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RATIONAL POINTS AND COXETER GROUP
ACTIONS ON THE COHOMOLOGY OF TORIC

VARIETIES

by Gustav I. LEHRER

To Alex and Claire

Abstract. — We derive a simple formula for the action of a finite crystallo-
graphic Coxeter group on the cohomology of its associated complex toric variety,
using the method of counting rational points over finite fields, and the Hodge struc-
ture of the cohomology. Various applications are given, including the determination
of the graded multiplicity of the reflection representation.

Résumé. — On donne une formule simple pour l’action d’un groupe de Coxeter
fini crystallographique sur la cohomologie de la variété torique complexe associée.
La méthode utilise la structure de Hodge sur la cohomologie pour relier le nombre
des points rationnels sur un corps fini à cette action. On utilise la formule pour
quelques applications, telles que la détermination de la multiplicité graduée de la
représentation par réflexions dans la cohomologie.

1. Introduction and statement of main result

Let V be an vector space of finite dimension n over R. Let Φ be a
root system in V , and let W be the associated Coxeter group, which is
generated by the reflections in hyperplanes orthogonal to the roots; we
take W to be finite and crystallographic, and write 〈−,−〉 for a W -invariant
positive definite bilinear form on V . Assume chosen a simple system Π ⊆ Φ,
which forms a basis of V . Let L := ZΦ be the root lattice, and M :=
{v ∈ V | 〈v, α〉 ∈ Z, ∀α ∈ L} be the corresponding weight lattice.

As explained in [8], there is a fan ∆ = ∆W of convex polynedral cones in
M , and hence a “toric variety” associated with this data. This is a smooth
complex projective variety, which we shall denote by TW . This variety, and

Keywords: Toric varieties, cohomology, Hodge theory, rational points.
Math. classification: 14M25, 14F40, 14G05, 20G40, 14L30.



672 Gustav I. LEHRER

hence its cohomology, carries a natural action of the group W . In this work
we shall determine this action, in the sense that we shall give an explicit
formula for the equivariant Poincaré polynomial

PW (t, w) :=
∑
i>0

Trace
(
w,Hi(TW , C)

)
ti ∈ C[t],

for each element w ∈ W .
Equivalently, if R(W ) denotes the complex character ring of W , we shall

determine the element

PW (t) :=
∑

i

Hi(TW , C)ti ∈ R(W )[t]

by means of its value on elements w ∈ W . This question arises, among other
places, in the study (cf. [5, 4]) of compactifications of reductive groups and
the cohomology of complete symmetric varieties.

This problem was addressed by different methods by Procesi in [14].
He made use of the fact that TW may be described in terms of repeated
blowups, and the cohomology of the blowup of a space along a subspace is
straightforward to compute. Procesi’s result is well suited to the recursive
determination of PW (t).

Stembridge, in [15], studied the same problem indirectly, using a result
of Danilov [3] to identify the cohomology ring with a certain commutative
algebra. His result [15, Corollary 1.6] is similar to our Theorem 1.1 below,
but retains a recursive flavour. The main thrust of [15] is the identification
of the total cohomology with a permutation representation of W . In their
work [7, Theorem 2.1] Dolgachev and Lunts also prove the same formula as
Stembridge, using the T -equivariant cohomology of the toric variety TW .
In the Appendix below, we prove that the Dolgachev-Lunts-Stembridge
formula is equivalent to ours.

In this work we use the method of counting rational points over finite
fields, combined with the Hodge structure of the cohomology, developed
in [11, 6, 9, 10]. This results in a quick and direct derivation of a closed
formula for PW (w, t), which is quite easy to evaluate in many cases. Some
consequences of the general formula are discussed in §§3,4; included among
these are the fact that the alternating representation of W does not occur
in H∗(TW , C), and a formula giving the graded multiplicity of the reflection
representation of W in the cohomology ring (see §4.1).

The case w = 1 of our formula (1) below was proved by Fulton in [8, §4.5],
for smooth complete toric varieties T which includes our TW ; the weight
filtration of the cohomology H∗(T , C) is also determined for these T . Our
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RATIONAL POINTS AND TORIC VARIETIES 673

work may be regarded as an equivariant generalisation of the results in [8,
loc. cit.] for the particular varieties TW .

We proceed now to state our basic formula.
For each subset J ⊆ Π, let WJ be the corresponding parabolic subgroup

generated by the reflections in the hyperplanes orthogonal to the roots in J ,
and VJ the linear span of J .

Theorem 1.1. — Let Φ,Π,W and TW be as above. Then Hi(TW , C) =
0 if i is odd. The even dimensional cohomology is described as follows. For
each J ⊆ Π, let γJ(t) be the C[t]-valued class function on WJ given by
γJ,t(w) := detVJ

(t2 − w), where this is interpreted as 1 if J = ∅. Then

(1) PW (t) =
∑
J⊆Π

IndW
WJ

(γJ,t).

This may be reformulated as follows.

Corollary 1.2. — Maintain the above notation. For each subset J ⊆
Π, let ρJ,i be the ith exterior power of the (reflection) representation of WJ

on VJ (i = 1, . . . , |J |). Then

(2) PW (t) =
n∑

i=0

(−t2)i
∑
J⊆Π
|J|>i

(−1)|J| IndW
WJ

ρJ,|J|−i.

Proof. — If w ∈ WJ has eigenvalues λ1, . . . , λ|J| on VJ , then detVJ
(t2 −

w) =
∏|J|

j=1(t
2 − λj). It follows that

γJ,t(w) =
|J|∑
i=0

t2(|J|−i)(−1)iρJ,i(w).

The assertion is now immediate from Theorem 1.1. �

Theorem 1.1 may be restated as the assertion that H2i+1(TW , C) = 0 for
all i, which of course is well known (cf. [8, Prop., p. 92], or (2.1)(iii) below),
while as W -module,

(3) H2i(TW , C) ∼= (−1)i
∑
J⊆Π
|J|>i

(−1)|J| IndW
WJ

ρJ,|J|−i.

2. Proof of the main theorem

Our basic tools will be the Hodge structure of H∗(TW ), and the count-
ing of rational points over finite fields (cf. [8, p. 94] and [9, 10, 12]). The
following result is well known.

TOME 58 (2008), FASCICULE 2



674 Gustav I. LEHRER

Lemma 2.1.
(i) Let Z = Z(∆) be the toric variety associated with a fan ∆. If

dk is the number of k-dimensional polyhedral cones in ∆ (k =
1, . . . , n = dim Z), then the (non-equivariant) compactly supported
weight polynomial (for the definition see [6, (1.5)]) is given by

Wc(Z, t) =
n∑

k=0

dk(t2 − 1)n−k.

(ii) [8, p. 94] The number of points of the Z-scheme Z over Fq is

|Z(Fq)| =
n∑

k=0

dk(q − 1)n−k := S(q).

(iii) (1) If ∆ is simplicial and complete, in particular if Z is non-singular
and projective, then Z has only even cohomology. Moreover
H2j(Z, C) is a pure Hodge structure of type (j, j). Thus Z is mixed
Tate in the sense of [10].

Proof. — The statements (i) and (ii) may be found in [8, p. 94, 104] and
in [6, (2.8), (3.3), §5].

If ∆ is simplicial and complete, then the compact supports weight poly-
nomial Wc(Z, 1) = dim H∗

c (Z, C) =
∑

j dim Hj
c (Z, C), (see [8, p. 93–94]).

Thus, writing S(q) for the polynomial which gives the number of Fq-points
of Z, we have S(1) = d0 = dim H∗

c (Z, C). All the assertions of (iii) now
follow immediately from [10, Proposition 3.3(2)]. �

For any variety (i.e. reduced scheme of finite type) X defined over the
finite field Fq, denote by F the endomorphism of X ⊗Fq := X(q) obtained
by raising local coordinates to the qth power. The action induced by F

on `-adic cohomology is defined as follows. There is a natural action of
Gal(Fq/Fq) on the `-adic cohomology spaces Hj

c (X ⊗ Fq, Q`). The action
induced on Hj

c (X⊗Fq, Q`) by the inverse of the arithmetic (q-power) Frobe-
nius automorphism in Gal(Fq/Fq) will also be denoted by F . With this
convention, we have the well known fixed point formula of Grothendieck:

(4) |XF | =
2 dim X∑

j=0

(−1)j Trace(F,Hj
c (X(q), Q`)).

Proposition 2.2. — For any element w ∈ W , the cardinality |T wF
W | is

a polynomial S(q, w) in q, and we have

PW (t, w) = S(t2, w).

(1) See Remark 2.4 below

ANNALES DE L’INSTITUT FOURIER



RATIONAL POINTS AND TORIC VARIETIES 675

Proof. — The automorphism w of TW clearly commutes with the
geometric Frobenius endomorphism described above. It follows that w and
F induce commuting endomorphisms on Hj

c (X(q), Q`). Hence from
Grothendieck’s fixed point formula (4) we have

|T wF
W | =

2n∑
j=0

(−1)j Trace(wF,Hj
c (TW (q), Q`))

=
2n∑

j=0

Trace(w,H2j(TW (q), Q`))q
j by Poincaré duality and 2.1(iii)

=
2n∑

j=0

Trace(w,H2j(TW , C))qj for almost all q, by [9, (1.2)].

The proposition is now immediate. �

Rather than applying Proposition 2.2 directly, we shall make use of the
fact that there is an action of the torus T ∼= (C×)n on TW which partitions
TW into the (finite) union of its orbits, which are locally closed subvarieties,
each isomorphic to a torus.

The following result, (see [12, Theorem 2.5]), is designed to handle this
type of situation. For any complex algebraic variety with a G-action, where
G is a finite group, WG

c,X(t) denotes the compactly supported equivariant
weight polynomial

WG
c,X(t) =

∑
m

∑
j

(−1)j GrW
m Hj

c (X, C)tm,

regarded as an element of R(G)[t], where R(G) is the Grothendieck ring of
complex representations of G and GrW

m denotes the mth graded component
of the weight filtration of Hj

c .

Proposition 2.3. — (cf. [6, 12, 13]) Let X be a complex algebraic
variety with a G-action, where G is a finite group. Suppose X is a finite
disjoint union X =

∐
i∈I Xi of locally closed subvarieties Xi which are

permuted by G. Then

(5) WG
c,X(t) =

∑
ι∈I/G

IndG
Gi

WGi

c,Xi
(t),

where the sum is over the G-orbits ι in I, i is any element of ι, and Gi is
the isotropy group of i in G.

We are now in a position to give the

TOME 58 (2008), FASCICULE 2



676 Gustav I. LEHRER

Proof of Theorem 1.1. — In case X = TW and G = W , let Γ be the set
of polyhedral cones of the fan defined by the root system Φ. This is also
described as the set of closures of the regions into which V is partitioned by
the reflecting hyperplanes of W . As explained in [8, Chapter 3], the torus
T = TΛ

∼= (C×)n acts on TW . For each cone τ ∈ Γ, there is a distinguished
point xτ ∈ TW , and the orbit Z(τ) := T ·xτ is isomorphic to a torus of
dimension equal to n−dim τ . Moreover TW is the disjoint union of the tori
Z(τ). To describe the W -action, we require the following details.

The cones τ ∈ Γ are in bĳection with the cosets wWJ (w ∈ W,J ⊆ Π) of
the standard parabolic subgroups WJ of W . We have dim Z(τ) = n−dim τ ,
and wWJ is a face of w′WJ′ if wWJ ⊇ w′WJ′ . If τ(wWJ) denotes the
cone corresponding to wWJ and Z(wWJ) denotes the corresponding T -
orbit in TW , then dim τ(wWJ) = n − |J |, so dim Z(wWJ) = |J |, and the
character group of Z(wWJ) is the lattice ZΦw(J), where ΦK is the sub-root
system of Φ spanned by K. Thus the cone τ = {0} corresponds to W , and
Z({0}) = Z(W ) is the dense orbit T = (C×)n in TW . Similarly the |W |
chambers of V each correspond to a torus of dimension 0, i.e. a point in TW .

The action of W is described as follows. The element g ∈ W takes Z(τ)
to Z(gτ), i.e. Z(wWJ) to Z(gwWJ). The set Γ/W of orbits of W on Γ is
therefore in bĳection with the subsets J of Π. If OJ is the orbit correspond-
ing to J , then we may (and do) select τ(WJ) ∈ OJ as the representative
element of the orbit. Note that the set of representatives {τ(WJ) | J ⊆ Π}
is precisely the set of facets of the fundamental chamber of the W -action
on V which corresponds to the simple system Π. Since the isotropy group
of τ(WJ) is WJ , we have the following immediate consequence of Proposi-
tion 2.3.

(6) WW
c,TW

(t) =
∑
J⊆Π

IndW
WJ

WWJ

c,Z(WJ )(t).

We are therefore reduced to computing

WWJ

c,Z(WJ )(t, w) =
∑
m

∑
j

(−1)j Trace
(
w,GrW

m Hj
c (Z(WJ), C)

)
tm

for w ∈ WJ . For this, observe first that Z(WJ) is a torus of dimension
|J |, and therefore is minimally pure [6, §3]. Thus Hj

c (Z(WJ), C) is pure of
weight 2j − 2|J |. Hence by [12, (2.6)], we have

(7) WWJ

c,Z(WJ )(t, w) =
∣∣Z(WJ)wF

∣∣
q 7→t2

= SZ(WJ )(t2, w),

where SZ(WJ )(q, w) is the polynomial in q which gives the number of points
of Z(WJ) fixed by wF for almost all q.

ANNALES DE L’INSTITUT FOURIER



RATIONAL POINTS AND TORIC VARIETIES 677

But wF acts on the character group ZΦJ of Z(WJ) as qw. It follows
(see, e.g. [2, 3.2.3]) that SZ(WJ )(q, w) = |detVJ

(qw − 1)| = |detVJ
(q − w)|.

Moreover since those eigenvalues of w which are not ±1 come in conjugate
pairs e±iθ and (q − eiθ)(q − e−iθ) = q2 − 2q cos θ + 1 > (q − 1)2 > 0, we
see that SZ(WJ )(q, w) = detVJ

(q −w). Combining this with (7) and (6) we
obtain

(8) WW
c,TW

(t) =
∑
J⊆Π

IndW
WJ

γJ(t),

where, as in §1 above, γJ is the class function on WJ which takes the value
detVJ

(t2 − w) on w ∈ WJ .
But by Lemma 2.1 (iii) and Poincaré duality, H2j

c (TW , C) is a pure Hodge
structure of weight 2j, while H2j+1

c (TW , C) = 0 for all j. It follows that

WW
c,TW

(t) =
∑
m

∑
j

(−1)j GrW
m Hj

c (TW , C))tm

=
∑

j

H2j
c (TW , C)t2j by Lemma 2.1 (iii) and Poincaré duality

=
∑

j

H2j(TW , C)t2j by Poincaré duality

= PTW
(t).

This completes the proof of Theorem 1.1. �

Remark 2.4. — The proof of Theorem 1.1 above amounts to the com-
putation of the polynomial S(q, w) of Proposition 2.2, with the induced
character formula being a convenient way to organise the computation.
Explicitly, we have proved that

S(q, w) =
∑
J⊆Π

IndW
WJ

(detVJ
(q − w)),

where w 7→ detVJ
(q − w) is to be thought of as a class function on WJ

(when J = ∅, this function is identically 1). In this sense, our main result
is a generalisation, of course applicable only to the varieties TW , of the
formula in [8, p. 94], which is the case w = 1 of our formula.

It follows from this formula (which is proved independently of any asser-
tions concerning the cohomology) that S(1, 1) = |W |. Moreover by (7), the
weight polynomial Wc,TW

(t, 1) = S(q, 1)q 7→t2 = S(t2, 1). But since TW is
smooth and projective, it follows from the results of [6] or from [8, (1), p. 92]
that Wc,TW

(t, 1) coincides with the Poincaré polynomial of TW . This shows
immediately (as is pointed out in [8, p. 92]) that its odd cohomology van-
ishes and that

∑
j dim Hj(T , C) = |W | = S(1, 1). Moreover it follows from

TOME 58 (2008), FASCICULE 2



678 Gustav I. LEHRER

[10, Proposition 3.3(2)] that TW is mixed Tate. See [6] for a general discus-
sion of weight polynomials along the lines of [8, p. 92–95].

Alternatively, it follows from the non-singular projective nature of TW

that [10, (3.7.1)] holds, i.e. that the eigenvalues of Frobenius on Hi(TW , Q`)
all have absolute value q

i
2 . The arguments on [10, p. 212] then show that

all the above facts for TW follow from the polynomial nature of |TW (Fq)|.
Thus the case w = 1 of our formula (which is due to Fulton [8]) suffices to

determine the Hodge structure of the cohomology, and this in turn permits
the application of our counting argument to the determination of the graded
character.

3. Some applications

In this section we point out some consequences of the results above. We
begin by noting that it suffices to consider irreducible root systems.

Proposition 3.1. — Suppose Φ is reducible. Then Φ = Φ1qΦ2, where
the Φi are mutually orthogonal, and if Vi = CΦi (i = 1, 2) then V = V1⊕V2,
and W = W1 × W2, where Wi is the Coxeter group with root system Φi

in Vi.
With notation as in Theorem 1.1, we have for w = (w1, w2) ∈ W

PW (t, w) = PW1(t, w1)PW2(t, w2).

Equivalently, if p1, p2 are functions on W1 and W2 respectively, define p =
p1p2 to be the function on W = W1×W2 given by p(w1, w2) = p1(w1)p2(w2)
(where wi ∈ Wi). Then we have the following equation in R(W )[t].

PW (t) = PW1(t)PW2(t).

Proof. — This is a simple consequence of the character formula provided
by Theorem 1.1. �

Remark 3.2. — Proposition 3.1 may also be deduced using the Künneth
theorem from the following general fact.

Proposition 3.3 (cf. [8], p. 19–20). — Let N1 and N2 be lattices in
the real vector spaces V1 and V2. Let ∆1 and ∆2 be fans of rational convex
polyhedral cones in V1, V2 respectively, and let T1, T2 be the corresponding
toric varieties. Define the fan ∆1 ⊕ ∆2 in V1 ⊕ V2 as that which contains
the cones σ1 ⊕ σ2, where σi ∈ ∆i. Let T∆1⊕∆2 be the corresponding toric
variety.

Then T∆1⊕∆2 ' T1 × T2.

ANNALES DE L’INSTITUT FOURIER
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The proof of Proposition 3.3 reduces easily to the affine case, where it is
straightforward. As an easy consequence, we have

Corollary 3.4. —With notation as in the statement of Proposition 3.1,
we have TW ' TW1 × TW2 .

Applying the Künneth theorem to compute the cohomology of TW using
Corollary 3.4, we obtain Proposition 3.1.

Theorem 3.5. — Let W be a finite crystallographic Coxeter group, and
TW be the corresponding toric variety. Then in the notation above:

(i) ([8, p. 94]) The Poincaré polynomial of TW is given by

PW (1, t) =
∑

j

dim Hj(TW , C)tj =
∑
J⊆Π

[W : WJ ](t2 − 1)|J|.

(ii) We have (PW (t), 1W )W = (1 + t2)n, where (−,−)W denotes inner
product of class functions, and PW (t) is the class function given by
PW (t)(w) =

∑
i Trace(w,Hi(TW , C))ti.

(iii) The alternating character of W does not occur in Hi(TW , C) for
any i.

Proof. — The statement (i) is simply the case w = 1 of Theorem 1.1.
To see (ii), observe that by Frobenius reciprocity, it follows from Corol-

lary 1.2 that

(PW (t), 1)W =
n∑

i=0

t2i
∑
J⊆Π
|J|>i

(−1)|J|−i(ρJ,|J|−i, 1)WJ
.

But by [1, Exercice 3(a), p. 127], (ρJ,|J|−i, 1)WJ
= 0 unless i = |J |, in which

case it is 1. Hence

(PW (t), 1)W =
n∑

i=0

t2i
∑
J⊆Π
|J|=i

1 = (1 + t2)n,

which is the statement (ii).
Finally, in order to compute (PW (t), εW )W , note that the computation

above shows that we need to know (ρJ,k, εJ)WJ
for each J ⊆ Π and

k = 0, 1, . . . , |J |, where εJ is the alternating character of WJ . For this,
we note that for any k, ρJ,|J|−k

∼= εJρJ,k. Hence by the argument above,
(ρJ,k, εJ)WJ

= 0 unless k = |J |, and is 1 in that case. Hence again applying
Corollary 1.2, it follows that

(PW (t), ε)W =
n∑

i=0

t2i
∑
J⊆Π
|J|>i

(−1)|J|−i(ρJ,|J|−i, εJ)WJ
=

∑
J⊆Π

(−1)|J| = 0,

TOME 58 (2008), FASCICULE 2



680 Gustav I. LEHRER

as asserted in (iii). �

Remark 3.6. — Note that in view of Theorem 3.5(i), the polynomial∑
J⊆Π

[W : WJ ](t2 − 1)|J|

has positive coefficients, a fact which is not entirely obvious.

Proposition 3.7. — We have
(i) The character of W on the total cohomology ring is given by

(9) PW (1) =
∑
J⊆Π

IndW
WJ

(γJ,1),

where γJ,1(w) = detVJ
(1 − w) for w ∈ WJ . It is a non-negative

integer for any w ∈ W (see [15, Proposition 1.7]).
(ii) If w is a Coxeter element of W then

PW (t, w) =
n∏

j=1

(t2 − exp(
2πimj

h
)),

where h is the Coxeter number of W and m1, . . . ,mn are its expo-
nents.

(iii) If w is any elliptic element of W , PW (t, w) =
∏n

j=1(t
2−λj), where

the λj are the eigenvalues of w on V .

Proof. — The first part of (i) follows immediately by putting t = 1 in
Theorem 1.1. Further, the argument in the proof of Theorem 1.1 above
shows that detVJ

(q − w) > 0 for any real number q > 1, whence the
positivity assertion (which is due to Stembridge).

Since w has no non-zero fixed points in V , w has no conjugates in WJ

for J 6= Π. Thus by (1.1), PTW
(t, w) = detV (t−w). But the eigenvalues of

w on V are precisely
{

exp( 2πimj

h ) | j = 1, . . . , n
}

, and the statement (ii) is
immediate. The proof of (iii) is the same. �

In the special case when Φ is of type An, so that W ∼= Symn+1, we can
be more explicit about the polynomials PW (t, w).

Proposition 3.8. — Let W be the Coxeter group of type An, so that
W ∼= Symn+1. Then

(i) If w is a Coxeter element of W , then PW (t, w) = 1+t2+t4+· · ·+t2n.
(ii) The character of W on the total cohomology ring is given by

PW (1, w) = (
∑

i mi)!
∏

i imi if w has cycle type (imi), i.e. mi cycles
of length i for i = 1, 2, . . ..

ANNALES DE L’INSTITUT FOURIER
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Proof. — The first statement is a special case of (3.7)(ii).
For the second, we apply (3.7)(i), noting that γJ,1 is supported on the

Coxeter class of WJ . Thus in order to apply Frobenius’ formula for evalua-
tion of induced characters, we note that to evaluate the right side of (3.7)(i)
at w, only those J with associated partition (imi) contribute. The actual
evaluation is easy �

Remark 3.9. — Combining the statements (3.5(iii)) and (3.8(ii)), we
obtain ∑

λ=(imi )

(
∑

i mi)!∏
i mi!

= 2n−1,

where the sum is over the partitions λ of n.

Remark 3.10. — The varieties TW are clearly defined over R, and one
may therefore speak of the space TW (R) of real points of TW . The methods
of [10, §5] may be used to investigate these spaces. As a very simple example
we cite type A1, where TW = P1(C) and TW (R) = P1(R). In this case
we have in the above notation (with PY (t) denoting the usual Poincaré
polynomial of a topological space),

PTW (R)(t) = 1 + t =
∣∣TW (Fq)F

∣∣
q 7→t

.

This example leads naturally to the question of how the Poincaré polynomi-
als of the real varieties TW (R) (both equivariant and otherwise) are related
to the corresponding polynomials for the complex or finite field cases.

We conclude this section by giving the values of the polynomials PW (t, w)
when Φ is the root system of type B3. This is quickly calculated by hand
using the results above. Recall that the conjugacy classes of the Weyl
groups of type Bn are characterised by their “cycle type” λ±1 , . . . , λ±p , where∑

j λj = n. For example − IdV is of type 1−, . . . , 1−. There are ten conju-
gacy classes in W (B3), and the values of PW (t, w) are given in the table
below.

Conjugacy class (w) PW (t, w)

(1, 1, 1) t6 + 23t4 + 23t2 + 1

(1, 2) t6 + 7t4 + 7t2 + 1

(1−, 1, 1) t6 + 7t4 + 7t2 + 1

(3) t6 + 2t4 + 2t2 + 1

1−, 2) t6 + 3t4 + 3t2 + 1

(1, 2−) t6 + t4 + t2 + 1

(1−, 1−, 1) t6 + 3t4 + 3t2 + 1

(3−) t6 + 1

(1−, 2−) t6 + t4 + t2 + 1

1−, 1−, 1−) t6 + 3t4 + 3t2 + 1
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4. The reflection representation

In this section we shall apply our main theorem to determine the mul-
tiplicity of the reflection representation ρ = ρW of W in each cohomology
space H2i(TW , C). We start with some basic facts concerning the reflection
representation.

4.1. The reflection representation

Let K be a simple system for a reflection group H in V = Rn. Suppose
K = qc

i=1Ki is the decomposition of K into irreducible components. Then
correspondingly, H = H1×· · ·×Hc, and Hi = HKi

acts irreducibly on VKi
,

the linear span of Ki, through its reflection representation ρi. Moreover if
ρK is the reflection representation of H, its decomposition into irreducible
components is given by

(10) ρK =
c⊕

i=1

1H1 ⊗ · · · ⊗ 1Hi−1 ⊗ ρi ⊗ 1Hi+1 ⊗ · · · ⊗ 1Hc .

Suppose Π is as in Theorem 1.1 and let J ⊆ Π. Then the restriction to
WJ of the reflection representation ρ of W is given by

(11) ResW
WJ

ρ = ρJ ⊕ |Π r J |1WJ
,

where ρJ is the reflection representation of WJ (on VJ).
Next, recall that if V1 and V2 are vector spaces, there is a canonical

isomorphism of graded vector spaces Λ(V1 ⊕ V2)
'−→ Λ(V1) ⊗ Λ(V2); i.e.

for each index k, we have Λk(V1⊕V2) ∼= ⊕i+j=kΛi(V1)⊗Λj(V2). It follows
from (10) that the decomposition of ΛkρK into irreducibles is given by

(12) ΛkρK = ⊕i1+···+ic=kΛi1ρ1 ⊗ Λi2ρ2 ⊗ · · · ⊗ Λicρc.

Note that since the representations Λiρj are irreducible, this implies that
ΛkρK is multiplicity free.

4.2. A combinatorial result about trees

Our multiplicity formula will involve the Dynkin diagram of Φ, and to
evaluate it explicitly, the following discussion will be useful. The author
thanks Anthony Henderson for pointing out the degree of generality in
which Proposition 4.1 below holds.
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Let Θ be a tree, that is, a finite connected undirected graph with no
circuits. Write n = |Θ|, and for 0 6 k 6 n define c(Θ, k) by

(13) c(Θ, k) =
∑
J⊆Θ
|J|=k

c(J),

where c(J) is the number of connected components of the subgraph (forest)
spanned by J . Putting the c(Θ, k) into a generating polynomial, we define

(14) cΘ(t) :=
n∑

k=0

c(Θ, k)tn−k ∈ Z[t].

We shall prove

Proposition 4.1. — Let Θ be any tree with n vertices. Then

cΘ(t) = (1 + t)n−2(1 + nt).

Proof. — Note first that for any tree, the number of vertices is one more
than the number of edges. Since any subset J of Θ spans a forest (disjoint
union of trees), it follows that c(J) is the difference between k = |J | and
the number e(J) of edges of J . Further, each edge of Θ occurs in precisely(
n−2
k−2

)
subsets J . It follows that

c(Θ, k) =
∑
J⊆Θ
|J|=k

c(J) =
∑
J⊆Θ
|J|=k

(k − e(J))

= k

(
n

k

)
− (n− 1)

(
n− 2
k − 2

)
= (n− k + 1)

(
n− 1
k − 1

)
.

Hence

cΘ(t) =
n∑

k=0

c(Θ, k)tn−k =
n∑

k=1

(n− k + 1)
(

n− 1
k − 1

)
tn−k

=
d

dt

n∑
k=1

(
n− 1
k − 1

)
tn−k+1 =

d

dt

(
t(1 + t)n−1

)
= (1 + t)n−2(1 + nt),

as stated. �

Definition 4.2. — Define the polynomial un(t) as the value of cΘ(t)
for any tree Θ with n vertices. That is,

un(t) := (1 + t)n−2(1 + nt).
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4.3. The multiplicity theorem

In order to discuss our result, it is convenient to define the polynomial
NΦ(t) which is associated with the root system Φ.

Definition 4.3. — Let Φ be a root system and let Π ⊂ Φ be a simple
system in Φ. For each subset J ⊆ Π denote by c(J) the number of connected
components of J (or of the root system ΦJ spanned by J). For each integer
i > 0 write

νΦ(i) =
∑
J⊆Π

|J|=i+1

c(J).

Then NΦ(t) :=
∑

i>0 νΦ(i)ti.

Lemma 4.4. — If Φ is an irreducible root system of rank n, thenNΦ(t) =
(1 + t)n−2(n + t).

Proof. — Let Θ be the Dynkin diagram of Φ. Then evidently for i =
0, 1, . . . , n− 1, νΦ(i) = c(Θ, i + 1). It follows easily that

NΦ(t) = tn−1un(t−1) = (1 + t)n−2(n + t).

�

Theorem 4.5. — Let Φ be any irreducible root system of rank n

(n > 2). Then
∑n

i=0

(
H2i(TW , C), ρW

)
W

ti = (n− 1)t(1 + t)n−2.

A straightforward consequence of Theorem 4.5 is

Corollary 4.6. — Let Φ be any root system of rank n, and denote by
W and c(Φ) respectively, the corresponding Weyl group and the number
of irreducible components of Φ. Then

(15)
n∑

i=0

(
H2i(TW , C), ρW

)
ti = (n− c(Φ)) t(1 + t)n−2.

Proof of Corollary 4.6. — Writing c = c(Φ), and using notation analo-
gous to that at the beginning of this section, we have

ρW =
c⊕

i=1

1W1 ⊗ · · · ⊗ ρi ⊗ · · · ⊗ 1Wc
.

Since H∗(TW , C) ∼= ⊗c
i=1H

∗(TWi , C), it follows from Theorem 3.5(iii) and
Theorem 4.5 above that

n∑
i=0

(H2i(TW , C), ρW )ti =
c∑

j=1

c∏
i=1
i 6=j

(1 + t)ni(nj − 1)t(1 + t)nj−2,
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where ni is the rank of the irreducible component Φi of Φ. The required
statement follows easily. �

Proof of Theorem 4.5. — Our starting point is the formula (3) which
describes H2i(TW , C) as a W -module.

H2i(TW , C) ∼=
∑
J⊆Π
|J|>i

(−1)|J|−i IndW
WJ

(Λ|J|−iρJ),

where ρJ is the reflection representation of WJ .
By Frobenius reciprocity, it follows that

κi :=
(
H2i(TW , C), ρ

)
W

=
∑
J⊆Π
|J|>i

(−1)|J|−i
(
ResW

WJ
ρ,Λ|J|−iρJ

)
WJ

.

We therefore turn our attention to the computation of the κi.
Now κi =

∑
J⊆Π
|J|>i

(−1)|J|−iκi(J), where κi(J) = (ResW
WJ

ρ,Λ|J|−iρJ)WJ
.

Further, by (11), we have

κi(J) = (ρJ ,Λ|J|−iρJ)WJ
+ |Π r J |(1WJ

,Λ|J|−iρJ)WJ
.

We have seen that (1WJ
,Λ|J|−iρJ)WJ

= 0 unless |J | = i, in which case the
multiplicity is 1. To compute (ρJ ,Λ|J|−iρJ)WJ

, write J = J1 q · · · q Jc(J)

for the decomposition of J into connected components (cf. 10), and let
k = |J | − i. Then from (10) and (12) we see that (ρJ ,ΛkρJ)WJ

= 0 unless
k = 1, and when k = 1, (ρJ , ρJ)WJ

= c(J).
Hence

κi(J) =


|Π r J | if |J | = i

c(J) if |J | = i + 1

0 otherwise.

It follows that
n∑

i=0

(H2i(TW , C), ρW )ti =
n∑

i=0

κit
i =

n∑
i=0

∑
J⊆Π
|J|>i

(−1)|J|−iκi(J)ti

=
n∑

i=0

 ∑
J⊆Π
|J|=i

(n− i)−
∑
J⊆Π

|J|=i+1

c(J)

 ti

=
n∑

i=0

((
n

i

)
(n− i)− νΦ(i)

)
ti

= n(1 + t)n−1 −NΦ(t).
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Finally, it follows from Lemma 4.4 that NΦ(t) = (1 + t)n−2(n + t). Sub-
stituting into the expression above, we obtain the theorem. �

Appendix A. Equivalence to the
Dolgachev-Lunts-Stembridge formula

In this appendix we shall show how the character formula of Dogachev,
Lunts and Stembridge can be derived from our Theorem 1.1 and vice versa.

To do this, we shall evaluate our formula (1) at an element w ∈ W , and
compare with the formula in [15, Cor. 1.6]. We start by noting that given
an element w ∈ W , we may apply Frobenius’ formula for induced charac-
ters to the formula (1) to obtain the following expression for PW (t, w) :=∑

i>0 Trace
(
w,Hi(TW , C)

)
ti ∈ C[t].

(16) PW (t, w) =
∑
xWJ

x−1wx∈WJ

det VJ
(t2 − x−1wx),

where the sum is over all cosets xWJ of parabolic subgroups WJ (J ⊆ Π)
which are fixed by w, and VJ is the span of the simple roots in J .

Next we translate the formula in [15, Cor. 1.6] into the notation of the
current work. Let ∆ = ∆W be the fan in V which corresponds to the root
system Φ. Then in the language of the proof of Theorem 1.1 above, ∆ is
the union of the cones τ(xWJ) over all cosets xWJ . Fix w ∈ W and define

(17) QW (t, w) = P∆w(t)(1− t2)− dim V w

det V (1− wt2),

where V w = ker(w− 1) is the fixed point subspace of w, and P∆w(t) is the
Poincaré polynomial of the toric variety T (∆w) corresponding to the fan
∆w obtained by intersecting the cones of ∆ with V w.

Then [15, Cor. 1.6] asserts that QW (t, w) = PW (t, w). The equivalence
of this statement to our Theorem 1.1 will follow from

Proposition A.1. — Let w ∈ W , and define RW (t, w) to be the right
side of the equation (16). Then RW (t, w) = QW (t, w).

Proof. — First, note that the cones of ∆w are precisely those cones
of ∆ which are fixed by w; this is because w fixes a cone τ (setwise)
if and only w fixes τ pointwise. That is, in the language above, ∆w ={
τ(xWJ) ∈ ∆ | x−1wx ∈ WJ

}
.
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It follows, using [8, p. 94] and the fact that dim τ(xWJ) = n− |J | , that

P∆w(t) =
∑

τ∈∆w

(t2 − 1)dim V w−dim τ(18)

=
∑
xWJ

x−1wx∈WJ

(t2 − 1)dim V w−n+|J|.

Substituting the expression (18) into (17) and simplifying, we obtain

(19) Q(t, w) = (−1)dim V w

det V (1− wt2)
∑
xWJ

x−1wx∈WJ

(t2 − 1)−n+|J|.

Now if x−1wx ∈ WJ , then x−1wx fixes V ⊥
J pointwise, so that V w ⊇ V ⊥

J .
Hence for such xWJ , we have

det V (1− wt2) =det V (1− x−1wxt2)

=det VJ
(1− x−1wxt2) det V ⊥

J
(1− x−1wxt2)(20)

=det VJ
(1− x−1wxt2)(1− t2)n−|J|.

Now substitute this last expression into (19), to obtain

Q(t, w) =(−1)dim V w ∑
xWJ

x−1wx∈WJ

(t2−1)−n+|J| det VJ
(1−x−1wxt2)(1− t2)n−|J|

=(−1)dim V w ∑
xWJ

x−1wx∈WJ

(−1)n−|J| det VJ
(1− x−1wxt2)(21)

=
∑
xWJ

x−1wx∈WJ

(−1)dim V w+n det VJ
(x−1wxt2 − 1).

Finally, since x−1wx has eigenvalues (on V , and therefore VJ) which
come in complex conjugate pairs or are equal to ±1, it follows that

det V (x−1wx) = (−1)n+dim V w

= det VJ
(x−1wx),

since x−1wx acts trivially on V ⊥
J . It follows from the last line of (21) that

Q(t, w) =
∑
xWJ

x−1wx∈WJ

det VJ
(t2 − x−1wx) = R(t, w),

and the proof of the proposition is complete. �
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