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PERTURBATIVE EXPANSIONS IN
QUANTUM MECHANICS

by Mauricio D. GARAY (*)

Abstract. — We prove a D = 1 analytic versal deformation theorem in the
Heisenberg algebra. We define the spectrum of an element in the Heisenberg al-
gebra. The quantised version of the Morse lemma already shows that the pertur-
bation series arising in a perturbed harmonic oscillator become analytic after a
formal Borel transform.

Résumé. — Nous démontrons un théorème de déformation verselle analytique
pour l’algèbre de Heisenberg dans le cas D = 1. Nous définissons le spectre d’un
élément dans cette algèbre. La quantification du lemme de Morse montre que les
séries perturbatives du spectre de l’oscillateur harmonique deviennent analytique
après une transformation de Borel formelle.

Introduction

In 1925, Heisenberg showed that the perturbative expansion for the spec-
trum of the anharmonic oscillator H(q, p) = 1/2(p2 +q2)+1/4tq4 are given
by formal power series expansions in t.

He computed the first three terms of these series and found:

E(t, h) = (n+ 1/2) h
2π

+ 3(n2 + n+ 1/2)
8

t
( h

2π

)2

− 17n3 + 51/2n2 + 59/2 + 21/2
64

t2
( h

2π

)3
+ . . .

where h denotes the Planck constant [20].

Keywords: Harmonic oscillator, Borel summability, micro-local analysis, non-
commutative geometry.
Math. classification: 81Q15.
(*) Initially supported by the Forschungsstipendium GA 786/1-1 of the Deutsche
Forschungsgemeinschaft and by the IHÉS (in particular by the 6th European Frame-
work program, contract Nr. RITA-CT-2004-505493).



2062 Mauricio D. GARAY

Soon after, Born and Jordan proposed the matrix formulation of quan-
tum mechanics in order to interpret and generalise Heisenberg’s computa-
tions [5]. This approach led its authors and Heisenberg to the “Dreimän-
nerarbeit” in which, among other things, they extended Heisenberg result
to arbitrary perturbations [4]. Later, Von Neumann made an attempt to
unify matrix quantum mechanics with Schrödinger’s approach in terms of
operators in Hilbert spaces. This process was pursued by several authors
and led to the Kato-Rellich theory. For instance, the perturbative series
E(t, h) are asymptotic expansions of spectral values of the operator H for
t > 0 [35] (see also [33], Chapter XII.3 and historical notes).

Nevertheless, the Born-Jordan approach differs from the one using the
Hilbert space formulation in at least two points : there is a parameter ~
in all computations, there is no condition on boundedness of the matrix
coefficients. In particular, rather than vector spaces over C one has to
consider modules over C[[~]]. In the Born-Jordan approach the eigenvalues
are obtained by transforming the semi-infinite matrix corresponding to the
Hamiltonian to its diagonal form.

This process, originated by Born and carried out by Born Heisenberg and
Jordan, is a quantised version of the Birkhoff normal form [4]. It appeared
a year before the book of Birkhoff on dynamical systems in which the
Birkhoff normal form is presented, but the method was, of course, much
older (1) [3].

The difference between the Born-Jordan and the Hilbert space approa-
ches is similar to that encountered in geometry, where one can consider real
C∞ and formal categories. To these two approaches, we add the analytic
one. We will prove that the spectrum computed in the analytic and formal
categories coincide, and this will prove that the perturbative expansions
E(t, ~) =

∑
k αk(t)~k considered in the Dreimännerarbeit have analytic

formal Borel transforms Ê(t, ~) =
∑
k αk(t)~k/k!. So, our proof is indirect

and reflects the existence of an analytic theory similar to the formal one.
For some special polynomial perturbations, it is conjectured that these
asymptotic series are resurgent [34, 38, 40]. Part of this work might be used
to give a new approach to quantum resurgence by adding to the analytic
theory an hypothetic resurgent one.

In this paper, we confine ourselves to one-dimensional quantum mechan-
ics but using deformation theory of singular Lagrangian varieties, one can
extend these results to quantum integrable systems [17]. The integrability

(1) It seems that Born gave the name “quantum mechanics” to the new physical theory
precisely because of its relation with perturbation theory in Hamiltonian mechanics.
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PERTURBATIVE EXPANSIONS IN QUANTUM MECHANICS 2063

of the system is needed to establish the Borel convergence. The existence
of the formal power series can be established for any perturbation of a
quadratic hamiltonian as Born, Heisenberg and Jordan proved [4].

1. Formal quantum mechanics

1.1. The algebra Q̂

Let Q̂ be the non-commutative algebra over C consisting of formal power
series in the variables p, q, ~ which satisfy the commutation relations

[p, q] = ~, [~, p] = 0, [~, q] = 0, ~ = h

2π
√
−1

.

We introduce the variable ~ = h
2π
√
−1 rather than ~ = h

2π in order to
simplify the notations and the formulae.

The elements of the algebra Q̂ can be represented as differential operators
acting on C[[~, z]] by putting(2)

p = ~∂z, q = z.

Using the basis 1, z, z2, . . . of the C[[~]]-module C[[~, z]], we may associate
to each element of Q̂ a semi-infinite matrix. The semi-infinite matrices
associated to q, p are given by

q =


0 0 0 0 . . .

1 0 0 0 . . .

0 1 0 0 . . .

. . . . . . . . . . . . . . .

 , p =


0 ~ 0 0 . . .

0 0 2~ 0 . . .

0 0 0 3~ . . .

. . . . . . . . . . . . . . .

 .

One can work abstractly in the algebra Q̂ or use the semi-infinite matri-
ces [5, 12].

1.2. The Born-Jordan spectrum

Using the basis 1, z, z2, . . . of the C[[~]]-module C[[~, z]], we get a repre-
sentation of the algebra Q̂

ρ : Q̂ −→ HomC[[~]](C[[~, z]],C[[~, z]])

defined by
ρ(p) = ~∂z, ρ(q) = z.

(2) In physics, the usual notation is a, a† rather than p, q.

TOME 59 (2009), FASCICULE 5



2064 Mauricio D. GARAY

An automorphism ϕ ∈ Aut(Q̂) induces a new representation such that the
following diagram commutes

Q̂
ρϕ

((QQQQQQQQQQQQQQQ

ϕ

��
Q̂

ρ // HomC[[~]](C[[~, z]],C[[~, z]]).

For instance, the element H = 1
2 (p2 − q2) ∈ Q̂ becomes diagonal with

diagonal elements (n+ 1/2)~, n > 0 for the representation

ρϕ(p) = ~∂z + z√
2

, ρϕ(q) = −~∂z + z√
2

.

This quadratic element H is called the harmonic oscillator, the unusual
appearance of a minus sign is due to our peculiar choice for the variable ~.
An element H ∈ Q̂ is called diagonalisable if there exists a representation
in which it is diagonal in the base 1, z, z2, . . . .

Definition 1.1 ([5]). — The formal spectrum of H ∈ Q̂, denoted
Ŝp(H), consists of the diagonal entries of its diagonal form if it is diag-
onalisable.

Remark that any quadratic form in the q, p’s is diagonalisable and has
therefore a discrete spectrum.

1.3. Comparison between formal and matrix approaches

Proposition 1.2. — Consider an element of the type H = H0 +~H1 +
. . . , Hi ∈ Q̂. If H0 is diagonalisable then so is H.

This proposition can be reformulated and easily proved in the abstract
approach. We start by some elementary observations.

Proposition 1.3. — The semi-infinite matrix associated to H ∈ Q̂ is
diagonal in a representation ρϕ if and only if it is of the type

ϕ(H) =
∑
i>0

αii(qp)i, αii ∈ C[[~]].

Proof. — Write ρϕ(H) has a linear differential operator
∑
j,k aj,kz

j~k∂kz .
This operator is diagonal if and only if for all values of n > 0, we may find
En such that (∑

j,k

aj,kz
j~k∂kz

)
zn = Enz

n.

ANNALES DE L’INSTITUT FOURIER
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This condition is equivalent to stating that aj,k is non-zero only for j = k.
This proves the proposition. �

Formal power series can be composed: given any H ∈ C[[~, x, y]], we have
a C[[~]]-linear mapping

C[[~, z]] −→ C[[~, x, y]], z 7→ H

which maps u =
∑
anz
n ∈ C[[~, z]] to

u ◦H :=
∑
n>0

unH
n ∈ C[[~, x, y]].

In the algebra Q̂ a similar property holds: given any H ∈ Q̂, we have a
C[[~]]-linear mapping

C[[~, z]] −→ Q̂, z 7→ H

which maps u =
∑
anz
n to

u ◦H :=
∑
n>0

unH
n ∈ Q̂.

Thus, the choice of an element H ∈ Q̂ induces in the algebra Q̂ a C[[~, z]]-
module structure:

znF := HnF, u(z)F := (u ◦H)F, ∀F ∈ Q̂.

If ρϕ(H) is diagonal in the basis 1, . . . , zn, . . . with entries E0, . . . , En, . . .

then ρϕ(u ◦ H) becomes diagonal in the same basis with entries u(E0),
. . . , u(En), . . . , i.e.:

Ŝp(u ◦H) = u(Ŝp(H)).
Therefore, Proposition 1.2 is a consequence of the following statement.

Proposition 1.4. — For any element H = qp+~H1 +~2H2 + . . . there
exist an inner automorphism ϕ ∈ Aut(Q̂) and a function germ u ∈ C[[~, z]]
such that u ◦ ϕ(H) = qp.

We will now give a proof of this proposition.

1.4. The quantum versal deformation space

Following Dirac [12], we define the quantum Poisson bracket

{F,G} := 1
~

[F,G], F,G ∈ Q̂.

TOME 59 (2009), FASCICULE 5



2066 Mauricio D. GARAY

Definition 1.5. — The (formal) quantum versal deformation space as-
sociated to H ∈ Q is the C[[~]]-module M̂(H) = Q̂/{H, Q̂}.

The map F 7→ {H,F} is C[[~, z]]-linear, indeed

{H, zF} = {H,HF} = H{H,F} = z{H,F}.

Thus, the quantum versal deformation space M̂(H) has a C[[~, z]]-module
structure: ∑

n>0
anz
n[m] :=

[∑
n>0

anH
nm
]
, an ∈ C[[~]], m ∈ Q̂,

where the brackets [·] mean that we project the element in M̂(H).

Proposition 1.6. — For H = qp, the C[[~, z]]-module M̂(H) = Q̂/
{H, Q̂} is free of rank 1 generated by the class of 1 ∈ Q̂.

Proof. — It is sufficient to prove that the class of any monomial qnpm
in M̂(H) lies in the module generated by the class of 1.

For n 6= m, we get {
H,

1
n−m

qnpm
}

= qnpm.

Therefore the class of qnpm in M̂(H) vanishes for n 6= m.
We prove by induction on n that the class of any monomial qnpn in

M̂(H) lies in the module generated by the class of 1.
For n = 1, we have [qp] = [H] = z[1].
By putting the q’s before the p’s, we get a finite expansion of the type

Hn = qnpn + r

where r is a term of order lower than 2n in the q, p variables, thus,

[qnpn] = zn[1]− [r].

By assumption, the class of r lies on the module generated by [1] and
consequently so does qnpn. This proves the induction step and concludes
the proof the proposition. �

This proposition implies Proposition 1.4 by induction on the degree of
~. Indeed, put H = H0 + ~kHk(mod ~k+1) with H0 = qp. As the class of
Hk in M̂(H0) vanishes, there exists a,G such that

Hk = a ◦H − {G,H0}, a ∈ C[[~, z]].

Consider the inner automorphism

ϕk : Q̂ −→ Q̂, F 7→ exp(~k−1G)F exp(−~k−1G)

ANNALES DE L’INSTITUT FOURIER



PERTURBATIVE EXPANSIONS IN QUANTUM MECHANICS 2067

and the map ak := 1− ~ka ∈ C[[~, z]]. We get that

ak◦ϕk(H) = H0+~kHk−~ka◦H0+~k{G,H0}(mod ~k+1) = H0(mod ~k+1).

This proves the assertion and concludes the proof of the proposition.

1.5. The Born-Jordan-Heisenberg theorem

Proposition 1.4 should be considered as a preliminary exercise rather
than a result on its own : in practise, one is interested usually in pertur-
bation with respect to an auxiliary parameter which is certainly not ~. We
now come to such a result.

Let Q̂[[t]] be the non-commutative algebra over the ring of formal power
series C[[~, t]] consisting of formal power series in the variables p, q, ~, t
where the only non-trivial commutation relation is still [p, q] = ~.

Theorem 1.7 ([4], §4 of Chapter 1). — Consider an element H = H0 +
tH1 with H1 ∈ Q̂[[t]]. If H0 is diagonalisable then so is H.

Of course Born, Heisenberg and Jordan provided a method for perform-
ing this quantised Birkhoff normal form. If we reformulate this theorem we
get:

Theorem 1.8. — For any element H = qp+tH1 with H1 ∈ Q̂[[t]] there
exist an automorphism ϕ ∈ Aut(Q̂[[t]]) and an element u ∈ C[[~, t, z]] such
that ϕ(H) = u ◦ (qp).

Let us now clarify the notion of perturbative expansion for the spectrum.
By substituting ~∂z and z to p, q, we get a representation

Q̂[[t]] −→ HomC[[~,t]](C[[~, t, z]],C[[~, t, z]])

and therefore a notion of spectrum. Put H = H0 + tH1 ∈ Q̂[[t]] with
H0 ∈ Q̂. What is classically called a perturbative expansion of an eigenvalue
E0 ∈ Ŝp(H0) is just a spectral value E ∈ C~[[t]] of H for which E(t = 0, ·) =
E0. Theorem 1.8 has the following corollary.

Corollary 1.9. — Under the assumptions of the previous theorem,
the series u maps the spectrum of H0 = H(t = 0, ·) ∈ Q̂ to that of H, i.e.,
the mapping

Ŝp(H) −→ Ŝp(H0), E(t, h) 7→ E(t = 0, h)

is a bĳection whose inverse is given by u.

Our aim is to establish similar results in the analytic category.

TOME 59 (2009), FASCICULE 5
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2. Analytic quantisation deformation

2.1. Majorant series

We will make systematic use of the standard technique of majorant series.
Consider the map

abs : C[[z]] −→ C[[z]], f(z) =
∑

aiz
i 7→

∑
|ai|zi, z = (z1, . . . , zn).

The following conditions are equivalent:
(1) the expansion f ∈ C[[z]] defines the germ at the origin of a holo-

morphic function
(2) the expansion abs(f) defines the germ at the origin of a holomorphic

function.
We use the (Poincaré) notation g � f if each coefficient appearing in
the expansion of g is a real number at least equal to the modulus of the
corresponding coefficient in f ; the expansion g is then called a majorant of
the expansion f . Remark that abs(f) � f and that f � 0 if and only if
the coefficients in the expansion of f are real and non-negative.

Given two maps K,L : C[[z]] −→ C[[z]], we say that K majorates L and
writeK � L ifK(g)� L(f) for any g � f . For instance, abs majorates the
identity mapping. We use indifferently the notations C{z},C{z1, . . . , zn}
for the ring OCn,0 in which we specify the labelling of the canonical coor-
dinates.

Proposition 2.1. — Consider two maps K,L : C[[z]] −→ C[[z]] such
that K � L then if K maps C{z} to itself then so does L.

Proof. — For any f ∈ C{z}, we also have abs(f) ∈ C{z}. As abs(f)� f

and K � L, one has K(abs(f))� L(f). As K maps C{z} to itself, we have
K(abs(f)) ∈ C{z} and therefore L(f) is also a convergent power series. �

2.2. Borel analytic functions

The map

B : C[[~]] −→ C[[~]],
∑
n>0

αn~n 7→
∑
n>0

αn
~n

n!
.

is called the (formal) Borel transform. We say that a formal power series is
Borel analytic provided that its Borel transform is analytic, i.e., convergent
in some neighbourhood of the origin. These were originally called functions

ANNALES DE L’INSTITUT FOURIER
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of class two then became of expansions of Gevrey class two, and in more
recent texts, they are sometimes called expansions of Gevrey class one.

Any Borel analytic formal power series is the asymptotic expansion as-
sociated to a holomorphic function (see [26]). The Borel transform maps
the commutative algebra (C[[~]], ·) with the standard product to the com-
mutative algebra (C[[~]], ∗) with the convolution product ∗ defined by(∑

j

aj~j
)
∗
(∑
k

bk~k
)

:=
∑
j,k

ajbk
j!k!

(j + k)!
~j+k,

so that B(fg) = B(f)∗B(g). The set of formal power series in ~ which are
Borel analytic is denoted by C~.

Proposition 2.2.

(1) The set C~ of Borel analytic functions is a ring for the usual product.
(2) If the expansion

∑
k ak~k, ak =

∑
j ajk~j , belongs to C~ then the

series
∑
k B(ak)~k

k! is analytic.

Proof. — The first part of the proposition follows from the inequality
j!k! 6 (j + k)! and the second part from the inequality

(j + k)! 6 2j+kj!k!

This last inequality is a consequence of the Taylor series expansion (or of
the Stirling formula)

1
1− (z + t)

=
∑
j,k

(j + k)!
j!k!

zjtk.

�

The notion of Borel convergence extends to any algebra of formal power
series A[[~]] over a commutative ring A. We denote the Borel transform in
A[[~]] by B without specifying the ring A.

In case A = C{z}, z = (z1, . . . , zn) we denote denote by C~{z} ⊂ C[[~, z]]
the commutative ring consisting of formal power series u =

∑
n,k ank~kzn

which are Borel analytic, i.e., such that Bu :=
∑
n,k ank

~k
k! z
n is analytic.

Remark that there is a vector space isomorphism C~{z} ≈ C~⊗̂CC{z} in-
duced by the multiplication, where ⊗̂ denotes the topological tensor prod-
uct [19].

TOME 59 (2009), FASCICULE 5
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2.3. The normal product

Define the normal product ? of two power series f, g ∈ C[[~, x, y]] by the
formula

f ? g :=
∑
k>0

~k

k!
∂kyf∂

k
xg

For instance y ? x = xy + ~, x ? y = xy.
The multiplication by ~ induces an exact sequence of algebras

0 −→ (C[[~, x, y]], ?) ~−→ (C[[~, x, y]], ?) −→ (C[[x, y]], ·) −→ 0

where · is the ordinary product.
Thus (C[[~, x, y]], ?) is a flat deformation of the algebra (C[[x, y]], ·).
Does the normal product also define a flat deformation (C~{x, y}, ?) of

the algebra (C{x, y}, ·)?
The problem reduces to knowing whether the normal product of two

elements in (C~{x, y}, ?) is again in (C~{x, y}, ?).
To provide an answer, extend the supremum norm

|f |r = sup
|x|<r, |y|<r

|f(x, y)|

to C[[x, y]] by putting |f |r = +∞ if f is not holomorphic inside the disk
of radius r centred at the origin and bounded on its boundary. Next, we
extend it to C[[~, x, y]] as a C[[~]]-linear map :

C[[~, x, y]] −→ R[[~]] ∪ {+∞},
∑
k>0

fk~k 7→
∑
k>0
|fk|r~k

(with the usual rule +∞+ α = +∞,∀α ∈ R[[~]] ∪ {+∞}).
An element f ∈ C[[~, x, y]] is Borel analytic if and only if |f |r ∈ C~ for r

sufficiently small.

Proposition 2.3. — The subvector space C~{x, y} ⊂ C[[~, x, y]] is sta-
ble under multiplication, i.e., it is a subalgebra for the normal product.
More precisely, for any r > 0 and ε ∈]0, r[, we have the estimate

|f ? g|r−ε � η|f |r|g|r, η =
∑
k>0

k!~kε−2k.

Proof. — As the normal product is C[[~]]-bilinear, it is sufficient to prove
the estimate of the proposition in case f, g are independent of ~.

Denote by Dr ⊂ C the closed disk of radius r. The following lemma is
known classically as the Cauchy inequalities.

ANNALES DE L’INSTITUT FOURIER
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Lemma 2.4. — The derivatives of any holomorphic function a : DR −→
C satisfy the estimates

supz∈Dr−ε |a
(k)(z)| 6 k!ε−ksupz∈Dr |a(z)|

for any r < R and any ε ∈]0, r[.

Proof. — Take z ∈ Dr−ε and denote by γ be the oriented boundary of
the disk centred at z of radius ε. The Cauchy integral formula gives

a(k)(z) = k!
2iπ

∫
γ

a(ξ)
(ξ − z)k+1 dξ.

Using the parametrisation θ 7→ z+εeiθ for the path (γ), we get the estimate
of the lemma. �

The Cauchy inequalities give the estimates

|∂kyf∂kxg|r−ε 6 (k!)2ε−k|f |r|g|r
and therefore

|f ? g|r−ε �
∑
k>0

~k

k!
(k!)2ε−2k|f |r|g|r.

This proves the proposition. �

3. The quantum Morse lemma

3.1. The algebra Q

An element F ∈ Q̂ can always be ordered, i.e., written as a formal sum
F =

∑
αmnkq

mpn~k with the q’s before the p’s. This ordering is called the
normal ordering.

The ring Q̂ is not commutative but the normal ordering allows us to
define a Borel transform Q̂ −→ C[[~, x, y]] by setting∑

m,n,k>0
αmnkq

mpn~k 7→
∑

m,n,k>0

αmnk
k!

xmyn~k.

and an “abs” mapping

abs

( ∑
m,n,k>0

αmnkq
mpn~k

)
=

∑
m,n,k>0

|αmnk|qmpn~k.

The total symbol
s : Q̂ −→ C[[~, x, y]]

TOME 59 (2009), FASCICULE 5
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is defined by taking the normal ordering and then replacing the variables
q, p with commuting variables x, y:

s(F ) =
∑

m,n,k>0
αmnkx

myn~k.

The principal symbol

σ : Q̂ −→ C[[x, y]] ≈ Q̂/~Q̂

is obtained by restricting the total symbol to ~ = 0.

Proposition 3.1 ([29]). — The total symbol induces an isomorphism
between the algebras Q̂ and (C[[~, x, y]], ?), that is,

s(FG) = f ? g, f = s(F ), g = s(G).

Definition 3.2 ([31, 36]). — The algebra Q is the subalgebra of Q̂
consisting of power series having a convergent Borel transform:

Q =
{
F ∈ Q̂, BF ∈ C{~, x, y}

}
.

Therefore the total symbol induces an isomorphism between the algebras
Q and (C~{x, y}, ?). The centre of the algebra Q is the ring C~ of Borel
analytic functions in ~.

3.2. The composition property

If f : (C2, 0) −→ (C, 0) and u : (C, 0) −→ (C, 0) are germs of holo-
morphic mappings then so is u ◦ f . In algebraic terms, the image of the
subalgebra C{z} under the homomorphism

C[[z]] −→ C[[x, y]], z 7→ f

is contained in the subalgebra C{x, y} provided that f lies in C{x, y}.
It is readily seen that this property extends to C~{x, y}: if f ∈ C~{x, y}

and u =
∑
n>0 unz

n ∈ C~{z} then the formal power series u ◦ f :=∑
n>0 unf

n lies in C~{x, y}. In the non-commutative algebra Q a similar
property holds.

Proposition 3.3. — For any u ∈ C~{z}, u =
∑
n>0 unz

n, and any
F ∈ Q, the element u ◦ F :=

∑
n>0 unF

n belongs to the algebra Q.

ANNALES DE L’INSTITUT FOURIER
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Proof. — As u ◦ F � abs(u) ◦ abs(F ), we may assume, without loss of
generality, that F � 0, u� 0.

Denote by f ∈ C~{x, y} the total symbol of F . The formal power series
u ◦ g =

∑
n>0 ung

n is Borel analytic for any g ∈ C~{x, y}. The estimate in
Proposition 2.3 gives:

|s(u ◦ F )|r−ε � |u ◦ (ηf)|r, η =
∑
k>0

k!~kε−2k.

As ηf ∈ C~{x, y} is Borel analytic, the element u◦F is also Borel analytic.
This proves the proposition. �

This proposition shows that the choice of an element f ∈ Q induces in
the algebra Q a C~{z}-module structure obtained by substituting f to the
variable z.

3.3. The algebra Q{λ}

There is a variant of the algebra Q with parameters.
Let Q̂[[λ]] := Q̂[[λ1, . . . , λk]] be the non-commutative algebra over the

ring of formal power series C[[~, λ]] := C[[~, λ1, . . . , λk]] consisting of formal
power series in the variables p, q, ~, λ where the only non-trivial commuta-
tion relation is [p, q] = ~. Consider the Borel transform

B : Q̂[[λ]] −→ C[[~, λ, x, y]], f 7→
∑

m,n,k>0

αmnk
k!

xmyn~k, αmnk ∈ C[[λ]].

We denote by Q{λ} the algebra of elements having a convergent Borel
transform in the ~ variable:

Q{λ} :=
{
f ∈ Q̂, Bf ∈ C{~, λ, x, y}

}
≈ Q⊗̂CC{λ}.

The centre of Q{λ} is the ring C~{λ} of formal power series
∑
j,k αj,kλ

j~k

for which the series
∑
j,k
αj,k
k! λ

j~k is analytic. If k = 1, we often denote the
parameter by t or z instead of λ.

Like in the absolute case Q{λ} is a ring and the choice of F ∈ Q{λ}
induces a C~{λ, z}-module structure on Q{λ} obtained by substituting F
to z.

3.4. Statement of the quantum Morse lemma

The proof of the analyticity of perturbative expansions for the spectrum
of a perturbed harmonic oscillator is based on the following theorem.

TOME 59 (2009), FASCICULE 5



2074 Mauricio D. GARAY

Theorem 3.4. — Consider an element H = H0 + tH1 ∈ Q{t} with
H0 ∈ Q. If the principal symbol of H0 ∈ Q is a Morse function germ (3)

then there exist an automorphism ϕ ∈ Aut(Q{t}) and a function germ
u ∈ C~{t, z} such that u ◦ ϕ(H) = H0.

The proof of this theorem will be given in Section 6

Remark 3.5. — In the limit ~ −→ 0, the theorem gives the Vey isochore
Morse lemma [37] and if we consider only formal power series in ~, then the
formal variant of the theorem is equivalent to this isochore Morse lemma [9].

By taking a linear interpolation between H ∈ Q and its quadratic part,
we deduce the following corollary which generalises previous results of Helf-
fer and Sjöstrand ([21], Théorème b1 and Théorème b6).

Corollary 3.6. — For any element H ∈ Q{t} whose principal symbol
is a Morse function germ there exist an automorphism ϕ ∈ Aut(Q) and a
function germ u ∈ C~{z} such that the equality u ◦ ϕ(H) = qp holds.

4. Differential calculus in the algebra Q

We use the old-fashioned notions and notations of quantum mechan-
ics [39]. For notational reasons, we consider the algebra Q but the results
of this section admit straightforward generalisations to the algebra Q{λ}.

4.1. The evolution operator

The rings Q, Q{t}, Q[[t]] and Q̂[[t]] are non-commutative Poisson alge-
bras for the Poisson bracket defined by

{F,H} := 1
~

[F,H].

For any H ∈ Q̂[[t]], the operator U ∈ Q̂[[t]] satisfying the equation U̇ = HU

with initial condition U(t = 0, ·) = 1 is called the evolution operator of H.
If H is t-independent then the evolution is given by the exponential

series:
U = exp(tH) =

∑
n>0

tnHn

n!
.

By Proposition 3.3, for H ∈ Q we also have U ∈ Q{t}.

(3) A holomorphic function germ f : (Cn, 0) −→ C is called of Morse type if df(0) = 0
and if its Hessian d2f(0) is a non-degenerate quadratic form.
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Proposition 4.1. — If H lies in Q{t} then so does its evolution op-
erator U . More precisely, put G = (abs(H))(t = r, ·) ∈ Q then U(r, ·) �
exp(rG) provided that r is small enough.

Proof. — First, we generalise the formula given by the exponential series
to the non-autonomous case.

Lemma 4.2. — The evolution operator associated to an element H =∑
k>0 hkt

k, hk ∈ Q̂, is given by the formula

U = 1 +
∑
k>0

∑
i∈Zk+1

>0

cihik . . . hi1t
k+|i|, |i| = i1 + i2 + · · ·+ ik

with ci = (i1 + 1)−1(i1 + i2 + 2)−1 . . . (i1 + i2 + · · ·+ ik + k)−1.

Proof. — Define U as in the lemma. We have

∂tU =
∑
k>0

∑
i∈Zk>0

ci(k + |i|)hik . . . hi1tk+|i|−1

and
(k + |i|)ci1,...,ik = ci1,...,ik−1

therefore relabelling the indices, we get the equality

∂tU =
∑
k>0

∑
j>0

∑
i∈Zk−1

>0

cihjhik . . . hi1t
jtk+|i| = HU.

This proves the lemma. �

We now prove the estimate stated in the proposition.
Take r small enough such that G := abs(H)(t = r, ·) lies in Q. We

proceed in two steps: first we show that the evolution operator V ∈ Q[[t]]
of abs(H) is a majorant series for the evolution operator U of H and then
show that exp(rG) is a majorant for V .

Put U =
∑
n>0 unt

n, V =
∑
n>0 vnt

n and H =
∑
n>0 hnt

n. The function
un, vn are defined by the recursions

un =
∑
j un−jhj

n
, vn =

∑
j vn−j abs(hj)

n
.

The formula for the normal product (Proposition 3.1) implies by induction
on n that un � vn. Thus U � V , this proves the first step.

Using the notations of the previous lemma, we have the equality :

V (r, ·) = 1 +
∑
k>0

∑
i∈Zk+1

>0

ci abs(hik) . . . abs(hi1)rk+|i|
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while the exponential series gives :

exp(rG) = 1 +
∑
k>0

1
k!

(∑
i>0

(abs(hi)ri
)k
rk.

Expanding this last series, we get that

exp(rG) = 1 +
∑
k>0

∑
i∈Zk+1

>0

1
k!

abs(hik) . . . abs(hi1)rk+|i|.

As ci 6 1
k! , this equality implies that V � exp(rG) provided that r is small

enough. This proves the second step.
The element etG belongs to Q{t} therefore so does V . This proves the

lemma and concludes the proof of the proposition. �

4.2. Integration of the Heisenberg equations

By Heisenberg equations, we mean a non-autonomous evolution equation
of the type

Ḟ = {H,F}, H, F ∈ Q{t}, F (t = 0, ·) = f

where the dot denotes the derivative with respect to t.

Proposition 4.3. — If U is the evolution operator of H ∈ Q{t} then
the morphism

ϕ : Q −→ Q{t}, f 7→ U
( t

~

)
fU−1

( t
~

)
, U ∈ Q{t},

integrates the Heisenberg equations of H ∈ Q{t}, that is:
d

dt
ϕ(f) = ϕ({H, f}) = {H,ϕ(f)}, ∀f ∈ Q.

Proof. — By Proposition 4.1, it is sufficient to consider the case U =
exp(tH), H ∈ Q with H � 0.

Take f ∈Q with f�0 and consider the function F =exp(tH)f exp(−tH).
As ∂kt Ft=0 = [· · · [H, · · · , [H︸ ︷︷ ︸

k−times

, f ] . . . ], the element F is given by the expan-

sion

F =
∑
k>0

~ktk

k!

{
· · ·
{
H, · · · , {H︸ ︷︷ ︸
k−times

, f
}
. . .

}
and therefore the element ϕ(f) is given by the formal expansion

ϕ(f) =
∑
k>0

tk

k!

{
· · ·
{
H, · · · , {H︸ ︷︷ ︸
k−times

, f
}
. . .

}
.

ANNALES DE L’INSTITUT FOURIER



PERTURBATIVE EXPANSIONS IN QUANTUM MECHANICS 2077

A priori the process of dividing t by ~ guaranties only that ϕ(f) is Borel
analytic in t and not necessarily analytic. Let us prove that it is indeed
analytic.

Consider the endomorphism of Q̂ defined by

φ1 : f 7→
∑
k>0

tk

[
· · ·
[
H, · · · , [H︸ ︷︷ ︸
k−times

, f
]
. . .

]
.

I assert that φ1 maps the ring Q to Q{t}. To see it put

ξk(f) =
∑
j>0

(
k

j

)
Hk−jfHj , ξ̃k(f) =

∑
j>0

(−1)j
(
k

j

)
Hk−jfHj

and define
φ2 : f 7→

∑
k>0

tkξk(f).

As φ1 =
∑
k>0 t

k ξ̃k and H � 0, we have φ2 � φ1 and using the estimate
of Proposition 2.3, we get that

|s(ξk(f))|r−ε � |2kηks(H)ks(f)|r, η =
∑
k>0

k!~kε−2k

for any r, ε small enough. Here as usual s(·) stands for the total symbol.
Using this estimate, we get that

|s(φ2(f))|r−ε � |s(f)
∑
k>0

2ktkηks(H)k|r =

∣∣∣∣∣ s(f)
1− 2tηs(H)

∣∣∣∣∣
r

.

This proves that φ2 and consequently φ1 map the ring Q to Q{t}.
Write

φ1(f) =
∑
k>0

~ktk
{
· · ·
{
H, · · · , {H︸ ︷︷ ︸
k−times

, f
}
. . .

}
.

By Proposition 2.2, the series∑
k>0

tk~k

k!
B

({
· · ·
{
H, · · · , {H︸ ︷︷ ︸
k−times

, f
}
. . .

})
.

is analytic, thus the series Bϕ(f) is also analytic. This proves the proposi-
tion. �

Remark 4.4. — This proposition implies that a change of polarisa-
tion induces an automorphism of the Q-algebra. For instance, if the series∑
αmnq

mpn lies in Q then so does the series
∑
αmnp

mqn.
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Remark 4.5. — This proposition yields a formula for the integration
of ordinary differential equations. Consider, for instance, the differential
equation ẋ = v(x) where v : (C, 0) −→ (C, 0) is a holomorphic function
germ. Define the function H = v(q)p. The flow of the vector field v(x)∂x is
given by the formula

ϕ(t) = σ

(
exp

(
t
H

~

)
q exp

(
− tH

~

))
.

This formula is just a different way of writing the Taylor type formula
ϕ(t) = etLvx where Lv denotes the Lie derivative along v.

4.3. Derivations in Q{t}

Following Born, Jordan and Heisenberg [4], we define partial derivatives

∂qf := −{f, p}, ∂pf := {f, q}, f ∈ Q

with {., .} = 1
~ [., .]. We denote by

∫
fdq (resp.

∫
fdp) the only function

germ F ∈ Q such that
(1) ∂qF = f (resp. ∂pF = f),
(2) F is divisible by q, i.e., there exists G ∈ Q such that F = qG (resp.

F = pG).
For instance, if we write f =

∑
m,n>0 αmnq

mpn we get∫
fdq =

∑
m,n>0

αmn
m+ 1

qm+1pn, ∂qf =
∑
m,n>0

mαmnq
m−1pn.

A derivation D : Q{t} −→ Q{t} of the algebra Q{t} over the ring C~{t}
is a C~{t}-linear mapping satisfying the Leibniz rule. Due to the non-
commutativity of the algebra Q{t}, the space of Q{t}-derivations is not a
Q{t}-module but only a C~{t}-module.

Proposition 4.6. — For any derivation D of the algebra Q{t}, there
exists an element G ∈ Q{t} such that D = {G, ·}. The function germ G is
related to the derivation D by the formula

G =
∫

(Dq)dp−
∫

(Dp)dq +
∫ ∫
{Dq, p}dpdq.

Proof. — Define F =
∫

(Dq)dp, then we have the equality Dq = ∂pF =
{F, q}. I assert that the function germ Dp− {F, p} does not depend on p,
that is, {Dp, q} = {{F, p}, q}. As D is a derivation, we have the equalities

D{p, q} = {Dp, q}+ {p,Dq} = 0;
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from which we deduce that {Dp, q} = {Dq, p} = {{F, q}, p}. Finally, using
the Jacobi identity, we get that {{F, q}, p} = {{F, p}, q}. This proves the
assertion.

The assertion implies that F ′ =
∫

(Dp − {F, p})dq is a function of q
independent on p. We put G = F −F ′, then Dq = {G, q} and Dp = {G, p}.
This concludes the proof of the proposition. �

Remark 4.7. — Define the non-commutative de Rham complex by put-
ting

Ω0 := Q{t}, Ω1 := free Q{t}module generated by dq, dp
Ω2 =

∧2 Ω1 and the differential is given by the usual formula. One can
prove a Poincaré lemma for this complex. The proof of the existence of
G is a consequence of this fact. Nevertheless such a complex is hard to
handle because, due to the non-commutativity of the ring Q, it behaves
badly under automorphism of the ring Q{t}.

Remark 4.8. — The proposition yields a proof of the Poincaré lemma.
Take, for instance, a holomorphic differential one form α(x)dx ∈ Ω1

C,0. To
this form, we associate the derivation D = α(q)∂p inQ. We have D = {G, ·}
and therefore α = dσ(G) where σ denotes the principal symbol. This proof
can be easily extended to arbitrary dimensions.

4.4. Non-commutative derivatives in C~{z}

Let f, v : (C2, 0) −→ (C, 0) be holomorphic function germs. For any
holomorphic function germ u : (C, 0) −→ (C, 0), the chain rule gives:

u ◦ (f + εv) = u ◦ f + ε(∂zu ◦ f)v + o(ε).

In the non-commutative ring Q such a formula does not hold(4) . Take for
instance u = z2, f = q, v = p then

u ◦ (q + εp) = q2 + ε(qp+ pq) + ε2 = q2 + 2εqp+ ε~ + o(ε)

while
u ◦ f + ε(∂zu ◦ f)v = q2 + 2εqp.

Definition 4.9. — The Q-derivative of a map u ∈ C~ at f ∈ Q is the
linear map Du(f) : Q −→ Q defined by

u ◦ (f + εv) = u ◦ f + εDu(f) · v + o(ε).

(4) This fact was pointed out to me by B. Malgrange.
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Proposition 4.10. — Write u(z) =
∑
unz

n, un ∈ C~, then the Q-
derivative of u ∈ C~{z} at f ∈ Q is given by the formula

Du(f) · v =
∑
n

un(fn−1v + fn−2vf + · · ·+ vfn−1), v ∈ Q.

Proof. — This is a direct consequence of the expansion

(f + εv)n = fn + ε(fn−1v + fn−2vf + · · ·+ vfn−1)mod ε2.

�

If u is invertible for the composition law then the inverse of its Q-
derivative satisfies the equality Du(f)Du−1(u ◦ f) = Id.

The case with parameters Q{t} is similar. For instance, given two ele-
ments f, v ∈ Q{t}, we put

u ◦ (f + εv) = u ◦ f + εDu(f) · v + o(ε).

We have the chain rule formula
∂

∂t
(u ◦ f) =

( ∂
∂t
u
)
◦ f +Du(f) · ∂

∂t
f.

5. The analytic quantum versal deformation module

5.1. Basic facts

Definition 5.1. — The (analytic) quantum versal deformation module
associated to H is the C~{z}-module M(H) := Q/{H,Q}.

As the map F 7→ {H,F} is C~{z}-linear:

{H, zF} = {H,HF} = H{H,F} = z{H,F}.

Thus, the space M(H) inherits a C~{z}-module structure.
Given a ring R, let us denote by (f) the ideal generated by f ∈ R.
As shown in the following proposition, the quantum versal deformation

module parametrise deformations over Spec(C~[ε]/(ε2)) modulo the ones
given by automorphisms. To simplify our notations, we denote the class of
ε in Q[ε]/(ε2) simply by ε.

Proposition 5.2. — An element Hv = H + εv ∈ Q[ε]/(ε2) is of the
type Hv = u◦ϕ(H) with u ∈ C{ε, z}/(ε2) and ϕ ∈ Aut(Q[ε]/(ε2)) provided
that v lies in the C{z}-module generated by 1.
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Proof. — Assume that [v] = r[1], this means that there exists F ∈ Q
such that

v = r ◦H + {F,H}.
Take ϕ = Id +ε{F, ·} and u(z) = z + εr(z), then

u ◦ ϕ(H) = u ◦ (H + ε{F,H}) = H + εr ◦H + ε{F,H}.

This proves the proposition. �

Consider the complex

C ·H : 0 −→ Q −→ Q −→ 0

where the only non zero boundary map is given by G 7→ {G,H}. The
module H0(C ·H) ≈ C~{z} is freely generated by the class of 1 provided
that the principal symbol of H has an isolated critical point at the origin
(or no critical point at all) and H1(C ·H) = M(H).

The differential of the complex C ·H being only C~{z}-linear and not Q-
linear the cohomology space have only C~{z}-module structure.

(The module M(H)/~M(H) is the Lagrange complex of f = σ(H) which
is in this case isomorphic to its Brieskorn lattice of f [17]).

5.2. Finiteness theorem

Theorem 5.3. — Assume that the principal symbol f = σ(H) of H
has an isolated critical critical point at the origin in C2, then the module
M(H) is a free finite type module of rank dimC C{x, y}/(∂xf, ∂yf).

Example 5.4. — Take H = p2 − q2, then according to the theorem, the
module M(H) is free of rank dimC C{x, y}/(x, y) = 1. As the class of 1 is
non-zero, it generates this module. More generally if the principal symbol
of H is a Morse function germ then, according to the theorem, the module
M(H) is generated by the class of 1.

The theorem might be seen as a quantisation of results obtained by
Brieskorn and Deligne ([7], Satz 1 for the coherence and [7], Proposition 1.8,
Bemerkungen 2 for the freeness).

There is a variant of the quantum versal deformation space with pa-
rameters: given H ∈ Q{λ} the space M(H) = Q{λ}/{H,Q{λ}} has a
C~{z, λ}-module structure :∑

n>0
anz
n ◦ [m] :=

[∑
n>0

anH
nm
]
, an ∈ C~{λ}, m ∈ Q{λ}.

The following theorem is the main technical result of the paper.
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Theorem 5.5. — For any germ H ∈ Q{λ}, λ = (λ1, . . . , λk), such that
the principal symbol f of H|λ=0 has an isolated critical point at the origin,
the space M(H) = Q{λ}/{H,Q{λ}} is a finite type free C~{z, λ}-module
of rank dimC C{x, y}/(∂xf, ∂yf).

Example 5.6. — Take k = 1 and write t instead of λ for the parameter.
According to the theorem M(H) is a free module of rank one for any H of
the type p2 − q2 + tH1 with H1 ∈ Q{t}. As the class of 1 is non-zero, it
generates the module M(H). More generally, if the principal symbol of H
restricted to t = 0 has a non-degenerate quadratic part then the class of 1
generates the module M(H).

To understand the proof of this theorem, let us recall the formulation of
the finiteness theorem we gave in [14] for the commutative case.

5.3. Finiteness and constructibility for the sheaf OX

Consider a map F : X −→ S, S ⊂ Cl between Whitney stratified mani-
folds and assume that it satisfies Thom’s aF condition.

Definition 5.7. — A sheaf F on X is called F -constant if F ≈ F−1

(F )∗F .

Definition 5.8. — A sheaf F is called F -constructible if at each point
x ∈ X there exists a neighbourhood U inside the stratum of x such that
the restriction of F to U is F|U -constant.

A complex of coherent sheaves is called F -constructible if its cohomology
sheaves are F -constructible and if its differential is F−1OS-linear. Similar
notions hold for germs of mappings.

Theorem 5.9 ([14]). — Let F : (Ck × Cn, 0) −→ (Cl, 0) be a holomor-
phic map germ satisfying the aF -condition. The cohomology spaces Hk(K ·)
associated to a complex of F -constructible OCk+n,0-coherent modules are
OCl,0-modules of finite type.

Typical examples of applications are the absolute and relative de Rham
complex of an isolated hypersurface singularity.

5.4. The sheaf QC2

Consider the map

j : C2 −→ C3 = {(~, x, y)}, (x, y) 7→ (0, x, y).
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We denote by OC3|C2 the sheaf j−1OC3 consisting of restriction of the holo-
morphic functions in C3 to the hyperplane ~ = 0. Let U ⊂ C2 be an open
subset.

Proposition 5.10. — If F,G are Borel analytic in U ⊂ C2, i.e., B(F ),
B(G) ∈ OC3|C2(U) then their normal product F ? G ∈ Q is also Borel
analytic in U .

The proof is similar to that of Proposition 2.3. This proposition shows
that the algebras Q induces a sheaf of algebras QC2 in C2 defined by the
presheaf:

f ∈ QC2(U) ⇐⇒ Bf ∈ OC3|C2(U).
The total symbol maps isomorphically the sheaf of algebras QC2 to the
sheaf (OC3|C2 , ?) where ? denotes the normal product.

Consider the sheaf BC of analytic functions with Borel analytic coeffi-
cients defined by the presheaf:

U −→ BC(U) = {f ∈ C[[~, z]], Bf ∈ OC2|C(U)}.

The algebra C~{z} is the stalk at the origin of the sheaf BC.

Proposition 5.11. — Given any section H ∈ QC2(U) over an open
subset U ⊂ C2 and any u =

∑
n anz

n ∈ BC(f(U)) where f is the principal
symbol of H, the element u ◦H belongs to QC2(U).

The proof is similar to that of Proposition 3.3.
The sheaf QC2 was considered in [31] (see also [32]). The formal version

of this sheaf Q̂C2 ≈ (OC2 [[~]], ?) is standard in deformation quantisation
(see [10] and references therein).

5.5. The sheaf QCk+2/Ck

We now introduce auxiliary parameters.
Denote by OCk+3|Ck+2 the restriction of the sheaf of holomorphic func-

tions in C× Ck+2 = {(~, λ, x, y)} to the vector subspace {0} × Ck+2.
The sheaf QCk+2/Ck , is defined by the presheaf:

U −→ QCk+2/Ck(U) = {f ∈ Q̂[[λ]], Bf ∈ OCk+3|Ck+2(U)}

where U ⊂ Ck+2 denotes an open subset. The situation is similar to the one
without parameters : one may identify QCk+2/Ck with the sheaf of algebras
(OCk+3|Ck+2 , ?) where ? denotes the normal product.
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Consider the sheaf BCl on Cl = {λ} defined by the presheaf:

U −→ BCl(U) = {f ∈ C[[~, λ1, . . . , λl]], Bf ∈ OCl+1|Cl(U)}.

The algebra C~{λ} is the stalk at the origin of the sheaf BCl .

5.6. The finiteness theorem for the ring Q

The notion of F -constructibility extends in an obvious manner to com-
plexes of QCk+2/Ck -coherent sheaves.

Theorem 5.12. — Let F : (Ck×C2, 0) −→ (Ck+1, 0) be a holomorphic
map germ satisfying the aF -condition. The cohomology spaces Hk(K ·) as-
sociated to a complex of F -constructible QCk+2/Ck,0-coherent free modules
are F−1BCk+1,0-coherent modules.

The algebra structure of Q plays no essential role as the results are of
functional analytic nature. The freeness is also unessential. The proof of
this theorem is given in the appendix (see also [14]).

5.7. Proof of Theorem 5.5, Part 1 (finiteness)

Consider the unfolding of the plane curve singularity associated to the
principal symbol f = σ(H) of H

F : (Ck × C2, 0) −→ (Ck × C, 0), (λ, x, y) 7→ (λ, f(λ, x, y)).

As F defines an isolated complete intersection singularity it admits stan-
dard representatives (sometimes called good or Milnor representatives),
which trivially satisfies the Thom aF condition for any Whitney stratifica-
tion which refines the stratification by the rank (see [2, 24]).

Let F : X −→ S, (λ, x, y) −→ (λ, f(λ, x, y)) be such a representative.
We consider the complex of sheaves on X:

C·H : 0 −→ QX/S −→ QX/S −→ 0

where the only non zero boundary map is given by G 7→ {G,H}. Here
QX/S denote the restriction of the sheaf QCk+2/Ck to X.

According to Theorem 5.12, it suffices to prove the following lemma.

Lemma 5.13. — The sheaf complex C·H is F -constructible, i.e, its coho-
mology sheaves are locally constant along the fibres of F : X −→ S.
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Proof. — The fibres of F are either smooth or with isolated singular
points, therefore it suffices to prove the lemma at regular points of F (any
sheaf restricted to a point is constant).

At the level of zero cohomologies, there is nothing to prove, indeed a
cocycle m ∈ C0

H(X) satisfies {m,H} = 0 and is therefore constant along
the fibres of F .

Denote by Φ be the automorphism of QCk+2/Ck{t} obtained by integrat-
ing the Heisenberg equations of H. The principal symbol ϕ of Φ is the flow
of the Hamilton vector field associated to f = σ(H).

Now, take a cocycle m ∈ C1
H(U) where U is a sufficiently small open

neighbourhood of a regular point of F , so that:
(1) it does not contain the origin,
(2) the map ψ : U −→ C × S, z 7→ (t, F (z)) with ϕ(t, w) = z is

biholomorphic onto its image, i.e, t is a local coordinate on the
fibres of the map F|U .

Define mt = Φt(m) ∈ C1
H(ϕt(X)). We differentiate mt with respect to t

and use the fact that Φt(H) = H, we get
d

dt
(mt) = Φt({m,H}) = {Φt(m),H} = δΦt(m).

Thus, the cocycles m and mt define the same class in H1(C·H(X∩ϕt(X))) .
This shows that H1(C·H)|U = F−1(F|U )∗H1(C·H) and hence the complex C·H
is F -constructible. This concludes the proof of the lemma. If we write abu-
sively m as a function of the value of F and t, then the same computation
can be written

d

dt
m(F, t) = δat, at = Φt(m(F, 0))

and consequentlym(F, t) = m(F, 0)+δ(
∫
atdt) which shows that [m(F, t)]=

[m(0, t)]. �

5.8. Proof of Theorem 5.5, Part 2 (freeness)

We put ~ = λk+1, z = λk+2 and define the complex C ·j , j = 0, . . . , k+ 2
inductively by C ·j+1 := C ·j/λj+1C

·
j and C ·0 is defined by a unique differential

Q{λ} −→ Q{λ}, F 7→ {H,F}.

The multiplication by λj+1 induces an exact sequence of complexes

0 −→ C ·j −→ C ·j −→ C ·j+1 −→ 0
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which induces in turn a long exact sequence in cohomology. There are
canonical isomorphisms

H0(C ·j) ≈ C~{λj+1, . . . , λk}, H0(C ·k+1) ≈ C{z}, H0(C ·k+2) ≈ C

for j = 0, . . . , k. Therefore the exact sequences split and we get short exact
sequences

0 −→ H1(C ·j) −→ H1(C ·j) −→ H1(C ·j+1) −→ 0

which shows that (λ1, . . . , λk+2) is a regular sequence of maximal length,
therefore the finite type module M = H1(C ·) has depth k+2; consequently
the Auslander-Buchsbaum formula implies that M is a free module (see e.g.
[13]). The map

m 7→ mdx ∧ dy
is an isomorphism between H1(C ·k+1) and the Brieskorn lattice Ω2

C2,0/df ∧
dOC2 of f which is of rank µ := dim C{x, y}/(∂xf, ∂yf) [7] (see also [15,
25]). Therefore the rank of the module M = H1(C ·0) also equals µ.

6. Deformation theory in Q

6.1. Proof of the quantum Morse lemma (Theorem 3.4)

As in the case of singularity theory for mappings, we start by using the
path method [1].

We search for an automorphism ϕ ∈ Aut(Q{t}) with ϕ(t) = t and a
map u ∈ C~{z, t} such that u ◦ ϕ(H) = H(t = 0, ·). We differentiate this
equality with respect to t and get the equation

(6.1) ∂u

∂t
◦ ϕ(H) +Du(ϕ(H)) · ϕ

(
{G,H}+ ∂H

∂t

)
= 0

where, according to Proposition 4.6, the operator G is defined by the equal-
ity [G, ·]+∂t = ϕ−1( ddtϕ(·)). Here Du(ϕ(H)) stands for the Q-derivative of
u at ϕ(H). Applying the map Du−1(u ◦ϕ(H)) to Equation (6.1) and then
acting by the automorphism ϕ−1, we get an equation of the type

(6.2) g ◦H + {G,H} = γ, γ = −∂H
∂t
∈ Q{t}, g ∈ C~{z, t}.

The automorphism ϕ is obtained from G by integration of the Heisenberg
equations (Proposition 4.3). I assert that the map germ u can also be
recovered from the map germ g. Indeed, as g ◦ H commutes with H, the
relation

∂u

∂t
◦H = Du(H) · (g ◦H)
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reduces to
∂u

∂t
◦H =

(∂u
∂z
g
)
◦H.

Now, the assertion follows from :

Lemma 6.1. — The initial value problem{
∂u
∂t = ∂u

∂z g

u(t = 0, z) = z

can be solved in C~{z, t}.

Proof. — The Borel transform Bu of u satisfies the equation

(6.3) ∂Bu

∂t
= ∂Bu

∂z
∗Bg,

with initial condition Bu(t = 0, z) = z, where ∗ denotes the convolution
product in the ~ variable.

We chose r ∈ R, so that, in the series expansions

Bg =
∑
n,m>0

gn,mz
ntm, Bu =

∑
n,m>0

un,mz
ntm, gn,m, un,m ∈ C{~}

the coefficients gn,m, un,m are holomorphic in the disk D = {~ ∈ C, |~| <
2r} and both functions are holomorphic in some polydisk D ×D′ ⊂ C3.

We define the holomorphic function

g̃ =
∑
n,m>0

cn,mz
ntm, cn,m = abs(gn,m)(~ = r) ∈ C.

The integro-differential equation (6.3) gives the recursion

(m+ 1)un,m+1 =
∑

j+j′=n,k+k′=m
(j + 1)uj+1,kgj′,k′ .

Therefore an induction on m shows that the solution v of the partial dif-
ferential equation

∂v

∂t
= ∂v

∂z
g̃

with initial condition v(t = 0, z) = z is a majorant series forBu evaluated at
~ = r. By the Cauchy-Kovalevskaïa theorem, the function v is holomorphic
in some neighbourhood of the origin and therefore so is Bu. This proves
the lemma. �

This lemma implies that there exist u, ϕ such that u ◦ ϕ(H) = H0 pro-
vided that there exist g,G satisfying Equation (6.2).

In the notations introduced at the beginning of this subsection, Equa-
tion (6.2) becomes g ◦ [1] = [γ].

Therefore it can be solved provided that [1] generates the module M(H).
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We apply Theorem 5.5. As the module M(H) is free of rank one and the
class of 1 is non-zero this shows that [1] generates the module M(H). This
concludes the proof of the theorem.

(The freeness of the module was used by convenience for the reader, in
fact, because of Nakayama’s lemma, the finiteness of the module is sufficient
to conclude the proof).

6.2. The quantum versal deformation theorem

We show that the finiteness of the deformation module (Theorem 5.5)
implies the versal deformation theorem in the algebra Q{λ}. The proof is
similar to the one we gave in the isochore case [15].

We recall some standard definitions adapted to our setting. An element
F ∈ Q{λ} is called a deformation of H = F (0, ·) ∈ Q. A deformation
G ∈ Q{µ} of H is called induced from F is there exist homomorphisms of
algebras ϕ : Q{λ} −→ Q{µ}, u ∈ C~{µ} such that u ◦G = ϕ(H).

A deformation of H ∈ Q is called versal if any other deformation of H
can be induced from it.

Theorem 6.2 (compare [8], Theorems 6,7,8,9 and [30]). — A defor-
mation F of an element H ∈ Q is versal provided that the classes of the
∂λjσ(F )|λ=0’s and of 1 generate the C-vector space C{x, y}/({C{x, y}, σ(H)}
+C{x, y}σ(H)).

Remark 6.3. — The converse statement of the above theorem holds
trivially.

Example 6.4. — The deformation F = p2 + qk+1 +
∑k−1
j=1 λjq

j is versal.
Indeed, here σ(H) = y2 + xk+1 and the C-vector space C{x, y}/({C{x, y},
σ(H)}+C{x, y}σ(H)) can be identified with the algebra C{x, y}/(y, xk) of
σ(H) which is generated by the classes of 1, x, . . . , xk−1 (see [15], Example 2
for details).

Proof. — We use a standard method introduced by Martinet in the con-
text of singularity theory for differentiable mappings [27].

Let G be an arbitrary deformation of H depending on the parameters
µ1, . . . , µl.

Define the deformation Φ = F +G−H and let Φj be the restriction of
Φ to µ1 = · · · = µj = 0 with Φ0 = Φ.

Assertion. The deformation Φj−1 is induced by the deformation Φj .

ANNALES DE L’INSTITUT FOURIER



PERTURBATIVE EXPANSIONS IN QUANTUM MECHANICS 2089

We put t = µj , α = (λ1, . . . , λk, µ1, . . . , µj) and differentiate with respect
to t the equation ut ◦ ϕt(Φj−1) = Φj . Proceeding like in the proof of the
quantum Morse lemma, we get the equation

(6.4) g ◦ Φj−1 + {Φj−1,H}+
k+j−1∑
l=1

al∂αlΦj−1 = γ.

with γ ∈ Q{α}, g ∈ C~{z, α}, al ∈ C~{α}. This equation can be solved
provided that [1] and the [∂αlΦl−1]’s generate the C~{α, z}-module M =
Q{α}/{Φj−1,Q{α}}.

Theorem 5.5 implies that the module M is of finite type, therefore the
Nakayama lemma implies the equivalence:

(i) the classes of 1 and of the ∂αlΦj−1’s generate the C~{z, α}-module
M ,

(ii) the classes of 1 and of the ∂αlΦj−1’s generate the C-vector space
V = M/MM where M is the maximal ideal of the local ring
C~{z, α}.

The assumption on F implies the last statement. This proves the assertion.
Applying successively the assertion from j = 0 to j = l, we get that

Φ0 = F + G − H is induced by Φl = F . This concludes the proof of the
theorem. �

6.3. Miniversality implies Universality

Recall that a versal deformation depending on a minimal number of
parameter is called miniversal. In [8], Colin de Verdière conjectured the
following result(5) .

Theorem 6.5. — Let F ∈ Q{λ} be a miniversal deformation of an
element H ∈ Q. Let G be another deformation of H, so that G is induced
from F , that is, u ◦G = ϕ(F ), then the function germs ϕ(λj) ∈ C~{µ} and
u ∈ C~{µ, z} are uniquely determined by the choices of F and G.

Proof. — We use the same notations as in the proof of Theorem 6.2.
Equation (6.4) can be written as

(6.5) g ◦ [1] +
k+j−1∑
l=1

al[∂αlΦj−1] = [γ]

(5) In the initial conjecture, there was no condition on the analyticity of the expansions
and of the data. The case of formal power series is simpler since the finiteness of the
deformation module is in that case obvious.
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where the bracket denotes the class in the moduleMj=Q{λ}/{Φj−1,Q{λ}}.
Since F is miniversal and the module Mj is free of finite type, the classes

[∂αlΦj−1] and [1] freely generate the module M for l ∈ {1, . . . , k}. Therefore
the solution of Equation (6.4) with al = 0 for l > k is unique.

This shows that the functions germs ϕ−1
t (λk) obtained after integrating

the coefficients al are uniquely determined. By a finite induction on j ∈
{0, . . . , k}, we get that the function germs ϕ(λk) are uniquely determined
by F and G. This proves the theorem. �

Remark 6.6. — In “standard singularity theory”, the symmetry group
of the singularity defines an action on the base of the versal deformation
which prevents the deformation from being universal. Such a situation does
not occur in our context. From the point of view of analytic geometry,
the Colin de Verdière conjecture was therefore completely “unexpected”.
One can show mutatis mutandis the universality of isochore miniversal
deformations [15].

7. Basics of analytic spectral analysis

7.1. The operator representation.

We adapt the Born-Jordan matrix approach to the analytic case.
Denote by Qp the left ideal generated by p and put H = Q/Qp. The map
H −→ C~{z} sending the class of q to z is an isomorphism of C~-modules.

The left multiplication by H ∈ Q induces a homomorphism of C~-
modules

ρan : Q −→ HomC~(H,H)
representing the elements in Q as C~-linear operators in H. Via the iso-
morphism H ≈ C~{z}, the operators associated to q and p are mapped
respectively to the multiplication by z and to ~∂z.

Let us now introduce, the Dirac notation in this setting. The projection
of qi ∈ Q to H is denoted by |i〉. The image of the vector |i〉 under an
operator A is denoted by A|i〉.

It is useful, although not essential, to introduce a pairing inH. According
to the standard commutation rules of quantum mechanics our choice ~
equals ~ = h

2
√
−1π . where h is the Planck constant. Therefore we define the

conjugate of α :=
∑
n>0 αk~k, αk ∈ C by

ᾱ :=
∑
n>0

(−1)kᾱk~k ∈ C~
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Consider the “restriction to zero” mapping

π : Q −→ C~,
∑
m,n>0

αmnq
mpn 7→ α0,0.

We define hermitian conjugation in Q by

† : Q −→ Q,
∑
m,n>0

αmnq
mpn 7→

∑
m,n>0

ᾱmnp
mqn;

and a pairing P : Q×Q −→ C~, (f, g) 7→ π(f†g).
The inner product 〈·|·〉 is defined by the commutative diagram

Q×Q
P

##GG
GG

GG
GG

G

��
H×H

〈·|·〉
// C~

where the vertical arrow denotes the canonical projection.
We have 〈i|j〉 = i!~iδij where δij stands for the Kronecker symbol.

Proposition 7.1. — The pairing 〈−|−〉 : Q × Q −→ C~ satisfies the
following properties

(1) 〈u|u〉 = 0 ⇐⇒ u = 0,
(2) 〈u|v〉 = 〈v|u〉.

Proof. — Write

u =
∑
i∈I

(αi~ji |i〉+ . . . ), αi ∈ C

where I ⊂ Z>0 denotes the set of multi-indices for which αi 6= 0 and the
dots denote higher order terms in ~. Then, the hermitian product

〈u|u〉 =
∑
i∈I

(−1)ji |αi|2i!~i+2ji + . . .

vanishes if and only if I = ∅. The second part of the Proposition is obvious.
�

Proposition 7.2. — The homomorphism of C~-rings ρan : Q −→
HomC~(H,H), is a ring monomorphism.

Proof. — The kernel I of the homomorphism ρan is a left-ideal invariant
under right multiplication by a and q.

Define the map v : I −→ Z>0 sending H ∈ I to the smallest k ∈ Z>0
for which there exists j such that the coefficient of qjpk in the expansion
H =

∑
jk αjkq

jpk is non zero.
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Assume that I 6= 0, then there exists a non-zero element H for which v

is minimal.
We have necessarily v(H) = 0 otherwise v([H, q]) would be smaller than

v(H). Evaluating Hk = [pk,H] with H =
∑
j αjq

j on the class of |0〉 ∈ Q,
we get that Hk|0〉 = ~kαk|0〉 = 0. This contradicts the fact that H 6= 0. �

Proposition 7.2 allows us to identify Q with a subspace of HomC~(H,H).
This is the analytic variant of the Born-Jordan matrix formulation of quan-
tum mechanics. This representation induces a notion of analytic spectrum,
denoted Sp(·), similar to that introduced in the formal case.

7.2. The harmonic oscillator

Proposition 7.3.
(1) The analytic spectrum of the function H = qp is equal to ~Z>0.
(2) The analytic spectrum of the operator H = 1

2 (p2 − q2) is equal to
~Z>0 + ~/2.

Proof. — The first part of the Proposition follows from the equality

qp|n〉 = n~|n〉.

Consider the automorphism ϕ ∈ Aut(Q) defined by

ϕ(q) = p+ q, ϕ(p) = 1
2

(p− q).

Using the fact that p2 − q2 = (p+ q)(p− q) + [p, q], we get that

ϕ
(
qp+ ~

2

)
= 1

2
(p2 − q2).

Therefore
Sp
(1

2
(p2 − q2)

)
= Sp(qp) + ~

2
= ~Z>0 + ~/2.

This proves the proposition. �

Remark 7.4. — It is a rather puzzling fact that the Born-Jordan spec-
trum is discrete without imposing any boundary conditions. The analytic
theory, gives an hint to the understanding of this phenomenon. Via the
isomorphism H ≈ C~{z}, the operator H = qp might be identified with
the operator ~z∂z. For any λ, the function zλ/~ lies in the kernel of the
operator ~z∂z − λ but only for λ ∈ ~Z>0 is this solution an unbranched
holomorphic function germ.
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7.3. Borel analyticity of perturbative expansions

The notion of spectrum extends naturally to the algebras Q{t}, Q{λ},
λ = (λ1, . . . , λk).

The inclusion Q{t} ⊂ Q̂[[t]] induces a commutative diagram

Q{t}

��

ρan // HomC~{t}(C~{z, t},C~{z, t})

��
Q̂[[t]]

ρ // HomC[[~,t]](C[[~, t, z]],C[[~, t, z]])

and therefore we get a forgetful map

Ŝp(H) −→ Sp(H)

for any H ∈ Q{t}.
Take a deformation H = H0 + tH1 ∈ Q{t} of H0 ∈ Q. That the pertur-

bative expansion E is analytic means exactly that E lies in the image of
the forgetful mapping.

Theorem 7.5. — If the principal symbol of an element H ∈ Q{t} eval-
uated at t = 0 is a Morse function germ, then the forgetful map

Ŝp(H) −→ Sp(H)

is an isomorphism, that is, the perturbative expansions of the spectrum are
Borel analytic.

Proof. — The quantum Morse lemma (Theorem 3.4) asserts that there
exist an automorphism ϕ ∈ Aut(Q{t}) and an element u ∈ C~{t, z} such
that the equality H = u ◦ϕ(H0) holds with H0 = H(t = 0, ·) and Sp(H) =
u(Sp(H0)) In particular, the Borel transform of the perturbative expansion
for the spectrum are holomorphic function germs. This proves the theorem.

�

7.4. The Heisenberg formula for the anharmonic oscillator

We apply the recipe given in the proof of Theorem 3.4 (Subsection 6.1).
First we solve the equation

[G,H] + g ◦H = −∂H
∂t
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up to some order in t. We solve the partial differential equation ∂tu = g∂zu

with initial condition u(t = 0, ·) = z and invert u. This can be done easily
using elementary mathematical programming(6) .

Proposition 7.6. — Let G ∈ Q{t} and u ∈ C~{z, t} be defined by

G = − 3
32
qp3− 5

32
q3p+ 13

128
tqp5+ 13

48
tq3p3+ 19

128
tq5p− 3

32
~q2+ 91

128
q2p2~t

+ 3
16
q4~t+ 53

128
qp~2t,

and
u = z + 3

32
(4z2 − ~2)t− 1

256
(68z2 − 67~2)zt2

then

e
t
~G
(1

2
(p2 − q2) + t

4
q4
)
e−

t
~G = u ◦

(1
2

(p2 − q2)
)

+ o(t2).

In particular the asymptotic expansion of the spectral values admit the
expansions

E(t, ~) = u
((
n+ 1

2

)√
−1~

)
+ o(t2)

which coincides with Heisenberg’s formula.

7.5. A pairing in Q

We use the notation 〈i|H|j〉 = 〈i|Hj〉.

Proposition 7.7. — For any function germ H ∈ Q, the series v(H) =∑
i>0〈i|H|i〉 defines an element of C~.

Proof. — Write H =
∑
jk αjkp

jqk. Then

v(H) =
∑
i,j,k>0

αjk〈i|pjqk|i〉.

Now, 〈i|pjqk|i〉 = 〈i+ j|i+ k〉. Thus, we get the formula

v(H) =
∑
i,j>0

αjj(i+ j)!~i+j ,

therefore

Bv(H)�
∑
i,j>0

(Bαjj)~i+j = 1
1− ~

∑
j>0

(Bαjj)~j .

(6) Computations were done using Xcas and Maple.
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As the Borel transform H is convergent, the series
∑
j αjjr

2j obtained
by substituting q, p by r is Borel analytic for r small enough, therefore∑
j>0 Bαjj~j is analytic. This proves the Proposition. �

Therefore the algebra Q possesses a pairing

Q×Q −→ C~, (A,B) 7→ v(AB†).

Appendix A. Proof of the finiteness theorem

An elementary and detailed exposition of this appendix is given in [14].

A.1. Construction of the contraction

We use the notations of Theorem 5.12 denote by Br the ball of radius r
centred at the origin in Ck+2.

Let F : X −→ S be a standard representative of a germ F : (Cn, 0) −→
(Cs, 0). Recall that such a representative is obtained by restriction of a
representative F : BR −→ Cs first to a closed ball Bε by choosing ε such
that the boundary of the ball Br is transverse to the strata of F−1(0) for
r 6 ε and then above a polycylinder S ⊂ F (Bε) centred at the origin such
that the fibres of F above S are transverse to the boundary of Bε.

The aim of this subsection is to prove the following proposition (the proof
follows an argument due to Brieskorn [7]).

Proposition A.1. — For any ε′<ε, the restriction mapping r :K·(X)→
K·(X ′) is a quasi-isomorphism with X ′ = X ∩Bε′ .

Proof. — It is sufficient to prove the proposition for ε′ sufficiently close
to ε.

As the map F satisfies Thom’s aF condition, Thom’ isotopy theorem
implies the existence of an isotopy

ϕε′ : X −→ X ′ := X ∩Bε′

tangent to the fibres of F which preserve the strata, provided ε′ is suffi-
ciently close to ε (see for instance [28], Proposition 11.3, Proposition 11.5
and Proposition 11.6).

Chose a covering U = (Ui) of X such that the sheaves H·(K·) are F -
constant on Ui and denote by U ′ the covering defined by U ′i = Ui ∩Bε′ .
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The spectral sequences Ep,q0 (X) = Cp(U,Kq), Ep,q0 (X ′) = Cp(U ′,Kq)
compute respectively the hypercohomology of the complex K· in X and
in X ′.

The map ϕε′ induces a homeomorphism between each strata in Ui and
the corresponding stratum in U ′i for each i. As the cohomology sheaves are
F -constant in Ui and F (Ui) = F (U ′i), we get isomorphisms of vector spaces

Hq(K·)(Ui) ≈ F∗Hq(K·)(F (Ui)) ≈ Hq(K·)(U ′i)

on each small open subset Ui. Therefore, the restriction mapping induces
an isomorphism between the E1-terms of the spectral sequences:

Ep,q1 (X) = Cp(U,Hq(K·)) ≈ Cp(U ′,Hq(K·)) = Ep,q1 (X ′).

This shows that the inclusion X ′ ⊂ X gives an isomorphism in hypercoho-
mology

H·(X,K·) ≈ H·(X ′,K·).

As X,X ′ are Stein, by Cartan’s theorem B, for any p > 0, we have the
isomorphisms

H·(X,K·) ≈ H ·(K·(X)), H·(X ′,K·) ≈ H ·(K·(X ′)),

therefore the restriction mapping is a quasi-isomorphism. This proves the
proposition. �

A.2. Proof of Theorem 5.12

We apply Houzel’s variant of the Schwartz finiteness theorem for a map-
ping between two modules(7) .

Theorem A.2 ([22]). — Let A be a multiplicatively convex, complete
bornological algebra and let u : M · −→ N · be an A-linear bounded map-
ping between complexes of complete bornological A modules. We make the
following assumptions:

(1) Mn, Nn satisfy the homomorphism property for all n,
(2) u is a quasi-isomorphism and it is A-nuclear.

Then the complexes M · are pseudo-coherent.

(7) Houzel considers the more general situation of a sequence of modules.
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We briefly give some explanations on the terminology used in the theo-
rem.

A bornology in E is a collection of subsets called bounded subsets which
satisfy natural axioms (the union of two bounded subsets is bounded, a sub-
set of a bounded subset is bounded). In the cases we consider, the vector
spaces have a topology defined by a set of semi-norms and the bounded sub-
sets are the subset on which any continuous semi-norm defines a bounded
function.

For instance, if U ⊂ C is an open subset then by endowing the vector
space O(U) with the compact open topology, we get a locally convex vector
space. The open subsets

BK,ε =
{
f ∈ O(U) : sup

z∈K
| f(z) |6 ε

}
where K runs over the compact subsets of U generate the topology. If these
subset are disks, i.e., they are convex subsets of O(U) also invariant under
multiplication by a number of modulus 1.

As the vector space C{z}, is the direct limit of the O(U)’s where U runs
over the neighbourhoods of the origin it inherits a direct limit topology. A
basis for the bounded subsets is given by the subsets

Br,ε = {f ∈ C{z} :| f |r6 ε}

where | · |r denotes the supremum norm in the disk of radius r. In the
general case, the direct limit

OCn(K) := lim−→OCn(U), K ⊂ U

has a topological vector space structure induced from the OCn(U)’s and
therefore inherits a bornology. Any bounded subset is a bounded subset of
some OCn(U) where U contains K in its interior (see [18], Chapter 3, for
more details).

The product bornology on E × F induces a bornology on E ⊗C F ; if
E,F are complete we denote by E⊗̂CF the completion of E ⊗C F for this
bornology. A bounded morphism of u : E −→ F is called nuclear if it lies
in the image of the morphism

E′⊗̂CF −→ L(E,F ),
∑

λiξi ⊗ yi 7→
[
x 7→

∑
λiξi(x)yi

]
, λi ∈ C,

with
∑
i |λi| < +∞. The prototype of a nuclear mapping is the restriction

mapping O(U) −→ O(U ′). These notions are standard [6, 11, 19].
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Now assume E,F are modules over a bornological algebra A, the topo-
logical tensor product over A is the cokernel of the map

(E⊗̂CA⊗̂CF ) −→ (E⊗̂CF ),m⊗ a⊗ n −→ ma⊗ n−m⊗ an.

A morphism of u : E −→ F is called A-nuclear if it lies in the image of the
morphism

LA(E,A)⊗̂F −→ LA(E,F ),
∑

λiξi ⊗ yi 7→
[
x 7→

∑
λiξi(x)yi

]
, λi ∈ C

where LA(·, ·) denotes the space of bounded A-linear mappings.
A bornology is called convex if any bounded subset is contained in a

bounded disk. A bornological algebra A is called multiplicatively convex if
any bounded subset is absorbed by a bounded disk stable under multipli-
cation.

We leave to the reader to check that Proposition 3.3 implies that Q is
multiplicatively convex.

A bornologically convex vector space E has the homomorphism property
if any surjective bounded linear mapping u : E −→ F to a convex com-
plete bornological space F , any bounded sequence of F lifts to a bounded
sequence of E. These notions are due to Houzel [22].

In our situation, we start from a standard representative F : X −→ S of
a germ

F : (Ck × C2, 0) −→ (Ck+1, 0)
and a complex of constructible QCk+2/Ck -modules. We denote by X ′ a con-
traction of X like in Proposition A.1.

Take A = B(S), where S is the closure of a Stein neighbourhood, M =
QCk+2/Ck(X), N = QCk+2/Ck(X ′). These vector spaces are respectively
isomorphic to OC×S|S(S), OC×X|X(X), OC×X|X(X ′) and moreover the
restriction mapping r : K·(X) −→ K·(X ′) is B(S)-nuclear (see again
[14] for details). By Proposition A.1, the restriction mapping is a quasi-
isomorphism, therefore Theorem A.2 applies to our situation. This shows
that the cohomology spaces of the modules K·(X) are BS(S)-coherent.

Denote by L· a complex of free coherent BS-sheaves so that L·(S) is
quasi-isomorphic to K·(X).

Lemma A.3. — The sheaf complexes L·, f∗K·|X are quasi-isomorphic.

Proof. — A mapping u : M · −→ L· of complexes induces a quasi-
isomorphism between two complexes if and only if its mapping cone C ·(u)
is exact.

We apply this fact to the mapping cone of the quasi-isomorphism

u : L·(S) −→ K·(X).
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As the vector space BS(P ) is nuclear for any polydisk P ⊂ S, the functor
⊗̂BS(P ) is exact ([23]). Therefore, the complex C ·(u)⊗̂BS(P ) is also exact.

The complex C ·(u)⊗̂BS(P ) is the mapping cone of the mapping u′ :
L·(P ) −→ K·(X ∩ f−1(P )). Therefore, the complexes of sheaves L· and
f∗K·|X are quasi-isomorphic. This proves the lemma. �

I assert that the complex K · = K·0 is quasi-isomorphic to the stalk of the
complex L· at the origin.

Let (Bεn) be a fundamental sequence of neighbourhoods of the origin in
Cn, so that their intersection with the special fibre of F is transverse. As
the map F satisfies the aF -condition, we may find a fundamental sequence
(Sn) of neighbourhoods of the origin in Ck so that the fibres of F intersect
Bεn transversally above Sn. Put Xn = f−1(Sn), we have the isomorphism:

L·|Sn ≈ F∗K
·
|Xn ≈ F∗K

·
|Xn∩Bεn .

The first isomorphism is a consequence of the previous lemma and the
second one follows from the fact that the contraction is a quasi-isomorphism
(Proposition A.1). In the limit n −→ ∞, we get that the complex K · =
K·0 is quasi-isomorphic to the complex L·0. This concludes the proof of
Theorem 5.12.
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