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EQUIVARIANT EULER CHARACTERISTICS AND
SHEAF RESOLVENTS

by Ph. CASSOU-NOGUÈS & M.J. TAYLOR

Abstract. — For certain tame abelian covers of arithmetic surfaces we obtain
formulas, involving a quadratic form derived from intersection numbers, for the
equivariant Euler characteristics of both the canonical sheaf and also its square
root. These formulas allow us to carry out explicit calculations; in particular, we
are able to exhibit examples where these two Euler characteristics and that of the
structure sheaf are all different and non-trivial. Our results are obtained by using
resolvent techniques together with the local Riemann-Roch Theorem.
Résumé. — Nous obtenons pour certains revêtements modérés de surfaces arith-

métiques des expressions des caractéristiques d’Euler équivariantes du faisceau ca-
nonique et de sa racine carrée qui font apparaître une forme quadratique décrite
en terme de nombres d’intersection. Ces formules se prêtent au calcul. Elles nous
permettent notamment de donner des exemples où ces caractéristiques ainsi que
celle du faisceau structural sont deux à deux distinctes et non triviales. Nos résul-
tats s’obtiennent par l’utilisation du théorème de Riemann-Roch local et par un
calcul de résolvantes.

Introduction

Let N/K be a finite Galois extension of number fields with Galois group
G. A number of interesting arithmetic modules may be associated to such
an extension: the ring of algebraic integers ON of N ; the codifferent D−1

N/K

ofN/K; and, when the ramification subgroups ofN/K are of odd order, the
square root of the codifferent D−1/2

N/K . Their structure as Galois modules has
been studied extensively. When N/K is at most tamely ramified, they are
all three locally free Z[G]-modules. It was proved in [18] and [20] that, for
any tame Galois extension N/K, the classes of ON and D−1

N/K in Cl(Z[G]),
the locally free class group of Z[G]-modules, are equal; that is to say, ON

Keywords: Euler characteristic, resolvent, intersection numbers.
Math. classification: 11R04, 14C40.



2316 Ph. CASSOU-NOGUÈS & M.J. TAYLOR

is a selfdual Z[G]-module. If in addition we suppose that G is of odd order,
then in fact ON , D−1

N/K and D−1/2
N/K are all three free over Z[G]. This result

for the ring of integers is a consequence of the Fröhlich conjecture, which
was proved in [19]. The result for the square root of the codifferent was
obtained in [8]. In such a situation where one of the modules ON , D−1

N/K

and D−1/2
N/K are Z[G]-free, we shall say that the module in question has a

normal integral basis (abbreviated NIB).
Over the past ten, or so, years a number of articles have been devoted

to the study of the analogues of such Galois module problems in higher di-
mensions. The study of such questions for arithmetic surfaces is the central
topic of this paper.

Throughout this article G denotes a finite group of odd order . We con-
sider a G-cover π : X → Y of schemes which are projective and flat over
Spec(Z). For a G-equivariant locally free sheaf F on X, the coherent coho-
mology groups Hi(X,F) are finitely generated Z[G]-modules which are of
considerable interest. Their study leads us to consider the hypercohomol-
ogy complex RΓ(X,F) of Z[G]-modules. When the action of G is tame,
i.e. when for any point x of X the order ex of the inertia group Ix of x
is coprime to the residue field characteristic of x, this complex is perfect;
that is to say it is isomorphic, in the derived category of complexes of
Z[G]-modules, to a bounded complex of finitely generated projective Z[G]-
modules. The fact that this complex is perfect, under such hypotheses, was
first shown in [3](see also [4] and [15], Section 2). This then leads to the
following definition:

Definition. — The sheaf F is said to have a normal integral basis
when the complex RΓ(X,F), in the derived category of complexes of Z[G]-
modules, is isomorphic to a bounded complex of free Z[G]-modules .

Following Chinburg in [2], we can associate to F an equivariant Euler char-
acteristic χP (F) in Cl(Z[G]), which measures the obstruction to the exis-
tence of a NIB for F . More precisely, the sheaf F has a NIB if and only if
χP (F) is trivial. We observe that in the situation described above where
we take X = Spec(ON ), it follows from the above mentioned theorems that
the coherent sheaves associated to ON , D−1

N/K and D−1/2
N/K all have a NIB,

since their Euler characteristics are precisely the classes of these modules
in Cl(Z[G]).
We now introduce the analogous sheaves of modules in the geometric

setting. We start by recalling that the different divisor of X/Y is the divisor
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EQUIVARIANT EULER CHARACTERISTICS 2317

on X given by
DX/Y =

∑
x

(ex − 1)x

with x running over the set of codimension 1 points of X. We shall be
particularly interested in the followingG-equivariant sheaves: the structural
sheaf OX ; the canonical sheaf ωX/Y = OX(DX/Y ) of the cover X → Y ;
and its square root ω1/2

X/Y = OX( 1
2DX/Y ).

The main object of our study is the existence, or otherwise, of a NIB for
these sheaves by computing and comparing their equivariant Euler char-
acteristics. In the case when G is abelian and X is a G-torsor over Y , the
morphism π : X → Y is etale and hence the sheaves ωX/Y and ω1/2

X/Y both
coincide with the structure sheaf OX , and furthermore they have a NIB
by a theorem of Pappas in [15]. We shall see presently that when the cover
π : X → Y is not etale then our sheaves do not necessarily have NIB. A
new approach to such questions has been recently developed in [7]. Our re-
sults depend strongly on the use of this paper, and illustrate how their new
techniques permit the efficient calculation of such Euler characteristics.

We now describe the contents of the paper. In Section 1 we describe
the situation that we wish to study; here we introduce our notation and
we state our main results. In Section 2 we present some general results on
equivariant duality; the content of this section derives from some working
notes of T. Chinburg and G. Pappas, and we are most grateful for their
permission to use their work here. In Section 3 we introduce the notions of a
sheaf resolvent and a divisor resolvent; these two concepts play a central role
throughout this paper. The main theorems are proved in Sections 4 and 5.
We conclude with the detailed study of some examples in Section 6; we are
extremely grateful to Arnaud Jehanne for his help with the computations
in 6.c.

1. Notation and main results

Let G be a finite abelian group of odd order n, and let R denote either
a Dedekind domain or a complete discrete valuation ring; in all cases we
denote the field of fractions of R by K. In the case where R is a valuation
ring, we shall assume that R contains the n-th roots of unity and that its
residue field k is perfect and of characteristic prime to n. We consider a
regular flat projective scheme Y → S = Spec(R). The fibres are of constant
dimension and we denote this fibral dimension by d. Let π : X → Y be a
G-cover which is generically a G-torsor on Y with X is regular. Note that

TOME 62 (2012), FASCICULE 6



2318 Ph. CASSOU-NOGUÈS & M.J. TAYLOR

it follows from the assumptions that π : X → Y is flat (see Remark 3.1.a
in [7]). When R = Z we suppose that the ramification locus of this cover
is supported on a finite set of rational primes Σ which is disjoint with the
set of prime divisors of the order of G.
In order to state our results we now suppose that R = Z and d = 1.

We consider a G-equivariant, coherent and invertible sheaf F on X. For
any p ∈ Σ we denote by Z′p the subring of Qc

p obtained by adjoining the
n-th roots of unity to Zp. By forming the base changes of π : X → Y

by Spec(Zp) → Spec(Z) and by Spec(Z′p) → Spec(Z), we obtain G-covers
πp : Xp → Yp and π′p : X ′p → Y ′p . We denote by F ′p the X ′p- sheaf obtained
from F by pullback.

For an equivariant sheaf F ′p as above, for any Qc
p-character ϕ of G and

for a codimension one point y of Y ′p , in Section 2 we will define a rational
number vy(F ′p,ϕ), which depends on the ramification of y in the cover X ′p →
Y ′p . We shall then use these rational numbers to define the local resolvent
divisor of F at p by setting

rp(F , ϕ) =
∑
y

vy(F ′p,ϕ)y, (1.1)

where y runs over the set of codimension one points of Y ′p which are
contained in the special fiber Y ′(s)p of Y ′p → Spec(Z′p). We may consider
rp(F , ϕ) as a vector with rational coordinates. Presently we will see that
nvy(F ′p,ϕ) is an integer for any such y, so that n.rp(F , ϕ) is a divisor of Y ′p .
These resolvent divisors play a similar role to that of Lagrange resolvents
in the algebraic number field setting. For codimension one points y and
z of Y ′(s)p , we denote their intersection number by y · z. Recall that this
integer is the degree of the line bundle OY ′p (y) restricted to z. Let ωY ′p be
the canonical sheaf of Y ′p → Z′p and denote its first Chern class by c1(ωY ′p ).
Then we define the integer c1(ωY ′p )·y as the degree of the 0-cycle c1(ωY ′p )∩y
of Y ′p (see Chapter 2 in [11]). Finally we set:

rp(F , ϕ)2 =
∑
y,z

vy(F ′p,ϕ)vz(F ′p,ϕ)y · z , (1.2)

c1(ωY ′p ) · rp(F , ϕ) =
∑
y

vy(F ′p,ϕ)c1(ωY ′p ) · y, (1.3)

and
Tp(F , ϕ) = rp(F , ϕ)2 + c1(ωY ′p )rp(F , ϕ). (1.4)

We observe that rp(F , ϕ)2 may be thought of as the quadratic form, defined
by the intersection matrix, evaluated on a local resolvent divisor; while

ANNALES DE L’INSTITUT FOURIER



EQUIVARIANT EULER CHARACTERISTICS 2319

c1(ωY ′p ) · rp(F , ϕ) may be thought of as a linear form, evaluated on the
same local resolvent divisor.
Suppose now that there exists a locally free OY -sheaf ω1/2

Y/S with the
property that ω1/2

Y/S ⊗ω
1/2
Y/S = ωY/S ; we shall refer to ω1/2

Y/S as a square root
of ωY/S . Note that a square root for the canonical sheaf ωY/S is a theta
characteristic for the relative curve Y/S. For a full discussion of the role
of that characteristics in the theory of invariants of quadratic forms the
reader is referred to Sections 5 and 6 of [17]. We then define a twist F̃ of
F by setting

F̃ = F ⊗ π∗(ω1/2
Y/S) . (1.5)

It follows from the general adjunction formula, (see [14] ), that ω̃1/2
X/Y has

the property that ω̃1/2
X/Y ⊗ ω̃

1/2
X/Y = ωX/S and we therefore denote this sheaf

by ω1/2
X/S .

Once and for all we fix a sufficiently large finite Galois extension E of
Q. We denote the group of finite ideles of E by Jf (E); we let RG denote
the additive group of the virtual E-characters of G and we let t denote the
group homomorphism

t : HomGQ(RG, Jf (E))→ Cl(Z[G]) (1.6)

of Fröhlich’s so-called “Hom-description”, (see Chapter 2 in [10]). For each
finite prime l of Z we fix an embedding jl : Qc → Qc

l and we denote the
closure of jl(E) in Qc

l by El. The group Jl(E) = (E⊗Ql)× may be identi-
fied with the Galois submodule of Jf (E) consisting of the finite ideles of E
which are equal to 1 outside l; we shall therefore view HomGQ(RG, Jl(E))
as a subgroup of HomGQ(RG, Jf (E)). We therefore obtain, via jl, a homo-
morphism jl : E ⊗ Ql → El; we also obtain an isomorphism ϕ 7→ (ϕ)jl
between the Qc-characters of G and the Qc

l -characters of G and therefore
an isomorphism between RG and RG,l, the additive groups of their virtual
characters. It is well known, (see for instance Lemma II.2.1 of [10]), that
the homomorphism

j∗l : HomGQ(RG, Jl(E))→ HomGQl
(RG,l, E∗l )

defined by j∗l (f)(ϕ) = f(ϕj
−1
l )jl is an isomorphism. We shall often abbre-

viate the notation j∗l (f) to f∗. Our main results are the following:

Theorem 1.7. — With the above notation and under the above as-
sumptions on X,Y , G, and for both F = ωX/Y or ω1/2

X/Y we have the
following equality in the class group Cl(Z[G]):

TOME 62 (2012), FASCICULE 6



2320 Ph. CASSOU-NOGUÈS & M.J. TAYLOR

2χP (OX)− 2χP (F) =
∏
p ∈Σ

t(gp)

where g∗p is the element of HomGQp
(RG,p, E∗p) defined on irreducible Qc

p-
characters ϕ of G by

g∗p(ϕ) = pTp(F,ϕ)−Tp(OX ,ϕ) .

Theorem 1.8. — With the above notation and under the above as-
sumptions on X,Y , G, suppose there is an OY -sheaf ω

1/2
Y/S as above; then

for both F = ωX/Y or ω1/2
X/Y we have the following equality in the class

group Cl(Z[G])
2χP (ÕX)− 2χP (F̃) =

∏
p ∈Σ

t(g̃p)

where g̃∗p is the element of HomGQp
(RG,p, E∗p) defined on irreducible Qc

p-
characters ϕ of G by

g̃∗p(ϕ) = prp(F,ϕ)2−rp(OX ,ϕ)2
.

Remarks. —
1. The factor 2 in our formulas derives from the need to consider the

determinant of cohomology of bundles of even rank in [7]; note that this
factor can be removed in certain situations. (See Section 3 in [7] for further
details.)

2. Since the sheaves F , considered in the above theorems, are isomorphic
to the structure sheaf OX on the general fiber, it should be possible to ap-
ply the techniques developed in Section 8 of [6] to compute the difference
between their Euler characteristics. This would lead, under certain assump-
tions, to a generalisation of our theorems to non-abelian G. The advantage
of our method is that it yields an attractive formula, involving quadratic
elements associated to resolvent divisors. One can hope that the two meth-
ods will provide quite different formulas, which it will be interesting to
compare. This is something that we plan to do in the near future.

We denote byM the maximal order of Q[G] and we let D(Z[G]) be the
kernel of the group homomorphism Cl(Z[G]) → Cl(M) induced by exten-
sion of scalars. Using the representative for the class 2χ(OX)− 2χ(ωX/Y )
in HomGQ(RG, Jf (E)) given in Theorem 1.7 above, in Section 5 we will
show:

Theorem 1.9. — Let G be a finite abelian l-group.
i) The order of the class 2χP (OX)− 2χP (ωX/Y ) is a power of l.
ii) If l is a regular prime number, then 2χP (OX)− 2χP (ωX/Y ) ∈ D(Z[G]).

ANNALES DE L’INSTITUT FOURIER
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iii) If G is of order l, then 2χP (OX) = 2χP (ωX/Y ).

We observe that this theorem provides a generalisation for arithmetic sur-
faces (up to a factor of 2) of Theorem 3.1 of [T2].

Remarks. —
1. It follows from Theorem 4.3.2 in [CPET1] that the results of this last
theorem remain true if we replace χP (ωX/Y ) by χP (Ω1

X/Z).
2. The class group Cl(Z[G]) carries a natural duality involution x 7→ xD

(see Section 2). The anti-selfduality of χP (ω1/2
X/Z) in dimension 2 will be

shown in Section 2 to follow from a general result proved for arbitrary
dimension (see Corollary 2.6).

Let p ≡ 1 mod 24 be a prime number and let X1(p) be the model
over Spec(Z) of the modular curve associated to the congruence subgroup
Γ1(p) as described in Section 4 in [7]. The group Γ = (Z/pZ)∗/{±1} acts
faithfully on X1(p). For a prime divisor l of p− 1, with l > 3, we let H be
the subgroup of Γ of index l and G = Γ/H . We consider the projective
schemes X = X1(p)/H and Y = X1(p)/Γ. Then π : X → Y is a G-cover
to which we can apply our general results. Let P be the prime ideal of
Q(ζl) defined by the chosen embedding jp : Qc → Qc

p and we let P̄ denote
its image under complex conjugation. For 1 6 a < l we denote by σa the
Q-automorphism of Q(ζl) induced by ζl 7→ ζal . Since G is of prime order,
by a theorem of Rim, any non-trivial abelian character of G induces an
isomorphism between Cl(Z[G]) and Cl(Z[ζl]). For i ∈ {1, 2} we define the
elements si in the group ring Z[G] by

si =
∑

16a<l/2

aiσ−1
a .

Theorem 1.10. — For a suitable choice of non-trivial abelian character
ϕ of G, we have equalities in Cl(Z[ζl]):
i) ϕ(2χP (ω1/2

X/Y )− 2χP (OX)) = [PP]
p−1
12l s1 .

ii) ϕ(2lχP (ω1/2
X/Y )) = [PP]

p−1
12l s2 and ϕ(2lχP (OX)) = [PP]

p−1
12l (s2−ls1) .

Using this we immediately deduce:

Corollary 1.11. — Let h+
l be the class number of the maximal real

subfield of Q(ζl) and assume that h+
l = 1; then we have:

2χP (OX) = 2χP (ω1/2
X/Y ), 2lχP (OX) = 2lχP (ω1/2

X/Y ) = 0 .

If in addition l is a regular prime number, then

2χ(OX) = 2χ(ωX/Y ) = 2χ(ω1/2
X/Y ) = 0.

TOME 62 (2012), FASCICULE 6
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Remark. — 1. The Lefschetz-Riemann-Roch theorems of [5] and the
techniques developed in [15] provide efficient tools for determining the
prime-to-l part of the Euler characteristic of the sheaves that we have
considered here. Note also that the work in [16] (see in particular Section
4.b) can be used for such calculations. In fact, this gives a way to compute
χ(OX) for G of prime order and can also be used to provide an alternating
approach to some of the results of the modular curve example.

This corollary can be used to provide families of covers X → Y for which
our sheaves have Euler characteristic of order two . In Section 6 we will
see that Theorem 1.10 can also be used to construct families of examples
where such Euler characteristics have order greater than 2. For instance for
p = 182857 and l = 401 the cover X → Y provides us with a tame cover
such that: χP (OX), χP (ωX/Y ) and χP (ω1/2

X/Y ) all have order greater than
2; where 2χP (OX) = 2χP (ωX/Y ); but where χP (OX) 66= χP (ω1/2

X/Y ).

2. An equivariant Duality Theorem

In this section we do not impose any restriction of the dimension of Y and
we no longer suppose G to be abelian. However, we note that if G is abelian,
then there is a simpler proof of the results of this section by following [12]
and working over Spec(Z[G]) as the base. We assume for simplicity that
the schemes X and Y that we consider in this section are regular.

The action of complex conjugation on the characters of G induces an in-
volutary automorphism on Cl(Z[G]). Thus if [M ] is an element of Cl(Z[G])
represented by f ∈ HomGQ(RG, J(E)), we define [M ] as the element of
Cl(Z[G]) represented by f where for χ ∈ RG

f(χ) = f(χ)

and one checks that this automorphism maps ker(t) in 1.6 into itself. We
denote by Cl(Z[G])+ (resp. Cl(Z[G])−) the subgroup of elements of x ∈
Cl(Z[G]) with the property that x̄ = x (resp. x̄ = −x).

Clearly the group automorphism f 7→ f−1 on HomGQ(RG, J(E)) induces
an involution on Cl(Z[G]). By composing these two involutions we obtain
a further involution which we denote by [M ] 7→ [M ]D. In Proposition 3
of Appendix A, IX in [10], Fröhlich gives an interpretation of this latter
involution by proving that for any locally free Z[G]-module M one has the
equality:

[M ]D = [MD] (2.1)

ANNALES DE L’INSTITUT FOURIER
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whereMD = HomZ(M,Z) is the Z-linear dual ofM . Such involutions were
used to provide some of the first restrictions on the Galois module structure
of algebraic rings of integers and their ideals. In the previous section we
associated to certain G-equivariant sheaves F on X an equivariant Euler
characteristic χP (F) in Cl(Z[G]); it is then natural to consider the image
of this class under the above involution. The initial aim of this section is
to give an interpretation of the class χP (F)D in terms of a duality functor
for Y -sheaves, which extends Fröhlich’s above result. We provide just such
a description in Corollary 2.5, and we note that the relative dimension d of
X over Spec(Z) appears explicitly in this result. The result that we give is
derived from an equivariant generalization of the duality theorem for pro-
jective morphisms given in Theorem 11.1 in III of [12]. This “equivariant”
version was first given in some unpublished notes of Ted Chinburg and
George Pappas.
We start by introducing a small amount of further notation. Our main

references are Section 2 of [1] and Section 2 of [P]. As previously,G is a finite
group and Y is a projective flat scheme over Z. LetK(Y,G) (resp.K(Z, G))
be the homotopy category of OY [G]-modules (resp. Z[G]-modules) and let
K+(Y,G) (resp. K+(Z, G) be the subcategory of complexes in K(Y,G)
(resp. K(Z, G)) which are bounded below and which have coherent (resp.
finitely generated) cohomology. We let D(Y,G), D+(Y,G), D(Z, G) and
D+(Z, G) be their respective derived categories . We define K(Y ), K+(Y ),
D(Y ) andD+(Y ) (resp.K(Z), K+(Z), D(Z) andD+(Z)) similarly by con-
sidering complexes of OY -modules (resp. Z-modules ). The global section
functor Γ has a right derived functor

RΓ+ : D+(Y,G)→ D+(Z, G)

(see Section 2 in II of [12]).
In Theorem 1.1 of [2], Chinburg proved:

Theorem 2.2. — If F • is a bounded complex in K+(Y,G) with the
property that each stalk of each term of F • is a cohomologically trivial
G-module, then RΓ+(F •) is isomorphic in D+(Z, G) to a finite complex of
finitely generated projective Z[G]-modules.

This fact led him to associate to any such complex an Euler characteristic
χP (RΓ+(F •)) in the class group Cl(Z[G]). When π : X → Y is a tame G-
cover, then, under the hypotheses of Section 1, one can prove that if F
is any G-equivariant coherent sheaf on X, then the complex of D+(Y,G),
which is π∗(F) in degree 0 and 0 elsewhere, satisfies the conditions required

TOME 62 (2012), FASCICULE 6



2324 Ph. CASSOU-NOGUÈS & M.J. TAYLOR

by Chinburg’s theorem. In this case the class χP (F), referred to in the
Introduction, coincides with the class χP (RΓ+(π∗(F))) defined above.

For any F • in K(Y,G) and any T • in K(Y ) we have the complex
Hom•OY (F •, T •) in K(Y,G) (see Section 3 in II of[12]). We thereby ob-
tain a bifunctor:

Hom•OY : K(Y,G)0 ×K(Y )→ K(Y,G)

and a derived bifunctor

RHom•OY : D(Y,G)0 ×D+(Y )→ D+(Y,G)

where, as usual, the superscript 0 denotes the opposite category. The bi-
functors Hom•Z and RHom•Z are defined in the same way. For any F • in
D(Y,G) and T • in D+(Y ) we may then consider the Euler characteris-
tic χP (RΓ+(RHom•OY )(F •, T •)) in Cl(Z[G]). The following theorem is a
special case of the above mentioned equivariant duality theorem:

Theorem 2.3 (Chinburg, Pappas.). — Let F • be a bounded complex
in K+(Y,G) as in Theorem 2.2. Let h : Y → S = Spec(Z) be the structural
morphism. Then one has the equality of Euler characteristics in Cl(Z[G])

χP (RΓ+(RHom•OY (F •, h!(OS)))) = χP (RHom•Z(RΓ+(F •),Z)) .

Remark. — The construction of h! is given in III of [12] .

To give a very brief idea of the proof of the theorem we remark that the
equality of these two Euler characteristics is a consequence of the existence
of an isomorphism Γ(θh) in D+(Z):

Γ(θh) : RΓ+(RHom•OY (F •, h!(OS)))→ RHom•Z(RΓ+(F •),Z)

and this latter isomorphism is obtained by applying the global section
functor to the duality isomorphism θh of Section 11 in III of [12].

Corollary 2.4. — Since Y is flat over S, the fibres all have constant
dimension which we denote by d. We then have the equality:

(−1)dχP (RΓ+(RHom•OY (F •, ωY/S))) = χP (RHom•Z(RΓ+(F •),Z)) .

Proof. — It follows from [12] that h!(OS) is the complex ωY/S [d] whose
only non-zero term is ωY/S in degree −d. Moreover we have the equality:

χP (RΓ+(RHom•OY (F •, ωY/S [d]))) = (−1)dχP (RΓ+(RHom•OY (F •, ωY/S))).

The corollary therefore follows immediately from the theorem. �
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Corollary 2.5. — With the hypotheses and notation of the previous
corollary, we have the following equality in Cl(Z[G]):

χP (F)D = (−1)dχP (RΓ+(RHom•OY (π∗(F), ωY/S))) .

Proof. — We consider the complex π∗(F) whose only non-zero term is
π∗(F) in degree 0. Since the action (X,G) is tame we can apply Theorem 2.2
to deduce that the complex RΓ+(π∗(F)) is perfect. Let M• be a bounded
complex of finitely generated projective Z[G]-modules which is isomorphic
to RΓ+(π∗(F)) in D+(Z, G). Then RHom•Z(M•,Z) = Hom(M•,Z) is the
class in D+(Z, G) of the complex whose (−j)th term is HomZ(M j ,Z) =
(M j)D. Therefore it follows from Fröhlich’s duality result that we have the
equality in Cl(Z[G]):

χP (RHom•Z(RΓ+(π∗(F)),Z)) = χP (F)D .

The result now follows from the previous corollary. �

We now wish use the above result to derive some properties for the Euler
characteristics of the G-equivariant sheaves on X that we have considered.

Corollary 2.6. — Suppose that the hypotheses of the previous corol-
laries are satisfied. Then
i)

χP (OX)D = (−1)dχP (ωX/S).
ii) Moreover, if the ramification indices ofX → Y are odd and if there exists
an OY -line bundle ω1/2

Y/S , with the property that ω1/2
Y/S⊗ω

1/2
Y/S = ωY/S , then

χP (ω1/2
X/S)D = (−1)dχP (ω1/2

X/S) .

In particular, when d= 1 the class χP(OX)−χP(ωX/S) belongs to Cl(Z[G])−

and the class χP (ω1/2
X/S) belongs to Cl(Z[G])+.

Proof. — From the duality formula of Corollary 2.5 we see that, in or-
der to prove this corollary, we need to evaluate RHom•OY (π∗(F), ωY/S) for
F = OX and F = ω

1/2
X/S . Since the action (X,G) is tame, in both cases

π∗(F) is a locally free OY [G]-module. Therefore RHom•OY (π∗(F), ωY/S) =
HomOY (π∗(F), ωY/S), and so now we consider HomOY (π∗(F), ωY/S).
First we observe that

HomOY (π∗(F), ωY/S) ' HomOY (π∗(F),OY )⊗OY ωY/S .

From Propositions 4.25. and 4.32 in VI of [14] we deduce that when F = OX
we have

HomOY (π∗(OX),OY ) ' π∗(ωX/Y ) .
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Therefore we have isomorphisms of OY [G]-modules

HomOY (π∗(OX), ωY/S) ' π∗(ωX/Y )⊗OY ωY/S ' π∗(ωX/S)

with the latter isomorphism following from the adjunction and the projec-
tion formulas. This then shows i).
Now let F = ω

1/2
X/S . From the projection formula we deduce that

π∗(ω1/2
X/S) = π∗(ω1/2

X/Y )⊗OY ω
1/2
Y/S .

Therefore

HomOY (π∗(ω1/2
X/S),OY )'HomOY (π∗(ω1/2

X/Y ),OY )⊗OY HomOY (ω1/2
Y/S ,OY ).

By use of the trace pairing we know that π∗(ω1/2
X/Y ) is a self-dual OY [G]-

module; also, since ω1/2
Y/S is invertible, we know that HomOY (ω1/2

Y/S ,OY ) =
ω
−1/2
Y/S . In conclusion we deduce from the above that

HomOY (π∗(ω1/2
X/S), ωY/S) ' π∗(ω1/2

X/Y )⊗OY ω
−1/2
Y/S ⊗OY ωY/S ' π∗(ω

1/2
X/S) .

This then completes the proof of the corollary. �

3. Sheaf and divisor resolvents

In this section we assume that G is a finite abelian group of exponent n
and that R is a complete discrete valuation ring whose residue class field k
is of characteristic p, which is coprime to n, and that R contains the nth
roots of unity. We assume that Y → S = Spec(R) is of absolute dimension
d+1. We associate to G the constant group scheme over S, which we again
denote by GS ; we let GDS = Spec(R[G]) be the Cartier dual of GS , and GDY
denotes the fiber product GDS ×SY . For any scheme Z, we denote by KZ the
sheaf of stalks of meromorphic functions on Z. This is the sheaf associated
to the presheaf defined on affine open subschemes U of Z by Frac(OZ(U)),
where we let Frac(A) denote the ring of fractions of the ring A.
Let F be a coherent invertible subsheaf of KX whose support is contained

in the branch locus of the cover π : X → Y . We assume that F = OX(D)
where D =

∑
x dxx is a divisor of X with gD = D for any g ∈ G so that

dx depends only on the G-orbit of x and furthermore dx = 0 whenever the
inertia subgroup Ix of x is trivial. We consider the sheaf π∗(F): this is a G-
equivariant, locally free OY -module which may be viewed as a GDY -module
(see for instance 5.17 in II of [13]). We suppose that this is an invertible
GDY -module. For future reference we note that, since the cover is tame, the
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structure sheaf OX , the canonical sheaf ωX/Y and, if the ramification of
X/Y is odd, the sheaf ω1/2

X/Y have this property. Any character ϕ : G →
Γ(S,O∗S) ofG provides us with an S-point ofGDS and hence, by base change,
with a Y -point ϕ : Y → GDY of GDY .

Definition 3.1. — We define the resolvent sheaf associated to F and
ϕ to be the invertible Y -sheaf:

Fϕ = ϕ∗((π∗)(F)) .

Fϕ is easily seen to be a quotient of π∗(F) consisting of those local sections
on which G acts by the character ϕ.
n-fold multiplication induces a homomorphism of Y -sheaves

µ : π∗(KX)⊗n → KY

which, by restriction, identifies F⊗nϕ with an invertible subsheaf of KY that
may be defined by a divisor. The principal aim of this section is to give an
explicit expression for this divisor.
Let x be a codimension one point of X, let Ix be the inertia group of

x and ex be the order of Ix. The action of Ix on the cotangent space at
x defines a faithful character ψx with values in k∗. Since n is coprime to
the characteristic of k and since R is a complete discrete valuation ring, we
may view ψx as taking values in R∗. Hence for any character ϕ of G there
exists a unique integer n(ϕ, x), 0 6 n(ϕ, x) < ex, such that the restriction
to Ix of ϕ is equal to ψn(ϕ,x)

x . We set π(x) = y. Since the points of x above
y are all conjugate under the action of G, both the group Ix and the integer
n(ϕ, x) depend only on y. Moreover, as noted previously, since the divisor
D =

∑
x dxx is G-invariant, the integer dx also depends only on y. We shall

therefore denote these objects Iy, n(ϕ, y) and dy. For any rational number
a we denote its integral part by [a] and its fractional part by {a} = a− [a].
We set

fF (ϕ, y) = dy
ey
− {n(ϕ, y) + dy

ey
} . (3.1)

Proposition 3.2. — For any abelian character ϕ of G the map µ iden-
tifies F⊗nϕ with OY (FF (ϕ)) with

FF (ϕ) =
∑
y

nfF (ϕ, y)y

where y runs over the set of codimension one points of Y which are con-
tained in the special fiber of Y → S.
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Proof. — We may assume, for the purposes of the proof, that the de-
composition subgroup of x is equal to the inertia subgroup. We consider a
codimension one point y on the special fiber of Y and we fix a point x on
X such that π(x) = y. For the sake of simplicity we will write e for ey, d for
dy, I for Iy etc.. Since R is a complete discrete valuation ring with residue
characteristic p coprime to n and which contains the nth roots of unity,
we are in a tame Kummer situation and so we can choose a uniformising
parameter ωx of OX,x with the property that ωy = ωex is a uniformiser of
OY,y . From the very definition of F we know that Fx = ω−dx OX,x. We
define q and r by the equality −d = qe + r subject to the restriction that
0 6 r < e. Then ω−dx = ωqyω

r
x. Again, since we are in a tame Kummer

situation, we know that α = 1
e (1 + ωx + ...+ ωe−1

x ) is a free basis of OX,x
as an OY,y[I]-module. It then follows easily that ωqyωrxα is a free basis of
Fx over OY,y[I]. This implies that the stalk of Fnϕ at y is given by:

ω−n.fF (ϕ)
y OY,y = Fnϕ,y = (ωqyωrxα | ψn(ϕ)

x )nOY,y
where for a ∈ Fx and a character θ of I, (a | θ) denotes the Lagrange
resolvent

(a | θ) =
∑
g∈I

agθ(g−1).

By the standard properties of Lagrange resolvents and the definition of the
cotangent character ψx we have the following equalities:

(ωqyωrxα | ψn(ϕ)
x ) = ωqy(ωrxα | ψn(ϕ)

x ) = ωqyω
r
x(α | ψn(ϕ)−r

x ) .

By an easy computation we obtain that

(α | ψn(ϕ)−r
x ) =

∑
g∈Iy

αg
−1
ψn(ϕ)−r
x (g) =

1
e

∑
g∈Iy

∑
06k<e

ωkxψ
−k−r+n(ϕ)
x (g) = 1

e

∑
06k<e

ωkx
∑
g∈Iy

ψ−k−r+n(ϕ)
x (g) .

We conclude that (α | ψn(ϕ)−r
x ) = ω

n(ϕ)−r
x if r 6 n(ϕ) and ω

e+n(ϕ)−r
x

otherwise. Piecing this together we obtain that −n.fF (ϕ) = n
e (n(ϕ) + eq)

if r 6 n(ϕ) and n
e (n(ϕ) + e(q+ 1)) otherwise. The proposition now follows

at once from this equality. �

As we have seen in the proof of the above proposition, the rational numbers
fF (ϕ, y) are defined by the equalities

fF (ϕ, y) = − 1
n
vy(Fnϕ,y) . (3.3)

From now on we will denote this number by −vy(Fϕ).
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Definition 3.2. — The resolvent divisor of F at ϕ is defined to be

r(F , ϕ) =
∑
y

vy(Fϕ,y)y (3.4)

where y runs over the set of codimension one points of Y which are con-
tained in the special fiber of Y → S.
We note that n.r(F , ϕ) is a divisor on Y with the property that

F⊗nϕ = OY (−n.r(F , ϕ)) .

We will sometimes abuse notation and write Fϕ = OY (−r(F , ϕ)).

Examples. — The following three examples are central to our study.
1. If F is the structural sheaf of X, then D = 0 and from the above
proposition it follows that

vy(OX,ϕ) = n(ϕ, y)
ey

and r(OX , ϕ) =
∑
y

n(ϕ, y)
ey

y . (3.5)

Note that this is Lemma 3.5 of [7].
2. We let S(ϕ) denote the set of codimension one points y of Y contained
in the special fiber of Y → S, with the property that n(ϕ, y) > 0. We set

f(ϕ) =
∑

y∈S(ϕ)

y. (3.6)

If we take F = ωX/Y , then dy = ey − 1 and we get

r(ωX/Y , ϕ) = r(OX , ϕ)− f(ϕ)

by using Proposition 3.2 and the fact that

{n(ϕ, y) + ey − 1
ey

} = ey − 1
ey

+ n(ϕ, y)
ey

− 1.

3. We let S ′(ϕ) denote the set of codimension one points y of Y contained
in the special fiber of Y → S, with the property that that n(ϕ, y) > ey/2.
We set

f ′(ϕ) =
∑

y∈S′(ϕ)

y . (3.7)

If we take F = ω
1/2
X/Y , then dy = (ey − 1)/2 and we get

r(ω1/2
X/Y , ϕ) = r(OX , ϕ)− f ′(ϕ)

by using Proposition 3.2 and the fact that

{n(ϕ, y) + (ey − 1)/2
ey

} = ey − 1
2ey

+ n(ϕ, y)
ey

if n(ϕ, y) < ey/2,
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{n(ϕ, y) + (ey − 1)/2
ey

} = ey − 1
2ey

+ n(ϕ, y)
ey

− 1 if n(ϕ, y) > ey/2.

From Proposition 3.2 it follows that

r(ω1/2
X/Y , ϕ) = r(OX , ϕ)− f ′(ϕ).

Corollary 3.8. — Let ϕ be an abelian character of G and let ϕ̄ be its
complex conjugate. Then:
i)

r(OX , ϕ) + r(OX , ϕ̄) = f(ϕ)
ii)

r(ω1/2
X/Y , ϕ) + r(ω1/2

X/Y , ϕ̄) = 0
iii)

r(ω1/2
X/Y , ϕ) = r(OX , ϕ2)− r(OX , ϕ) .

Proof. — Part (i) follows from Example 1 above and part (ii) comes
from Example 3. To prove part (iii) we note that if n(ϕ, y) < ey/2 then
n(ϕ2, y) = 2n(ϕ, y) and if n(ϕ, y) > ey/2 then n(ϕ2, y) = 2n(ϕ, y) − ey,
and so

r(OX , ϕ2)− r(OX , ϕ) = (
∑
y

2n(ϕ, y)
ey

)− f ′(ϕ)

= 2r(OX , ϕ)− f ′(ϕ) = r(OX , ϕ) + r(ω1/2
X/Y , ϕ).

�

Remark. — We denote the sheaf OY (−f(ϕ)) by F (ϕ). From the above
corollary we deduce the following equalities of invertible OY -sheaves:

OnX,ϕ ⊗OnX,ϕ̄ = F (ϕ)n, (ω1/2
X/Y,ϕ)n ⊗ (ω1/2

X/Y,ϕ̄)n = OY
and we observe that the first equality provides us with a geometric analogue
of Theorem 18 in [F2].

4. Euler characteristics and representatives

4.a. The Riemann-Roch Theorem

Let R be a Dedekind domain. Henceforth we suppose that Y → S =
Spec(R) is of absolute dimension 2 and we consider aG-cover of Y satisfying
the assumptions of Section 1.
To any locally free coherent G-sheaf F on X we can associate the follow-

ing two invariants: the first is the equivariant Euler characteristic χP (F) ∈
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Cl(R[G]), which was introduced in Section 1 (see [2] for further details).
We now briefly recall the construction of the second invariant that we wish
to study. Recall that the sheaf π∗(F) may be viewed as a locally free co-
herent GDY -sheaf. Let h̃ : GDY → GDS be the base change of h : Y → S by
GDS → S. Then the total derived image Rh̃(π∗(F)) in the derived category
of complexes of GDS -sheaves is represented by a perfect complex. Therefore,
following Knudsen and Mumford, we can define the invertible R[G]-module
det(Rh̃(π∗(F)) and consider its class in Pic(GDS ) = Pic(R[G]). Since G is
abelian this latter group may be identified with the class group Cl(R[G])
and we have the following equality in the class group Cl(R[G]), (see 2.c in
[P] and also Section 3 of [7]):

χP (F) = [det(Rh̃(π∗(F))] .

In fact we shall be interested in twice this class and so, with the notation
of [7], we set

δ(F) = det(Rh̃(π∗(F))⊗2.

For i, 1 6 i 6 2, we let Fi denote a coherent, invertible, G-equivariant
sheaf on X, defined by a divisor Di. We assume that D1 6 D2 and that
both these divisors are supported on the branch locus of π : X → Y . Our
aim is to describe ψ(F1,F2) = 2(χP (F2)−χP (F1)) in Cl(R[G]). It follows
from the above that ψ(F1,F2) = δ(F2)⊗ δ(F1)−1. Since D1 6 D2 we have
a natural injection of sheaves f : π∗(F1) → π∗(F2) and so we have the
equality

ψ(F1,F2) = [δ(π∗(F1)→ π∗(F2))]

where π∗(F1) f→ π∗(F2) denotes the perfect complex of GDY -sheaves with
terms in positions −1 and 0. We shall denote by δ(f) the locally free R[G]-
module defined by the “δ-image” of this complex; that is to say, the de-
terminant of the push down, via δ, of this complex in Cl(R[G]). With this
notation, the previous equality may be re-written as

ψ(F1,F2) = [δ(f)] .

Observe that δ(f) actually defines a submodule of K[G]. Since G is abelian,
the determination of this module reduces to the computation of ϕ(δ(f)) for
each abelian character ϕ of G. By pullback, any such character induces a
morphism of sheaf resolvents

ϕ∗(f) : F1,ϕ → F2,ϕ

and, by the functorial properties of the determinant of the cohomology, it
follows that we have ϕ(δ(f)) = δ(ϕ∗(f)).
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The module δ(f) may of course be described by its local components, and so
we now consider the local situation where R is a complete discrete valuation
ring. We introduce a small amount of further notation. Let k denote the
residue class field of R. For any separated scheme of finite type f : T →
Spec(k) we let G0(T ) denote the Grothendieck group of coherent sheaves
on T . We identify G0(Spec(k)) with Z. Assuming f to be proper, we define
the Euler characteristic of a coherent sheaf F on T by the equality:

X (T,F) = f∗([F ])

where [F ] is the class of F in G0(T ).
We let hs : Ys → Spec(k) denote the special fiber of Y . The complex

cϕ : F1,ϕ
ϕ∗(f)→ F2,ϕ

is then a complex of locally free OY -modules which is exact off Ys. Thus
the cokernel of ϕ∗(f), which we denote by Tϕ(F1,F2), is a coherent sheaf
of OY -modules which is supported on Ys. It therefore defines a class in the
Grothendieck groupG0(Ys) of coherent Ys-modules. Let λ be a uniformizing
parameter of R. Then it is easily shown that

ϕ(δ(f)) = Rλ−2X (Tϕ(F1,F2))

where we view the Euler characteristic X (Tϕ(F1,F2)) ∈ Z as above. The
remainder of this section will be devoted to the computation of the Euler
characteristic X (Tϕ(F1,F2)) for particular choices of F1 and F2.

For any integer m > 0 we let Am(T ) denote the group of m-cycles on T
modulo rational equivalence and we set

A∗(T ) = ⊕06mAm(T ) .

We write A∗(T )Q = A∗(T )⊗Q and, as usual, we identify A0(Spec(k)) with
Z. The general Riemann-Roch theorem provides us with homomorphisms
τT : G0(T )→ A∗(T )Q which are covariant for proper morphisms. For any
coherent sheaf F on T , the Riemann-Roch theorem states that

X (T,F) = f∗(τT ([F ])) .

In this equality the right-hand side is the push forward of the zero compo-
nent of τT ([F ]) to A0(Spec(k))Q identified with Q.
For any invertible OY [G]-sheaf F and any abelian Qc

p-character ϕ of G,
as previously, we consider the resolvent divisor r(F , ϕ) =

∑
y vy(Fϕ)y, (see

Definition 3.2 in Section 3), and we define T (F , ϕ) to be the integer

T (F , ϕ) = r(F , ϕ)2 + c1(ωY/S) · r(F , ϕ) .

ANNALES DE L’INSTITUT FOURIER



EQUIVARIANT EULER CHARACTERISTICS 2333

Recall that for two codimension one points y, z on the special fiber Ys of Y ,
we denote their intersection number by y · z and c1(ωY/S) · y is the degree
of the 0-cycle c1(ωY/S)∩ y on Y (see Chapter 2 of [11] ). In the case where
we have a “square root” ω1/2

Y/S of ωY/S , in 1.5 we have defined the twist F̃
of F by the rule

F̃ = F ⊗ π∗(ω1/2
Y/S).

Proposition 4.1. — Let F denote either ωX/Y or ω1/2
X/Y . Then for any

abelian Qc
p-character ϕ of G one has the following equalities:

i)
2χ(Tϕ(OX ,F)) = T (F , ϕ)− T (OX , ϕ) .

ii) If there exists a “square root” of ωY/S , then

2χ(Tϕ(ÕX , F̃)) = r(F , ϕ)2 − r(OX , ϕ)2 .

Proof. Since the proofs of these equalities are similar, we shall only give
the proof of ii) when F = ωX/Y and will leave the proof of the remaining
cases to the reader. Let ϕ be an abelian character of G and let cϕ be the
complex of Y -line bundles

OX,ϕ ⊗OY ω
1/2
Y/S

ϕ∗(f̃)→ ωX/Y,ϕ ⊗OY ω
1/2
Y/S

at degrees −1 and 0. Since cϕ is exact outside Ys and provides a locally
free resolution of Tϕ(ÕX , ω̃X/Y ), (henceforth abbreviated to T̃ϕ), it follows
from the localized Riemann-Roch Theorem (see Theorems 18.2 and 18.3 in
[11]) that

χ(T̃ϕ) = (hs)∗((chYYs(cϕ) ∩ Td(h))0)
where (hs)∗ is the push forward A0(Ys)Q → A0(Spec(k))Q = Q, chYYs(cϕ)
is the localized Chern character which lives in the bivariant group A(Ys →
Y )Q, and Td(h) is the Todd class of h, which is an element of A∗(Y )Q that
we will describe presently. We first observe that the complex cϕ may be
written as ω1/2

Y/S ⊗ dϕ, where dϕ is the complex with terms in degrees −1
and 0.

OX,ϕ
ϕ∗(f)→ ωX/Y,ϕ .

It therefore follows from Proposition 18.1 (c) in [11] that chYYs(cϕ) =
ch(ω1/2

Y ) ∩ chYYs(dϕ). We now consider the complex d⊗nϕ . For the sake of
simplicity we set F (ϕ) = −n.r(OX , ϕ) and R(ϕ) = n.f(ϕ). It follows from
Proposition 3.2 that d⊗nϕ is the complex OY (F (ϕ)) → OY (F (ϕ) + R(ϕ)).
We observe that once again d⊗nϕ can be written as the tensor product
OY (F (ϕ))⊗ bϕ where bϕ is the new complex OY → OY (R(ϕ)). Since R(ϕ)
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is an effective divisor and since we assume that X and Y are relative curves,
it follows from Proposition 3.10 (b) and (e) in [7] that

chYYs(bϕ) = [R(ϕ)] + [R(ϕ)]2

2
and therefore

chYYs(d
⊗n
ϕ ) = [R(ϕ)] + c1(OY (F (ϕ))) ∩ [R(ϕ)] + [R(ϕ)]2

2 .

Since for any integer q we know that chY,qYs (d⊗nϕ ) = nqchY,qYs (dϕ), it follows
that

chYYs(dϕ) = [R(ϕ)]
n

+ c1(OY (F (ϕ))) ∩ [R(ϕ)]
n2 + [R(ϕ)]2

2n2 .

Since cϕ = ω
1/2
Y/S ⊗ dϕ, we finally obtain that

chYYs(cϕ) = [R(ϕ)]
n

+
[R(ϕ)] ∩ c1(ω1/2

Y/S)
n

+c1(OY (F (ϕ))) ∩ [R(ϕ)]
n2 +[R(ϕ)]2

2n2 .

From the very definition of Td(h) we deduce that

Td1(h) = −
c1(ωY/S)

2 = −c1(ω1/2
Y/S)

(see (3.e) in [7]). Therefore, piecing the above together, we obtain that

2χ(T̃ϕ) = 2(chYYs(cϕ) ∩ Td(h))0 = 2c1(OY (F (ϕ))) ∩ [R(ϕ)]
n2 + [R(ϕ)]2

n2 .

Since we have the equalities
[R(ϕ)]2

n2 = f(ϕ)2 and c1(OY (F (ϕ))) ∩ [R(ϕ)]
n2 = −r(OX , ϕ) · f(ϕ) ,

it suffices to use the equalities of Example 2 in Section 3 in order to deduce
the required formula from above .

4.b. Proof of Theorems 1.7 and 1.8

Our hypotheses and our notations are those of Theorems 1.7 and 1.8.
Since the proofs are similar we will give the proof of Theorem 1.7 and leave
the proof of Theorem 1.8 to the reader. Our aim is to find a representative
for the class 2(χP (F)− χP (OX)); that is to say an element g in the group
HomGQ(RG, Jf (E)) with the property that

2(χP (F)− χP (OX)) = t(g) .
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For any element p of Σ we check that the map

up : ϕ 7→ pTp(OX ,ϕ)−Tp(F,ϕ)

belongs to HomGQp
(RG,p, E∗p). Therefore we can define gp to be the unique

element of HomGQ(RG, Jp(E)) such that g∗p = up. We set g =
∏
p∈Σ gp.

Our aim now is to show that g is a representative for our class.
Since we have a group isomorphism

Qp[G]∗ ' HomGQp
(RG,p, E∗p)

given by x 7→ (ϕ 7→ ϕ(x)), we may define ap to be the unique element
of Qp[G]∗ corresponding to up under the above isomorphism. By taking
ap = 1 for p /∈ Σ and ap as above for p ∈ Σ, we obtain a finite idele (ap)p
of Q[G] and thus an element in Pic(Z[G]) by considering the class of the
fractional ideal ∩pZp[G]ap∩Q[G]. This class corresponds to t(g) under the
identification between Cl(Z[G]) and Pic(Z[G]). Under this identification, as
seen previously, 2(χP (F)− χP (OX)) identifies with ψ(OX ,F). Therefore,
in order to prove the theorem, it suffices to prove that for each finite place p
we have the equality ψ(OX ,F)Zp = Zp[G]ap. When p /∈ Σ this follows from
the definition of ψ(OX ,F). For p ∈ Σ, since p is coprime to n, it suffices to
show that, for any abelian Qc

p-character ϕ of G, we have ϕ(ψ(OX ,F)Z′p) =
ϕ(ap)Z′p, where, as previously, Z′p is obtained by adjoining the n-th roots
of unity to Zp. Since the functor δ commutes with base change, this last
equality is equivalent to the equality:

ψ(OX′p ,F
′
p) = pTp(OX ,ϕ)−Tp(F,ϕ)Z′p = p

T (OX′p ,ϕ)−T (F ′p,ϕ)Z′p .

This now follows from Proposition 4.1.(i) because p is a uniformizing pa-
rameter of Z′p.

5. The class χ(OX)− χ(ωX/Y )

The aim of this section is to prove Theorem 1.9. We now assume that
G is an abelian group of order lN where l is a prime number, l > 3 and
l /∈ Σ. For any p ∈ Σ we let Z′p be the discrete valuation ring obtained by
adjoining to Zp a primitive lN -th root of unity and we let Qp(ζlN ) denote
its field of fractions. Let πp : X ′p = X ⊗Z Z′p → Y ′p = Y ⊗Z Z′p denote the
G-cover obtained from π : X → Y by base change. There is then an action
of Vp = Gal(Qp(ζlN )/Qp) on Z′p, and hence on X ′p and Y ′p , and therefore
on the codimension one points of X ′p and Y ′p . Since the actions of G and
Vp on X ′p commute, it follows that for any ω ∈ Vp and any codimension
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one point x of X, one has Ixω = Ix and ψxω = ψωx (recall that ψx is the
character of Ix defined by the action of Ix on the cotangent space in x).
This implies that for any abelian character ϕ : G → Z′×p , ω ∈ Vp we will
have n(ϕω, xω) = n(ϕ, x). As previously, when x 7→ y we shall write Iy and
n(ϕ, y) for Ix and n(ϕ, x).
Let E be the number field obtained by adjoining to Q the lN -th roots of

unity. In Theorem 1.7 we proved that

2(χ(OX)− χ(ωX/Y )) =
∏
p∈Σ

t(gp)

where gp is the element of HomGQ(RG, Jp(E)) defined by

g∗p(ϕ) = pTp(ωX/Y ,ϕ)−Tp(OX ,ϕ).

Let p be an element of Σ and let S(ϕ) denote the set of codimension one
points y of Y ′p contained in the special fiber of Y ′p → Spec(Z′p) such that
n(ϕ, y) > 0. We know from Example 2 of Section 3 that, for any abelian
character ϕ of G

rp(ωX/Y , ϕ) = rp(OX , ϕ)− f(ϕ) .

Moreover, in 3.e. of [7] we find that

c1(ωYp) · y = −y2 − 2χ(y,Oy).

Using 1.4 and Example 2 in Section 3, we can use the above to deduce that

Tp(ωX/Y , ϕ)−Tp(OX , ϕ) = f(ϕ)2+
∑

y∈S(ϕ)

(y2+2χ(y,Oy))−2f(ϕ)·rp(OX , ϕ)

where, as before, y · z (resp. y2) denotes the intersection (resp. self-inter-
section) number of y and z (resp. y). We set:

a(ϕ) = f(ϕ)2 +
∑

y∈S(ϕ)

(y2 + 2χ(y,Oy)) .

Since a(ϕ) − 2f(ϕ)r(OX , ϕ) is an Euler characteristic, and since by def-
inition a(ϕ) is an integer, it follows that 2f(ϕ) · rp(OX , ϕ) must also be
an integer. We observe that for any element ω ∈ Gal(Qc

p/Qp) there ex-
ists rω, coprime to l, such that ϕω = ϕrω . We therefore deduce that
S(ϕ) = S(ϕω) and hence a(ϕ) = a(ϕω). This implies that gp may be
written in HomGQ(RG, Jp(E)) as a product uphp where for any abelian
character ϕ we define u∗p(ϕ) = p a(ϕ) and h∗p(ϕ) = p−2f(ϕ)·r(OXp ,ϕ).
The theorem will be a consequence of the following two lemmas.

Lemma 5.1. — t(up) belongs to D(Z[G]).
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Proof. — The key observation is that for any abelian character ϕ of G
and any ω ∈ GQ from the above we know that

a(ϕp) = a((ϕω)p) .

It therefore follows that the character map vp, whose value on an abelian
character ϕ is given by vp(ϕ) = p a(ϕp), belongs to HomGQ(RG,Q×). Let
wp be the element of HomGQ(RG, J(E)) defined on abelian characters of
G by the rule:

wp(ϕ)v =
{

1 if v divides p

p−a(ϕp) if v if not
and so by definition wp ∈ HomGQ(RG, U(E)). Since (vpwp)∗ = u∗p we
deduce that vpwp = up. Therefore

t(up) = t(vp)t(wp) = t(wp) .

Since t(wp) ∈ D(Z[G]) the lemma is proved. �

If F is a number field and x is a finite idele of F , then the content of x is
a fractional ideal of F , which we denote by c(x).

Lemma 5.2. — i) There exists an integer m > 0 such that lmt(hp)
belongs to D(Z[G]).
ii) If G is of order l, then t(hp) belongs to D(Z[G]) and is therefore

trivial.

Proof. — In order to prove i), it suffices to show that for any non-trivial
abelian character ϕ of G there exists an integer s > 0 such that lsc(hp(ϕ))
is a principal ideal. For such a character ϕ, let F be the field Q(ϕ) and let
P be the prime ideal of F defined by the restriction of jp to F . It follows
from the definition that vP(c(hp(ϕ))) = −2f(ϕp)rp(OX , ϕp). The Galois
group Hp of the extension Qp(ϕp)/Qp can be identified via jp with the
decomposition group of P. For any integer a, coprime to l, we denote by σa
the automorphism of E defined by the property that on a primitive lN -th
root of unity ζ we have σa(ζ) = ζa. We then let {ai, 1 6 i 6 q} be a set of
integers such that the {σai} are a set of representatives of Gal(F/Q)/Hp.
We have the equalities

v
Pσ
−1
a

(c(hp(ϕ))) = vP((c(hp(ϕ))σa) = vP(c(hp(ϕa))
= −2f(ϕap) · rp(OX , ϕap).

Since it is clear that f(ϕap) = f(ϕp), we deduce from Example 1 in Section 3
that

f(ϕap) · rp(OX , ϕap) =
∑

y∈S(ϕp)

(f(ϕp) · y)
n(ϕap, y)
ey

.
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Therefore we obtain

c(hp(ϕ)) = Pα(ϕ) with α(ϕ) = −2
∑

y∈S(ϕp)

(f(ϕp) · y)
∑

16i6q

n(ϕaip , y)
ey

σ−1
ai .

The group Vp = Gal(Qp(ζlN )/Qp) acts on S(ϕp). We let {yj , 1 6 j 6 r}
be a set of orbit representatives of S(ϕp) under the action of Vp. For any
j, 1 6 j 6 r, let Vp,j denote the isotropy group of the codimension one
point yj . Since Vp,j is a subgroup of Qp(ζlN )/Qp(ψyj ), we note that it must
be an l-group. For any u ∈ Vp and any y ∈ S(ϕp)), we have

f(ϕp) · yu =
∑

z∈S(ϕp)

z · yu =
∑

z∈S(ϕp)

zu · yu = f(ϕp) · y

because we know that zu · yu = z · y. Therefore we deduce that α(ϕ) may
be written as:

α(ϕ) = −2
∑

16j6r
(f(ϕp) · yj)Aj(ϕp)

with

Aj(ϕp) =
∑

16i6q

∑
u∈Vp/Vp,j

n(ϕaip , yuj )
eyu
j

σ−1
ai .

Let lmj denote the order of Vp,j . Using the equality n(ϕaip , yuj )=n(ϕaiu−1

p , yj)
and the fact that ey = eyu , from the above we obtain that

lmjAj(ϕp) =
∑

16i6q

∑
u∈Vp

n(ϕaip , yuj )
eyu
j

σ−1
ai =

∑
16i6q

∑
v∈Vp

n(ϕaivp , yj)
eyj

σ−1
ai

and since for v ∈ Gal(Qp(ζlN ) : Qp(ϕp))) we have n(ϕv) = n(ϕ) we get

lmjAj(ϕp) = [Qp(ζlN ) : Qp(ϕp)](
∑

16i6q

∑
v∈Hp

n(ϕaivp , yj)
eyj

σ−1
ai ) .

Since the integer [Qp(ζlN ) : Qp(ϕp)] is a power of l we deduce that for each
j there exists nj ∈ Z such that

Aj(ϕp) = lnj
∑

16i6q

∑
v∈Hp

n(ϕaivp , yj)
eyj

σ−1
ai .

Let ls denote the order of ϕ. Since for any v ∈ Hp, we know that Pσv = P,
we can deduce from the previous equality and the definition of α(ϕ) that
there exists a positive integer m and for any j, 1 6 j 6 q, an integer aj
such that

c(hp(ϕ))l
m

= P l
mα(ϕ)
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with

lmα(ϕ) = −2
∑

16j6r
ajbj(ϕ) and bj(ϕ) =

∑
16a6ls,(a,l)=1

n(ϕap, yj)
eyj

σ−1
a .

We now wish to study the sums bj(ϕ). Let y be one of the {yj} and let

b(ϕ) =
∑

16a6ls,(a,l)=1

n(ϕap, y)
ey

σ−1
a .

We write ey = ln, ϕp | Iy = ψul
m

y with (u, l) = 1 and 0 < ulm < ln. It
follows that the order of ϕp | Iy is equal to ln−m; if we put t = (n −m)
and recall that we denote the order of ϕp by ls, then we have t 6 s. One
checks easily that

n(ϕap, ey)
ey

= {au
lt
}.

We have the equality of sets of integers:

{c+ klt, 1 6 c < lt, (c, l) = 1, 0 6 k < ls−t} = {1 6 a < ls, (a, l) = 1} .

This implies that b(ϕ) may be rewritten:

b(ϕ) =
∑

16c<lt,(c,l)=1

{uc
lt
}

∑
06k<ls−t

σ−1
c+klt .

If we let My denote the field Q(ζlt), then it follows that

b(ϕ) = σuθ(My)TrQ(ϕ)/My
(5.3)

where θ(My) is the Stickelberger element of the field My. We then deduce
from Stickelberger’s Theorem that for any j there exists an integer Nj
such that lNj bj(ϕ) annihilates P and therefore that there exists a power of
l which annihilates c(hp(ϕ)), as required for the first part of the lemma.

In the special case where G has order l we note that in the above mj =
nj = 0 for any j and that Qp(ζlN ) = Qp(ϕp). Therefore for any j there
exists rj such that Aj(ϕp) = σrjθ, where θ is the Stickelberger element of
Q(ζl)/Q. We therefore conclude that c(hp(ϕ)) is principal. The lemma is
now proved. �

We now can complete the proof of Theorem 1.9. It follows from Lem-
mas 5.1 and 5.2 that for any p ∈ Σ there exists an integer d such that
t(gp)l

d belongs to D(Z[G]). Moreover one can choose d equal to 0 when G
is of order l. This proves Theorem 1.9. i) and iii), since the group D(Z[G])
is itself an l-group which is trivial when G is of order l. LetM denote the
unique maximal order of the group algebra Q[G]. When l is regular, the
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order of the class group Cl(M) is coprime with l. Therefore, in this case,
for any p ∈ Σ, the class t(gp) is itself an element of D(Z[G]). This proves
Theorem 1.9 (ii).

6. Some non-trivial Euler characteristics

This section contains the proof of Theorem 1.10. Our aim here is to use
the theory of modular curves to provide some detailed examples of the
above general results.

6.a. A modular example

We let p be a prime number with p ≡ 1 mod 24 and X1 = X1(p) be the
model over Spec (Z) of the modular curve associated to the congruence
subgroup Γ1(p) as considered in Section 4 of [7]. The group Γ/{±1} acts
faithfully on X1. Let l be a prime divisor of (p−1) with l > 3 and let H be
the subgroup of Γ of index l. Since p ≡ 1 mod 24 we know that 6 divides the
order of H. We consider the quotients Y = X1/Γ and X = X1/H of X1.
The schemeX is projective and flat over Spec (Z) and is acted on tamely by
the cyclic group G = Γ/H of order l. The morphism π : X → Y is a cover
which fulfils all the hypotheses required in this paper (see Theorems 4.2
and 4.3 in [7]). It follows from the work of various authors that X[1/p]→
Y [1/p] is a G-torsor which implies that the set Σ defined previously is
reduced to {p}. Moreover the special fiber over p is reduced with normal
crossings and has two irreducible components D0 and D∞ both isomorphic
to P1

Fp . If we let y0 (resp. y∞) be the generic point of D0 (resp. D∞), then
the intersection number y0.y∞ is equal to (p− 1)/12. Therefore we deduce
that y2

0 = y2
∞ = (1−p)/12 (see for instance Proposition 1.21 in Chapter 9 of

[14]). Finally, it follows once again from Theorem 4.3 in [7] that π is totally
ramified over y0 and non-ramified over y∞. If x0 denotes the codimension
one point of X above y0, then we denote by ψ0 the character of G = Ix0

defining the action of Ix0 on the cotangent space at x0.

Before describing our result we need to introduce a small amount of further
notation. We let P be the prime ideal of the cyclotomic field Q(ζl) defined
by the chosen embedding jp : Qc → Qc

p. For any abelian character θ of
G we denote by θp the Qc

p-character of G obtained by composing θ with
jp. We denote by ϕ the non-trivial character of G such that ϕp = ψ0. The
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character ϕ induces a group homomorphism λ 7→ ϕ(λ) from the group of
ideles of Q[G] to the group of ideles of Q(ζl). We denote by c(ϕ(λ)) the
content of this idele. For any number field L and any fractional ideal I of
L we denote by [I] the class of I in the class group Cl(OL) of OL. Let
x ∈ Cl(Z[G]) have representative λ in the group of ideles of Q[G]. Since
G is a group of prime order l, the map x 7→ [c(ϕ(λ))], induces a group
isomorphism from Cl(Z[G]) into Cl(Z[ζl]) that we also denote by ϕ.

For F equal to either OX or ω1/2
X/Y and for any abelian character θ of G we

consider the rational number Tp(F , θ):

Tp(F , θ) = rp(F , θ)2 + c1(ωYp) · rp(F , θ) . (6.1)

We know that l divides y0 · y∞; it follows from Proposition 4.1 that
Tp(OX , θ) − Tp(ω1/2

X/Y , θ) is an integer and from 3.13 in [7] we know that
the same is true for lTp(OX , θ). Let us first consider the class

VX/Y = 2χP (ω1/2
X/Y )− 2χP (OX) .

By Theorem 1.7 we conclude that

ϕ(VX/Y ) = [P]
∑

16a<l
(Tp(OX ,ψa0 )−Tp(ω1/2

X/Y
,ψa0 ))σ−1

a .

The description of ϕ(lχ(OX) follows from Theorem 3.13 in [7]. Since
lTp(OX , θ) is an integer, for any abelian character θ we obtain that

ϕ(2lχ(OX)) = [P]−l
∑

16a<l
Tp(OX ,ψa0 )σ−1

a .

We deduce from the previous equalities that

ϕ(2lχ(ωX/Y )1/2) = [P]−l
∑

16a<l
Tp(ω1/2

X/Y
,ψa0 )σ−1

a .

6.b. Proof of Theorem 1.10

From 3.5 we know that rp(OX , ψa0 ) = a
l y0. On the other hand from (3.15)

in Section 3 in [7] we know that

c1(ωYp) · y0 = −y2
0 − 2χ(y0,Oy0) = −y2

0 − 2. (6.2)

Piecing this together with 6.1 we see that we have shown that

−lTp(OX | ψa0 ) = p− 1
12l a

2 + (2− p− 1
12 )a

and so
ϕ(2lχ(OX)) = [P]

p−1
12l

∑
16a<l

a2σ−1
a +(2− p−1

12 )lθ
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where θ is the Stickelberger element of Q(ζl). Since we know from Stick-
elberger’s theorem that lθ annihilates the class group of Q(ζl), we deduce
that

ϕ(2lχ(OX)) = [P]
p−1
12l

∑
16a<l

a2σ−1
a .

We apply the results of Examples in Section 3 and consider separately the
cases when a < l/2 and when a > l/2.
If a < l/2, then we obtain that

rp(ω1/2
X/Y , ψ

a
0 ) = rp(OX , ψa0 )

and so
Tp(OX , ψa0 )− Tp(ω1/2

X/Y , ψ
a
0 ) = 0.

If now a > l/2, then

rp(ω1/2
X/Y , ψ

a
0 ) = rp(OX , ψa0 )− y0

and so
Tp(OX , ψa0 )− Tp(ω1/2

X/Y , ψ
a
0 ) = p− 1

6 (1− a

l
)− 2.

Therefore we have proved that

ϕ(VX/Y ) = P
p−1

6l s1−2s0

where for any integer i ∈ {0, 1, 2} we have defined si in Z[G] by

si =
∑

16a<l/2

aiσ−1
a .

In order to conclude we need some elementary relationships in Z[G] that
we prove in the next lemma.

Lemma 6.3. — One has the following equalities:
i) s0 = (2σ−1 − σ−1

(l−1)/2)θ.
ii) (1− σ−1)s1 = (σ−1

(l+1)/2 − 1)(lθ).
iii)
∑

16a<l a
2σ−1
a = (1 + σ−1)s2 + lσ−1(ls0 − 2s1).

Proof. — The proof of iii) is immediate. We deduce ii) from i) via the
relationship:

lθ = (1− σ−1)s1 + lσ−1s0 .

Therefore it suffices to prove i). We first observe that

2σ−1
2 (lθ) =

∑
16a<l

(2aσ−1
2a )

can be decomposed as the sum

2σ−1
2 (lθ) =

∑
16a<l/2

2aσ−1
2a +

∑
l/2<a<l

(2a− l)σ−1
2a−l + l

∑
l/2<a<l

σ−1
2a−l .

ANNALES DE L’INSTITUT FOURIER



EQUIVARIANT EULER CHARACTERISTICS 2343

We now observe that the sum of the first two terms is precisely lθ. Moreover,
using the equality σ−1

2a−l = σ l−1
2
σ−1
l−a, we express the last term of the sum

as σ l−1
2
s0. Therefore we have proved that

2σ−1
2 θ = θ + σ l−1

2
s0

and i) follows. �

From the lemma and Stickelberger’s theorem we deduce that s0 annihi-
lates the class group of Z[ζl]. Therefore we obtain that

ϕ(VX/Y ) = [P]
p−1

6l s1 and ϕ(2l(χ(OX))) = [PP]
p−1
12l s2 [P]−

p−1
6 s1 .

It follows also from part (ii) of the lemma that [P]s1 = [P]s1 and thus that
[P]2s1 = [PP]s1 . The formulas of Theorem 1.10 follow immediately.

6.c. Non existence of NIB

We conclude this section by giving examples where our invariants are
non-trivial. Our strategy is to evaluate the norm of these classes in the class
group of the quadratic subfield k of Q(ζl). We will denote the norm from
Q(ζl) to k by N . Since Q(ζl)/k contains no unramified subextension F/k
with F 6= k, N induces a surjective group homomorphism from Cl(Z[ζl])
onto Cl(Ok) (see for instance Theorem 10.1 of [21]). When l ≡ 3 mod 4 the
field k is quadratic imaginary. It therefore follows from Theorem 1.10.i that
all the classes belong to the kernel of N . This implies a certain restriction
on their orders.

We next consider the case where l ≡ 1 mod 4, so that k = Q(
√
l). The

Galois group of Q(ζl) over k consists of the set {σa, 1 6 a < l} such that
a is a square mod l. We let A (resp. B) denote the set of a, 1 6 a < l/2,
such that a is (resp. is not ) a square mod l. Since −1 is a square, we see
immediately that Card(A) = Card(B). For i ∈ {1, 2} we set

ti =
∑
a∈A

ai −
∑
b∈B

bi.

By taking the norm of both sides of the equalities in Theorem 1.10, and
writing β = N(P), we obtain that

N(ϕ(VX/Y )) = [β]
p−1

6l t1 , N(ϕ(2lχ(ω1/2
X/Y ))) = [β]

p−1
6l t2

and
N(ϕ(2lχ(OX))) = [β]

p−1
6l (t2−lt1).
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To conclude we consider the case l = 401. The class number of Q(
√
l) is

5. The integers t1 and t2 are independent of p. By computation we obtain
that t1 ≡ 4 mod 5, t2 ≡ 3 mod 5 and t2 − lt1 ≡ 4 mod 5. Therefore
for any p ≡ 1 mod 24l with p 6≡ 1 mod 5 with the property that β is
not principal in k, we obtain three non trivial classes. The smallest prime
satisfying these properties is p = 182857. This example therefore provides
us with a tame cover of surfaces π : X → Y where 2χ(OX), 2χ(ωX/Y )
and 2χ(ω1/2

X/Y ) are all non trivial, where 2χ(OX) = 2χ(ωX/Y ) but where
2χ(OX/Y ) 66= 2χ(ω1/2

X/Y ).
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