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THREE-MANIFOLDS AND KÄHLER GROUPS

by D. KOTSCHICK

Abstract. — We give a simple proof of a result originally due to Dimca and
Suciu: a group that is both Kähler and the fundamental group of a closed three-
manifold is finite. We also prove that a group that is both the fundamental group
of a closed three-manifold and of a non-Kähler compact complex surface is Z or
Z ⊕ Z2.
Résumé. — On donne une preuve simple d’un résultat dû à Dimca et Su-

ciu: un groupe de Kähler qui est aussi le groupe fondamental d’une variété trois-
dimensionelle est fini. On montre également qu’un groupe qui est le groupe fonda-
mental d’une variété trois-dimensionelle et en même temps le groupe fondamental
d’une surface complexe compacte non-kählerienne est soit Z soit Z ⊕ Z2.

1. Introduction

In the late 1980s the study of Kähler groups, that is, fundamental groups
of closed Kähler manifolds, took off in spectacular fashion. While restric-
tions on such groups were previously known because of Hodge theory and
because of rational homotopy theory, several deep new results were proved
around 1988. I will only recall two of them here. These and many other
results on Kähler groups are discussed in detail in [2].

Firstly, generalising partial results of Johnson and Rees [11], Gromov
proved:

Theorem 1.1 (Gromov [7]). — A Kähler group does not split as a
nontrivial free product.

Secondly, building on work of Siu, Sampson and others, Carlson and
Toledo proved:

Keywords: three-manifold groups, Kähler groups.
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Theorem 1.2 (Carlson–Toledo [5]). — No fundamental group of a
closed real hyperbolic n-manifold with n > 3 is a Kähler group.

When these results were proved, several people, including Donaldson and
Goldman, noticed the contrast between Kähler groups on the one hand
and three-manifold groups on the other: the latter are closed under free
products, and, according to Thurston, most three-manifolds with freely in-
decomposable fundamental group are hyperbolic. Moreover, a case by case
check of the Thurston geometries as explained in [23] shows the following:
closed three-manifolds carrying one of the geometries S2 × R, H2 × R, R3

or Sol3 have virtually odd first Betti number, and so their fundamental
groups cannot be Kähler. Moreover, closed three-manifolds carrying one of
the geometries Nil3 or SL2(R) have virtually positive first Betti numbers
with trivial cup product from H1 to H2. Their fundamental groups cannot
be Kähler by the Hard Lefschetz Theorem. Now, the only Thurston geom-
etry that has not been excluded is S3, where every fundamental group is
finite. Since all finite groups are Kähler, it was natural to expect that the
intersection of three-manifold groups with the Kähler groups should con-
sist exactly of the finite groups appearing as fundamental groups of three-
manifolds with geometry S3. The obstacle to turning this expectation into
a theorem, indeed a corollary of the above Theorems 1.1 and 1.2, came
from three-manifolds with a non-trivial JSJ decomposition along incom-
pressible tori. While one could imagine that those manifolds containing at
least some hyperbolic piece might yield to a generalisation of the harmonic
map techniques of Carlson and Toledo [5](1) , the case of graph manifolds
seemed intractable.
Twenty years ago one thought about such questions modulo Thurston’s

geometrisation conjecture. Since this has now been proved by Perelman [22,
21, 13, 19], an unconditional result can finally be obtained. Indeed, Dimca
and Suciu recently proved:

Theorem 1.3 (Dimca–Suciu [6]). — Assume that a group Γ is the fun-
damental group both of a closed Kähler manifold and of a closed three-
manifold. Then Γ is finite, and, therefore, a finite subgroup of O(4).

Once one proves Γ to be finite, it follows from Perelman’s work [22, 21,
13, 19] that Γ is a finite subgroup of O(4) acting freely on S3. Note that by
a classical construction due to Serre, every finite group is the fundamental

(1)A first step in this direction was soon taken by Hernández-Lamoneda, although his
paper [10] was only published much later.
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group of a smooth complex projective variety, hence a closed Kähler mani-
fold. By the Lefschetz hyperplane theorem one may assume this variety to
be a surface.
To me, a surprising aspect of the proof given by Dimca and Suciu is

that it does not follow the above outline at all, and makes little use of
the Thurston approach to three-manifolds. In fact, their proof does not
use Theorems 1.1 and 1.2. Instead, they consider separately the cases of
trivial and of nontrivial first Betti number. If the first Betti number of
the fundamental group of a closed oriented three-manifold is positive, then
they prove it is not Kähler using a lot of machinery of a very different
sort: characteristic and resonance varieties, Catanese’s approach to the Siu–
Beauville theorem, a commutative algebra result of Buchsbaum–Eisenbud,
. . . . Then, for the case of zero first Betti number, Dimca and Suciu appeal
to results of Reznikov and Fujiwara pertaining to Kazhdan’s property T .
It is only at this point that their proof depends on geometrisation via
Fujiwara’s arguments.
The present paper arose from my attempt to understand the argument

of Dimca and Suciu [6]. From their treatment of the positive Betti number
case I extracted the following strategy for obtaining a contradiction: If Γ has
positive first Betti number and is both the fundamental group of a closed ori-
ented three-manifold and of a closed Kähler manifold, then H1(Γ;R) comes
from a complex curve. Therefore all cup products of classes in H1(Γ;R)
also come from a curve, and this is incompatible with three-dimensional
Poincaré duality.
One can actually implement this strategy in several different ways to

prove Theorem 1.3. Here I will give quite a different implementation from
that in [6], leading to a quick proof of the following:

Theorem 1.4. — If Γ is a group with b1(Γ) > 0 whose real cohomology
algebra H∗(Γ;R) satisfies 3-dimensional oriented Poincaré duality, then Γ
is not a Kähler group.

To put this into perspective, recall that many Kähler groups are Poincaré
duality groups (of even dimension), cf. [11, 25, 14]. Also recall that, for every
k > 3, Toledo [25] constructed examples of Kähler groups of cohomological
dimension 2k−1. Moreover, his examples are duality (though not Poincaré
duality) groups.
Of course, to exclude a group from being a Kähler group, it is enough

that some finite index subgroup satisfy the assumptions of Theorem 1.4.
Thus Theorem 1.4 immediately gives:

TOME 62 (2012), FASCICULE 3
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Corollary 1.5. — Let M be a closed aspherical three-manifold. If M
has a finite orientable covering that is not an R-homology sphere, then
π1(M) is not a Kähler group.

Theorem 1.4 is more general than the Corollary because not every group
whose real cohomology satisfies 3-dimensional Poincaré duality is the fun-
damental group of an aspherical three-manifold. This issue is related to the
three-dimensional Borel conjecture; see Problem 3.77 on Kirby’s problem
list [12].
Corollary 1.5 proves most of Theorem 1.3, since it handles not only man-

ifolds with a nontrivial JSJ decomposition, but also gives a uniform treat-
ment of geometric cases that no longer need to be checked case by case,
so we obtain quite a simple proof of Theorem 1.3 for groups with virtually
positive first Betti number. Using Perelman’s geometrisation theorem, the
case of first Betti number zero can actually be reduced to Theorem 1.2. In
Section 2 below we first prove Theorem 1.4, and then spell out the resulting
straightforward proof of Theorem 1.3, avoiding the difficult arguments of
Dimca–Suciu [6], and the appeals to the works of Reznikov and Fujiwara.
Like the original proof of [6], the proof of Theorem 1.3 given here uses ge-
ometrisation only to handle the case of trivial (virtual) first Betti number.

Using the Kodaira classification of non-Kähler complex surfaces we shall
also prove the following:

Theorem 1.6. — Assume that a group Γ is the fundamental group both
of a closed complex surface S and of a closed three-manifold. Then either
Γ is a finite subgroup of O(4) and S is a Kähler surface, or Γ is Z or Z⊕Z2
and S is a surface of class V II.

This is interesting since in real dimension 6 every finitely presentable
group is the fundamental group of a compact complex manifold, as proved
by Taubes [24]. Thus, for fundamental group questions, complex surfaces
are at the watershed between curves and the unrestricted case of complex
three-folds, just like three-manifolds are at the watershed between real
surfaces and the case of four-manifolds, where all finitely presentable groups
appear.

2. Proofs

Proof of Theorem 1.4. — Suppose for a contradiction that X is a closed
Kähler manifold with fundamental group Γ, and let αX : X −→ T b1(Γ) be
its Albanese map. By the universal property of classifying maps, αX factors

ANNALES DE L’INSTITUT FOURIER
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up to homotopy into a composition

X
cX−→ BΓ a−→ BZb1(Γ) = T b1(Γ) ,

where cX is the classifying map of the universal covering of X. One con-
cludes that α∗

X = c∗
X ◦a∗ is trivial in real cohomology of degree > 3 because

BΓ has no such cohomology, and so the image of αX cannot have complex
dimension 2 or more. Thus the image of αX is a complex curve C.

It is well known, and easy to see, that a one-dimensional Albanese image
must be smooth, and of course it has positive genus. Thus the Albanese
map αX factors as

X
cX−→ BΓ â−→ C .

All the maps above induce isomorphisms in degree one cohomology. More-
over, α∗

X is nontrivial in degree 2 cohomology, and so the same is true for
â∗. However, there is no class in H1(Γ;R) that has a nontrivial cup prod-
uct with the image of â∗ in H2(Γ;R), since this cup product comes from
C, which has real dimension = 2. This contradicts the assumption that Γ
satisfies 3-dimensional Poincaré duality. �

Proof of Theorem 1.3. — We need to show that an infinite three-mani-
fold group Γ cannot be Kähler. Since finite coverings of Kähler manifolds
are Kähler, we only need to exclude some finite index subgroup of Γ, and
so three-manifolds can be replaced by their finite coverings. In particular
we may assume that all three-manifolds are orientable.
We may restrict our attention to three-manifolds that are prime in the

sense of being indecomposable under connected sums, since a nontrivial
free product is never a Kähler group by Theorem 1.1. Such a prime three-
manifold is either S1 × S2, or is aspherical, cf. [18]. Since a Kähler group
cannot be infinite cyclic, we are reduced to the consideration of aspherical
three-manifolds, so that, for all 3-manifolds with positive (virtual) first
Betti number, Theorem 1.3 follows from Corollary 1.5, which in turn follows
from Theorem 1.4 proved above.
To complete the proof of Theorem 1.3 it remains to deal with groups with

vanishing first Betti number. Thus consider a closed oriented aspherical
three-manifold M with infinite fundamental group Γ having b1(Γ) = 0. If
M contains an incompressible torus, then by a result of Luecke [17], see
also [15], M has a finite covering with positive first Betti number, so that
Corollary 1.5 applied to this covering shows that Γ is not Kähler. Thus we
are left with the case of an aspherical M that contains no incompressible
torus. Such manifolds are hyperbolic by the work of Perelman [22, 21, 13],

TOME 62 (2012), FASCICULE 3
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and fundamental groups of hyperbolic three-manifolds are never Kähler by
Theorem 1.2. �

Proof of Theorem 1.6. — Suppose that Γ is the fundamental group of
both a compact complex surface S and a closed three-manifold M . As
before we may assume M to be orientable.

If S is Kähler, then Γ is finite by Theorem 1.3. Conversely, if Γ is finite,
then the first Betti number of S vanishes, and so S is Kählerian, cf. [4].
If S is not Kählerian, then its first Betti number is odd, see again [4].

We now use the Enriques–Kodaira classification to conclude that either S
is properly elliptic with b1(S) > 3, or S is of class V II with b1(S) = 1,
cf. [3, 20]. In the first case Γ is freely indecomposable and is a Poincaré
duality group of dimension 4 by results of Kodaira described in [2, Section 3
of Ch. 1]. In the second case, it is known only that π1(S) cannot split into
Γ1 ? Γ2 with both Γi containing proper subgroups of finite index; see [2,
Thm. 1.35]. However, since three-manifold groups are residually finite [9](2) ,
this is enough to conclude that in our case, where π1(S) = Γ = π1(M), Γ
is indeed freely indecomposable.
Thus we may assume that M is prime. If it is aspherical, then Γ is a

three-dimensional Poincaré duality group. This means that Γ is not the
fundamental group of a properly elliptic surface with b1(S) > 3 since those
groups are four-dimensional Poincaré duality groups. If Γ is the fundamen-
tal group of a class V II surface, then we have b1(Γ) = 1, and, by Poincaré
duality on M , b2(Γ) = 1. Under the classifying map of the universal cov-
ering of S, H2(Γ;R) injects into H2(S;R), where it becomes an isotropic
subspace for the cup product for dimension reasons. (Its cup square comes
from the three-dimensional M .) Thus the intersection form of S would
have to be indefinite, which contradicts the known fact that the intersec-
tion forms of class V II surfaces are negative definite; see [2, Lemma 1.45].

Thus we are left to consider the case of an M that is prime but not
aspherical. This means thatM is S1×S2 if it is orientable; cf. [18]. However,
for a nonorientableM we could also have the nontrivial S2-bundle over S1,
also with fundamental group Z, and S1 × RP 2, with fundamental group
Z ⊕ Z2; cf. [23]. Both Z and Z ⊕ Z2 occur as fundamental groups of Hopf
surfaces. Conversely, every surface with one of these fundamental groups is
of class V II; cf. [3, 20]. This completes the proof of Theorem 1.6. �

(2)The reference [9] treats only manifolds satisfying Thurston’s geometrisation conjec-
ture. By Perelman’s work [22, 21, 13] this is not a restriction.
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3. Discussion

3.1. Avoiding the use of Theorem 1.1

In the proof of Theorem 1.3 in Section 2, I found it most straightforward
to reduce to the consideration of prime three-manifolds by using Gromov’s
result on free products, stated as Theorem 1.1 in the introduction. However,
one can completely bypass the use of Theorem 1.1, as we now explain.

Lemma 3.1. — Assume that Γ1 and Γ2 each have a non-trivial finite
quotient fi : Γi −→ Qi. Then their free product Γ1 ? Γ2 has a finite index
subgroup with odd first Betti number.

Proof. — Consider the induced homomorphism

f : Γ1 ? Γ2 −→ Q1 ×Q2.

By the Kurosh subgroup theorem, its kernel is of the form Fk ? Γ, where
Fk is a free group of rank k = (|Q1| − 1)(|Q2| − 1), and Γ is a free product
of copies of the kernels of the fi. For a finite quotient g : Fk −→ Q of order
d we consider the kernel ∆ of ḡ : Fk ?Γ −→ Q, where ḡ restricts to Fk as g
and is trivial on Γ. Then ∆ is isomorphic to Fl ? Γ ? . . . ? Γ with d copies
of Γ appearing, and l = 1 + d(k − 1). Thus ∆ ⊂ Γ1 ? Γ2 is a finite index
subgroup with

b1(∆) = l + d · b1(Γ) = 1 + d · (k − 1 + b1(Γ)) .

Choosing d to be even, we have found the desired subgroup. �

Since three-manifold groups are residually finite [9], we have the follow-
ing:

Corollary 3.2. — If M is a non-prime three-manifold, then it has a
finite covering with odd first Betti number.

At the expense of appealing to residual finiteness, we can use this Corol-
lary in place of Theorem 1.1 to exclude non-prime manifolds from consid-
eration in the proof of Theorem 1.3. More generally, without restricting to
three-manifold groups, Lemma 3.1 tells us that an arbitrary free product
whose free factors admit finite quotients cannot be a Kähler group. This
is exactly the special case of Theorem 1.1 originally proved by Johnson
and Rees [11]. Indeed our proof of the Lemma is a simplification of the
argument in [11].

TOME 62 (2012), FASCICULE 3
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3.2. The necessity to discuss R-homology spheres

In the proof of Theorem 1.3 it was necessary to consider separately the
case of groups with zero first Betti number. This step would be superfluous,
if it were known that every closed three-manifold has a finite covering with
positive first Betti number. If such a statement were available, then one
would not need Theorem 1.2 for the proof of Theorem 1.3 given here.

Apparently the question of whether every closed three-manifold with
infinite fundamental group has virtually positive first Betti number was
raised long ago by Waldhausen, Thurston, and others; see Problems 3.2 and
3.50 in Kirby’s problem list [12] and the references given there. Curiously,
those references do not include [8, 17] and other papers quoted in [8], all
of which contain a wealth of information about this problem. In any case,
this problem seems to be still open.

3.3. The second Betti number of infinite Kähler groups

Carlson and Toledo have asked whether an infinite Kähler group has
virtually positive second Betti number(3) . If this were known to be true,
then, because of three-dimensional Poincaré duality, we would not have to
consider R-homology 3-spheres in the proof of Theorem 1.3. Moreover, we
would not need to use geometrisation, and we would not need Theorem 1.2
either! We refer to the paper of Klingler [14] for a recent discussion of this
question of Carlson and Toledo.
Unfortunately, a slight misstatement occurs in [2, Prop. 3.44 (i)], which

implicitly asserts a positive answer to the question of Carlson and Toledo.
The statement b2(π1(X)) > 1 there should be replaced by b2(X) > 1 (which
is trivial). The Proposition in question was proved by Amorós [1], whose
paper does not contain the misstatement.
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