1 > 0 be given integers which are not all
zero, and let a1, . . . , an−1 be given complex numbers. Suppose that there
is an element c ∈ C such that the 1-form

ϕ =
n−1∑
k=1

akϕk
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satisfies the relation

(9.1) D1ϕ = c σ̃(df̃r1,...,rn−1).

Then either the coefficient c vanishes or we have

rk = 0, r1 = rn−2 = 1, ϕ = a(f̃n−1 df̃1 − f̃1 df̃n−1), c = −2ia,

for 2 6 k 6 n− 2, where a = a1 = −an−1.

We assume, without any loss of generality, that ak = 0 whenever rk = 0,
for 1 6 k 6 n− 1. We consider the function ψ on Rn−1 defined by

ψ(θ) = 2ie2i(r1θ1+···+rn−1θn−1),

for θ = (θ1, . . . , θn−1) ∈ Rn−1; then we have

(9.2) ξk ·ψ = 2irkψ,

for 1 6 k 6 n− 1. By (4.5), we see that

ι∗f̃r1,...,rn−1 =
1
2i
ψ, 〈ξj , ι∗df̃k〉 = 2iδjkι

∗f̃k,

for 1 6 j, k 6 n− 1. Thus we have

(9.3) 〈ξk, ι∗ϕ〉 = akψ,

for 1 6 k 6 n− 1. By formulas (6.14), (9.2) and (9.3), we obtain

(9.4) ι∗(D1ϕ)(ζk, ζl) = i(akrl + alrk)ψ,

for 1 6 k, l 6 n− 1.
If the 1-form ϕ vanishes, then according to formula (9.4), with k = l,

we see that akrk = 0, for all 1 6 k 6 n − 1; hence in this case all the
coefficients ak vanish. In other words, the non-zero members of the family
{ϕ1, . . . , ϕn−1} are linearly independent. This fact entered into the proof
of Lemma 7.2.

According to (6.6) and (9.3), we have

(9.5) ι∗ϑ(ζk) = 〈ξk, ι∗ϑ〉 = rkψ,

for 1 6 k 6 n− 1; thus we obtain

(9.6) ι∗ϑ(ηj) = djψ,

for 1 6 j 6 n, where the number dj is given by (8.1). We also consider the
symmetric 2-form h = σ̃(ϑ). By (6.10), we have

(9.7) h(ζj , ζk) = 0,
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for 1 6 j, k 6 n− 1, whenever k > j + 2. Also by (6.11) and (6.12), we see
that

(9.8) h(ζj , ζj) = ϑ(ηj + ηj+1), h(ζk, ζk+1) = −ϑ(ηk+1),

for all 1 6 j 6 n− 1 and 1 6 k 6 n− 2.
We now begin the proof of Lemma 9.2. Let us suppose that there ex-

ists an element c ∈ C such that the equality (9.1) holds. Since the func-
tion ψ is everywhere non-vanishing, according to the equalities (9.4) and
(9.6)–(9.8), we infer that the coefficients c and a1, . . . , an−1 satisfy the
relations (8.2)–(8.4). Hence by Proposition 8.1, we infer that the coeffi-
cient c vanishes unless the integers rj and the coefficients aj vanish, for
all 2 6 j 6 n− 2, and the relations

r1 = rn−1 > 1, a1 = −an−1, c = 2ia1

hold. Thus if we consider the element

β = f̃n−1 df̃1 − f̃1 df̃n−1

of C∞(T ∗C), we know that the coefficient c vanishes unless ϕ is a multiple
of the 1-form (f̃1 ·f̃n−1)rβ and ϑ = d(f̃1 ·f̃n−1)r+1, where r = r1 − 1 > 0.

By (9.4), (9.6) and (9.8), we see that the relations

ι∗(Hess f̃1)(ζ1, ζ1) = −4, ι∗(Hess f̃1)(ζ1, ζ2) = 0,

ι∗σ̃(df̃1)(ζ1, ζ1) = ι∗〈η1 + η2, df̃1〉 =
2i(n− 2)

n
,

ι∗σ̃(df̃1)(ζ1, ζ2) = −ι∗〈η2, df̃1〉 =
2i
n

(9.9)

hold at the point 0 of Rn−1.

Lemma 9.3.

(i) We have the relations

Hess f̃1 = − 4
n
f̃1g + 2iσ̃(df̃1),(9.10)

Hess f̃n−1 = − 4
n
f̃n−1g − 2iσ̃(df̃n−1),(9.11)

D1β = 2iσ̃(d(f̃1 ·f̃n−1)).(9.12)

(ii) For γ = γ1
1,0,...,0,1, we have the inclusion

(9.13) σ̃dC∞
γ (X) ⊂ D1C∞(T ∗C).
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Proof. — Since the differential operator Hess is homogeneous and the
G-module C∞

γ1
(X) is irreducible, from the decomposition (7.4) we obtain

the existence of constants a, b ∈ C such that

Hess f = afg + bσ̃(df),

for all f ∈ C∞
γ1

(X). Since the complex conjugate f̂1 of f̃1 is an element
of C∞

γ1
(X), from the relations (6.1), (6.7) and (9.9) we deduce that a = −2/n

and b = −2i, and so we obtain formula (9.10). As f̃n−1 is an element
of C∞

γ1
(X), we have also verified the identity (9.11). By (1.2), we have

D1β = f̃n−1 Hess f̃1 − f̃1 Hess f̃n−1;

the relation (9.12) is now a direct consequence of (9.10) and (9.11). Next the
equality (9.12) implies that the symmetric 2-form σ̃(d(f̂1 · f̂n−1)) belongs
to D1C∞(T ∗C). Since the function f̂1 · f̂n−1 is a highest weight vector of
the irreducible G-module C∞

γ (X), where γ = 2$1 + 2$n−1, we obtain the
inclusion (9.13). �

We denote by In−2 the identity matrix of order n − 2. For α ∈ R, we
consider the element

Rα =
(

cosα − sinα
sinα cosα

)
of SO(2) and the element φα = (Rα, In−2) belonging to the subgroup

SO(2)× SO(n− 2)

of K = SO(n); thus we have φα(x0) = x0. We consider the functions
{fjl,α}16j,l6n on Rn−1 defined by

f11,α = cos2 α · e2ix1 + sin2 α · e2ix2 , f22,α = sin2 α · e2ix1 + cos2 α · e2ix2 ,

f12,α = f21,α = cosα · sinα · (e2ix1 − e2ix2), fjl,α = e2ixjδjl

whenever 1 6 j 6 n and 3 6 l 6 n, or whenever 3 6 j 6 n and 1 6 l 6 n,
where θ = (θ1, . . . , θn−1) and xk is given by (3.8). We also consider the
function f̌α on Rn−1 defined by

f̌α(θ) = (f11,αf22,α − f2
12,α)(θ) · e2i(θn−1−θ2),

for θ = (θ1, . . . , θn−1). Clearly the equalities

(9.14) df11,α = 2i(cos2 α ·dθ1 + sin2 α ·(dθ2 − dθ1)), df̌α = 2idθn−1

hold at the point 0 ∈ Rn−1. We easily verify that

ι∗φ∗α〈Zj , Zl〉 = fjl,α,
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for all 1 6 j, l 6 n; it follows that

(9.15) ι∗φ∗αf̃1 = f11,α, ι∗φ∗αf̃n−1 = f̌α,

and hence that

(9.16) (φ∗αf̃1)(x0) = (φ∗αf̃n−1)(x0) = 1.

Thus according to (6.6), (9.14) and (9.15), the symmetric 2-form

hα = φ∗α(df̃1 · df̃1 − df̃n−1 · df̃n−1)

on X satisfies

(9.17)
(n−1∑

j=1

hα(ζj , ζj) +
n−2∑
j=1

hα(ζj , ζj+1)
)

(x0) = 24 cos2 α · sin2 α.

Clearly the function of α appearing on right-hand side of equation (9.17)
is non-zero.

Let r > 1 be a given integer. We consider the function f = f̃1·f̃n−1 and,
for α ∈ R, the symmetric 2-form

(9.18) h′α = φ∗α(fr−1 df · β)

on X. Since we have

df · β = f̃2
n−1 df̃1 · df̃1 − f̃2

1 df̃n−1 · df̃n−1,

by (9.16) we see that the equality

(9.19) h′α = hα

holds at x0.

Lemma 9.4. — Let r > 1 be a given integer. Then the symmetric 2-form
D1((f̃1 ·f̃n−1)rβ) is not a section of σ̃(T ∗C).

Proof. — Suppose that D1(frβ) is a section of σ̃(T ∗C). According to for-
mulas (9.12) and (1.2), we see that fr−1df · β is also a section of σ̃(T ∗C).
Thus for all α ∈ R, the symmetric 2-form h′α defined by (9.18) satisfies the
relation (6.13). The equalities (9.17) and (9.19) now lead us to a contra-
diction. �

Finally, in order to finish the proof of Lemma 9.2, we suppose that ϕ is
a multiple of the 1-form (f̃1 · f̃n−1)rβ and that ϑ = d(f̃1 · f̃n−1)r+1, where
r = r1 − 1 > 0. When r > 1, Lemma 9.4 tells us that ϕ = 0; because the
form σ̃(ϑ) is non-zero, the coefficient c must also vanish in this case, and
so we have completed the proof of Lemma 9.2.
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In order to prove Proposition 9.1, by formula (1.1) it suffices to show
that

D1C∞(T ∗C) ∩ σ̃dC∞(X) = σ̃dB.
Since the differential operators D1 and σ̃d are homogeneous, according to
Proposition 2.1 of [1] and Lemma 9.3,(ii) the preceding equality holds if
and only if

(9.20) D1C∞
γ (T ∗C) ∩ σ̃dC∞

γ (X) = {0},

for all γ ∈ Γ, with γ 6= γ1
1,0,...,0,1. We now proceed to verify that (9.20)

holds and, in the process, complete the proof of Proposition 9.1.
If γ ∈ Γ is equal to 0 or does not belong to Γ0, we know that

dC∞
γ (X) = {0},

and so the equality (9.20) holds. Now let r1, . . . , rn−1 > 0 be given integers,
which are not all zero and satisfy

(r1, . . . , rn−1) 6= (1, 0, . . . , 0, 1),

and consider the element γ = γ1
r1,...,rn−1

of Γ0. Suppose that the equality
(9.20) does not hold for this element γ. Since the function f = f̂r1,...,rn−1 is
a highest weight vector of the irreducible G-module C∞

γ (X), the inclusion

σ̃dC∞
γ (X) ⊂ D1C∞

γ (T ∗C)

holds, and so there exists an element ψ of Wγ such that

D1ψ = σ̃(df).

Then the element ϕ = ψ̄ of Vγ satisfies the relation (9.1), with c = 1.
Lemma 9.2 now leads us to a contradiction. Therefore the equality (9.20)
holds for all γ ∈ Γ, and so we have proved Proposition 9.1.

10. The reduced Lagrangian Grassmannians

The center S of G = SU(n) is the cyclic subgroup of order n given
by (5.5). If s is the involution of G considered in §6 sending a matrix into
its complex conjugate, the subgroup

KS =
{
A ∈ G | A−1s(A) ∈ S

}
of G contains the subgroup K = SO(n) and we easily verify that

KS =
{
A ∈ G | A = eikπ/nB, with B ∈ O(n) and k ∈ Z

}
.
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According to Corollary 9.3, Chapter VII of [4] (see also [2, §1]), we know
that Y = G/KS is a symmetric space of compact type, which is the reduced
space of X and which we call the reduced Lagrangian Grassmannian.

The diagonal matrix B0 = diag (1, . . . , 1,−1) is an element of O(n) and
the diagonal matrix A0 = eiπ/nB0 belongs to G. We easily see that A0

generates a cyclic subgroup S′ of G of order 2n and that Ak
0 belongs to K

if and only if k ≡ 0 mod n. Thus we have

KS = K · S′ =
⋃

06k6n−1

K ·Ak
0 .

If B ∈ K, the matrix
A−1

0 BA0 = B0BB0

also belongs to K. We consider the automorphism φ0 of p0 defined by

φ0(ξ) = B0 · ξ ·B0,

for ξ ∈ p0; then for ξ ∈ p0, the element A−1
0 ξA0 of g0 is clearly equal to

the element φ0(ξ) of p0. According to these observations, the right action
of A0 on G passes to the quotient X and gives rise to an isometry τ of X.
In fact, if we denote by A0∗ the action on the tangent bundle of X induced
by the left action of A0 on X and identify p0 with Tx0 , we see that

(10.1) τ∗ξ = A0∗φ0(ξ),

for ξ ∈ p0. Clearly the group Σ of isometries of X generated by τ is a cyclic
group of order n which acts freely on X; moreover, its action commutes
with the action of G on X. The quotient of X by Σ is the symmetric space
Y = G/KS and the natural projection $ : X → Y is a n-fold covering;
moreover, the action of the group G on X passes to the quotient Y .

We consider the G-submodule C∞(X)Σ of C∞(X) consisting of all Σ-
invariant (or equivalently τ -invariant) functions on X. The space C∞(Y )
inherits a G-module structure from the action of G on Y and the projection
$ induces an isomorphism

$∗ : C∞(Y ) → C∞(X)Σ

of G-modules. If γ is an element of Γ, we denote by C∞
γ (Y ) the isotypic

component of the G-module C∞(Y ) corresponding to γ and we write

C∞
γ (X)Σ = C∞(X)Σ ∩ C∞

γ (X).

Then the isomorphism $ induces an isomorphism of G-modules

$∗ : C∞
γ (Y ) → C∞

γ (X)Σ.
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For p > 2, we easily see that

σp(φ0(ξ1), . . . , φ0(ξp)) = σp(ξ1, . . . , ξp),

for all ξ1, . . . , ξp ∈ p0. Therefore from the relation (10.1), we infer that

(10.2) τ∗σp = σp.

Thus the symmetric p-form σp induces an G-invariant symmetric p-form
σY,p on Y such that

σp = $∗σY,p.

We shall always consider the symmetric space Y = G/KS endowed with
the G-invariant Riemannian metric gY = σY,2. For p > 3, we consider the
monomorphism of vector bundles

σ̃Y,p : T ∗Y → Sp−1T ∗Y

induced by the symmetric p-form σY,p. We write σY = σY,3 and σ̃Y = σ̃Y,3.
If ϕ is a 1-form on Y , we have

(10.3) $∗σ̃Y,p(ϕ) = σ̃p($∗ϕ).

According to Lemma 1.1 of [2] and Lemma 6.2, we see that a 1-form ϕ on Y
satisfies the Guillemin condition if and only if the symmetric (p− 1)-form
σ̃Y,p(ϕ) on Y satisfies the Guillemin condition.

If B = (blr) is an arbitrary element of Mn, we have

Zj(BA0) = eiπ/n(bj1, . . . , bj,n−1,−bjn),

for 1 6 j 6 n; therefore we obtain the equality

〈Zj , Zk〉(BA0) = e2iπ/n〈Zj , Zk〉(B),

for 1 6 j, k 6 n. It follows that

(10.4) τ∗f̃ = e2iπ/nf̃ , τ∗f̃k = e2ikπ/nf̃k,

for all f ∈ H and 1 6 k 6 n− 1.
Let r1, . . . , rn−1 > 0 be given integers and consider the element γ =

γ1
r1,...,rn−1

of Γ0. According to (10.4), the function f̃r1,...,rn−1 on X is in-
variant under the isometry τ if and only if the relation (5.7) holds. Since
the complex conjugate f̂r1,...,rn−1 of the function f̃r1,...,rn−1 belongs to the
irreducible G-module C∞

γ (X), we infer that C∞
γ (X) is a G-submodule of

C∞(X)Σ if and only the relation (5.7) holds. For 1 6 j 6 n− 1, a section
ϕj of T ∗C associated with the integers r1, . . . , rn−1 is Σ-invariant if and only
if the integers r1, . . . , rn−1 satisfy the relation (5.7).
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We denote by Γ1 the subset of Γ0 consisting of all elements γ1
r1,...,rn−1

of Γ0, where r1, . . . , rn−1 > 0 are integers satisfying the relation (5.7). Then
by Proposition 2.1 of [1], we have the following result:

Lemma 10.1.

(i) Let r1, . . . , rn−1 > 0 be given integers. The function f̃r1,...,rn−1 on
the special Lagrangian Grassmannian X = G/K is induced by a
function on the reduced space Y = G/KS of X if and only if the
relation (5.7) holds.

(ii) The G-module
⊕

γ∈Γ1
C∞

γ (X) is a dense submodule of C∞(X)Σ

and the G-module
⊕

γ∈Γ1
C∞

γ (Y ) is a dense submodule of C∞(Y ).

We consider the element γ = γ1
1,0,...,0,1 of Γ1; we know that

C∞
γ (X)Σ = B.

Therefore BY = C∞
γ (Y ) is an irreducible G-module isomorphic to B and

is invariant under conjugation; thus BY is equal to the complexification of
the subspace

BY,R =
{
f ∈ BY | f = f̄

}
of C∞

R (Y ) and the mapping $ induces an isomorphism $∗ : BY,R → BR.
If P denotes the orthogonal projection corresponding to the decomposi-

tion (1.3) on the space Y , according to Lemma 1.1 of [2] and Lemma 6.2
the mapping

(10.5) PσY
= Pσ̃Y d : C∞

R (Y ) → I(Y )

is well-defined. We denote by FY the orthogonal complement of the finite-
dimensional space F ′

Y = R(Y )⊕BY in C∞
R (Y ). From Proposition 1.2 of [2]

and Proposition 9.1, we obtain:

Theorem 10.2. — The reduced Lagrangian Grassmannian Y is not
rigid in the sense of Guillemin. If f is a non-zero element of FY , then the
symmetric 2-form σ̃Y (df) on Y satisfies the Guillemin condition and is not
a Lie derivative of the metric. Moŕeover, the relation

D0C
∞(TY ) ∩ σ̃Y dC

∞
R (Y ) = σ̃Y dBY

holds and the kernel of the mapping (10.5) is the finite-dimensional space

F ′
Y = R(Y )⊕ BY,R.
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