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RIEMANN SURFACES IN STEIN MANIFOLDS WITH
THE DENSITY PROPERTY

by Rafael B. ANDRIST & Erlend Fornæss WOLD (*)

Abstract. — We show that any open Riemann surface can be properly im-
mersed in any Stein manifold with the (Volume) Density property and of dimension
at least 2. If the dimension is at least 3, we can actually choose this immersion
to be an embedding. As an application, we show that Stein manifolds with the
(Volume) Density property and of dimension at least 3, are characterized among
all other complex manifolds by their semigroup of holomorphic endomorphisms.
Résumé. — Nous montrons que toute surface de Riemann ouverte peut être

immergée proprement dans toute variété de Stein avec la propriété de densité (volu-
mique) et de dimension au moins 2. Si la dimension est au moins 3, cette immersion
est en fait un plongement propre. Les résultats obtenus sont appliqués pour mon-
trer que toutes les variétés de Stein avec la propriété de densité (volumique) et
de dimension au moins 3 sont caractérisées entre toutes les variétés complexes par
leur demi-groupe d’endomorphismes holomorphes.

1. Introduction

An open Riemann surface always admits a proper holomorphic embed-
ding into C3 and a proper holomorphic immersion into C2 (special case for
dimension one of the Embedding Theorem for Stein manifolds by Remmert
[26], Narasimhan [25] and Bishop [7]).
In this paper we generalize these results to embeddings and immersions

of open Riemann surfaces into Stein manifolds with the density property
or the volume density property. Our main result is the following:

Keywords: Riemann surface, Stein manifold, proper holomorphic map, Andersen-
Lempert theory, Density property, Volume Density property.
Math. classification: 32H02, 32E30, 20M20.
(*) We would like to thank the referee for helpful remarks.
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Theorem (5.1). — LetX be a Stein manifold with the density property
or with the volume density property and R an open Riemann surface.

(a) If dimX > 3 then there is a proper holomorphic embeddingR ↪→ X

(b) If dimX = 2 then there is a proper holomorphic immersionR → X.

Our main motivation is the recent work of the first author [6], who has
shown that Stein manifolds are characterized by their endomorphism semi-
groups as long as they admit a proper holomorphic embedding of the com-
plex line C. As a corollary to our main theorem we thereby obtain:

Theorem (5.5). — Let X and Y be complex manifolds and
Φ : End(X) → End(Y ) an epimorphism of semigroups of holomorphic
endomorphisms. If X is a Stein manifold with the density or volume den-
sity property and of dimension at least 3, then there exists a unique ϕ :
X → Y which is is either biholomorphic or antibiholomorphic and such
that Φ(f) = ϕ ◦ f ◦ ϕ−1 for all f ∈ End(X).

Secondly, our work generalizes recent work of Drinovec-Drnovšek and
Forstnerič [9] who have proved that bordered Riemann surfaces immerse
properly into Stein manifolds of dimension greater than one. Note that, due
to hyperbolicity, the complex plane does not embed in all Stein manifolds,
so some extra structure (e.g. the density property) is needed. One might
ask whether our main theorem holds with X an Oka manifold [17] instead.

Thirdly, it was conjectured by Schoen and Yau [27] in 1997 that no proper
harmonic map could exist from the unit disk onto R2. The conjecture was
first disproved by Forstnerič and Globevnik [19] in 2001 using a proper
holomorphic immersion of the unit disk into C∗ × C∗. More recently, the
conjecture was disproved again by Alarcón and Galvéz [1] in another way.
However, a much stronger result follows easily from our main theorem:

Theorem (5.6). — Every open Riemann surface admits a proper har-
monic map into R2.

The same result was also recently obtained with different methods by
Alarcón and López [2].

Finally, it is of general interest to find new methods to produce proper
holomorphic maps from Riemann surfaces into complex manifolds, due to
the long standing open problem whether any open Riemann surface admits
a proper holomorphic embedding in C2.

ANNALES DE L’INSTITUT FOURIER
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2. The Density Property

The density property was introduced in Complex Geometry by Varolin
[32], [31]. For a survey about the current state of research related to the
density property and Andersén–Lempert theory, we refer to Kaliman and
Kutzschebauch [24].

Definition 2.1. — A complex manifold X has the density property
if in the compact-open topology the Lie algebra Liehol(X) generated by
completely integrable holomorphic vector fields on X is dense in the Lie
algebra V Fhol(X) of all holomorphic vector fields on X.

Definition 2.2. — Let a complex manifold X be equipped with a holo-
morphic volume form ω (i.e. ω is a nowhere vanishing section of the canon-
ical bundle). We say that X has the volume density property with respect
to ω if in the compact-open topology the Lie algebra Lieωhol(X) generated
by completely integrable holomorphic vector fields ν such that ν(ω) = 0,
is dense in the Lie algebra V Fωhol(X) of all holomorphic vector fields that
annihilate ω.

The following theorem is the central result of Andersén– Lempert theory
(originating from works of Andersén and Lempert [4], [5]), and is given in
the following form in [24] by Kaliman and Kutzschebauch, but essentially
(for Cn) proved already in [20] by Forstnerič and Rosay.

Theorem 2.3. — Let X be a Stein manifold with the density (resp.
volume density) property and let Ω be an open subset of X. In case of the
volume density property further assume that Hn−1(Ω,C) = 0. Suppose
that Φ : [0, 1]× Ω→ X is a C1-smooth map such that

(1) Φt : Ω → X is holomorphic and injective (and resp. volume pre-
serving) for every t ∈ [0, 1]

(2) Φ0 : Ω→ X is the natural embedding of Ω into X
(3) Φt(Ω) is a Runge subset of X for every t ∈ [0, 1]

Then for each ε > 0 and every compact subset K ⊂ Ω there is a continuous
family α : [0, 1] → Aut (X) of holomorphic (and resp. volume preserving)
automorphisms of X such that

α0 = id and |αt − Φt|K < ε

for every t ∈ [0, 1].

Remark 2.4. — In the case of the volume density property it is enough
to assume that Hn−1(Ω′,C) = 0 for all connected components Ω′ of Ω

TOME 64 (2014), FASCICULE 2
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where Φ is not the identity map. The assumption is used to solve a certain
differential equation which is trivially solvable on the components where Φ
is the identity.

Among one of the many results following from this theorem, we only
need the following, first given by Varolin [31]:

Proposition 2.5. — Let X be a Stein manifold of dimension n > 2
with the density (resp. volume density) property, K be a compact in X,
and x, y ∈ X be two points outside the holomorphically convex hull of K.
Suppose that x1, . . . , xm ∈ K. Then there exists a (resp. volume-preserving)
holomorphic automorphism Ψ of X such that Ψ(xi) = xi for every i =
1, . . . ,m, Ψ|K : K → X is as close to the natural embedding as we wish,
and Ψ(y) = x.

Corollary 2.6. — If X is a Stein manifold of dimension n > 2 with
the density (resp. volume density) property, then its group of holomorphic
automorphisms acts m-transitively for any m ∈ N.

Stein manifolds with the (volume) density property are elliptic in the sense
of Gromov [22] and satisfy the so-called Oka–Grauert–Gromov principle.

Definition 2.7. — Let X be a complex manifold. It is said to have
the Convex Approximation Property (introduced in [15, 16]) if every holo-
morphic map of a compact convex set K ⊂ Cn in X can be approximated
uniformly on K by entire holomorphic maps Cn → X.

In more recent terminology introduced by Forstnerič [17], a manifold sat-
isfying the Convex Approximation Property is called an Oka manifold.
All elliptic Stein manifolds, in particular those with the (volume) density
property, are Oka manifolds.

Oka manifolds satisfy the following (see Drinovec-Drnovšek and Forstnerič
[10]):

Theorem 2.8. — Let S be a Stein manifold and D ⊂⊂ S a strongly
pseudoconvex domain with C` boundary (` > 2) whose closure D is O(S)-
convex, and let Y be an Oka manifold. Let r ∈ {0, 1, . . . , `} and let f : S →
Y be a Cr-map which is holomorphic in D. Then f can be approximated in
the Cr(D,Y )-topology by holomorphic maps S → Y which are homotopic
to f .

ANNALES DE L’INSTITUT FOURIER
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3. Approximating in the non-critical case

In the following we will say that R is a bordered Riemann surface if R is
a relatively compact open subset of an ambient Riemann surface R′ such
that R is smoothly bounded in R′. The goal of this section is to prove the
following approximation result.

Proposition 3.1. — Let R0 ⊂⊂ R1 ⊂⊂ R2 be bordered Riemann
surfaces, let X be a Stein manifold with the density or volume density
property, and let K ⊂ X be a holomorphically convex compact set. Let
f : R1 → X be a holomorphic immersion, and assume that f(R1 \ R0) ⊂
X \K. Let Γ be one of the boundary components of R1, and A ⊂ R2 \R0
be an annulus containing Γ.

Then for any compact subset L of A and any ε > 0 there exists a holo-
morphic immersion g : R1 ∪ L→ X such that the following holds:

(1) ‖g − f‖R0
< ε, and

(2) g((R1 ∪ L) \ R0) ⊂ X \K.

This will in turn depend on the following result:

Proposition 3.2. — Let R0 ⊂⊂ R1 ⊂⊂ R2 be bordered Riemann
surfaces, let X be a Stein manifold with the density or volume density
property, and let K ⊂ X be a holomorphically convex compact set. Let
f : R1 → X be a holomorphic immersion, and assume that f(R1 \ R0) ⊂
X \K. Let Γ be one of the boundary components of R1, let V ⊂ R2 \ R0
be an open set in the domain of f , intersecting Γ, and assume that f |V is
an embedding, with f(V ) not intersecting K ∪ f(R0).
Let U ⊂ R2 \ R0 be a simply connected open set, U ∩ R1 ⊂ V ∩ R1,

U ∩ R1 connected, and assume that we are given a C∞-smooth isotopy
ϕ(·, t) : U → R2 \ R0, t ∈ [0, 1], of injective holomorphic maps, such that
the following holds:

(1) ϕ(·, 0) = idU ,
(2) ϕ(U, 1) ⊆ V ,
(3) ϕ(U \ R1, t) ⊆ R2 \ R1 for all t ∈ [0, 1], and
(4) ϕ(U ∩R1, t) ⊆ V ∩R1 for all t ∈ [0, 1].
Then for any compact subset L of U and any ε > 0 there exists a holo-

morphic immersion g : R1 ∪ L→ X such that the following holds:
(1) ‖g − f‖R0

< ε, and
(2) g((R1 ∪ L) \ R0) ⊂ X \K.

TOME 64 (2014), FASCICULE 2
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Figure 3.1. Setup for glueing a disk in Proposition 3.2

We cite Theorem 4.1 from Forstnerič [14] which will be needed in the
proof:

Theorem 3.3. — Let (A,B) be a Cartan pair in a complex manifold X.
Given an open set C̃ ⊆ X containing C := A∩B there exist open sets A′ ⊇
A,B′ ⊇ B,C ′ ⊇ C with C ′ ⊆ A′ ∩ B′ ⊆ C̃, satisfying the following: For
every injective holomorphic map γ : C̃ → X which is sufficiently uniformly
close to the identity on C̃ there exist injective holomorphic maps α : A′ →
X,β : B′ → X, uniformly close to the identity on their respective domains
and satisfying

γ = β ◦ α−1

In analogy to the classical splitting for Cartan pairs, we call such A and B
satisfying the assertions of the theorem also a Cartan pair.

We will also need the following:

Proposition 3.4 (Theorem 3.3.3 in [18]). — Let Y be a Stein subman-
ifold of a complex manifold X. Denote by NY/X the normal bundle of Y

ANNALES DE L’INSTITUT FOURIER
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in X. There exists a Stein neighborhood U of Y in X, biholomorphic to an
open neighborhood Ω of the zero section in NY/X .

Corollary 3.5. — LetX be a complex manifold of dimension n and let
f : R → X be an immersion of a bordered Riemann surface R. Then there
exists a holomorphic immersion F : R×Dn−1 → X such that F |R×{0} = f .

Proof. — Let X̃ be a complex manifold with an embedding f̃ : R → X̃

and an immersion ρ : X̃ → X such that f = ρ ◦ f̃ . By Siu’s theorem [30]
we may assume that X̃ is Stein, and so the proposition applies to give an
embedding F̃ into X̃. Note that any vector bundle over an open Riemann
surface is trivial, and define F = ρ ◦ F̃ . �

To make use of the volume density property we need to extend isotopies
defined on embedded Riemann surfaces to volume preserving isotopies de-
fined on a full neighborhood of the embedded surface. Hence we need the
following lemma

Lemma 3.6. — Let D ⊂ C be a domain, let ϕt : D → D, t ∈ [0, 1], be
an isotopy of injective holomorphic maps, and let ω be a any volume form
on D × µ · Dn−1, µ > 0. Then for any U ⊂⊂ D there exists µ1 > 0 and an
isotopy φt : U × µ1 · Dn−1 → D × µ · Dn−1 of injective holomorphic maps
such that φt extends ϕt and φ∗tω = ω for all t.

Proof. — Write ω(z) = f(z) ·dz1∧ · · ·∧dzn. We first change coordinates
such that ω is the standard volume form on Cn. For this we define g(z) :=
1/f(z), and then we find h(z) such that h(z1, ..., zn−1, 0) = 0 and ∂h

∂zn
(z) =

g(z). Defining H(z) := (z1, ..., zn−1, h(z)) we see that H∗ω = dz := dz1 ∧
· · · ∧dzn, and H is biholomorphic near zn = 0. Next define φ̃t(z1, ..., zn) :=
(ϕt(z1), z2, ..., zn−1,

zn
ϕ′t(z1) ). Then φ̃∗t dz = dz for all t, and defining φt :=

H ◦ φ̃t ◦H−1 we see that φ∗tω = H∗φ̃
∗H∗ω = ω. �

Lemma 3.7. — Let X be a Stein manifold, let K ⊂ X be a holomor-
phically convex compact set, and let f : D → X \ K be an embedding.
Let V ′ ⊂ X \ K be an open neighborhood of f(D) and assume given an
isotopy of holomorphic injections φt : V ′ → X \ K. Then there exists an
open neighborhood V ′′ ⊆ V ′ of f(D) and an open neighborhood W of K
such that Ωt = φt(V ′′) ∪W is a Runge domain in X for all t ∈ [0, 1].

Proof. —
It is a well known fact that K ∪ φt(f(D)) is holomorphically convex for

each fixed t ∈ [0, 1] (for lack of a reference we include an argument below).
The result is then a consequence of Lemma 2.2 in [20] formulated for X
instead of Cn (the proof in the case of a Stein manifold is identical).

TOME 64 (2014), FASCICULE 2
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We now show that K∪φt(f(D)) is holomorphically convex for each fixed
t ∈ [0, 1]. Let r > 1 be chosen close enough to 1 such that (φt ◦ f) : Dr →
X \K is an embedding, let Σ = φt(f(bD)), and Σ′ = φt(f(bDr)). We want
to show that K̂ ∪ Σ = K ∪ φt(f(D)).
By Theorem 12.5. in [3] and the fact thatX embeds properly in CN for N

sufficiently large, we have that K̂ ∪ Σ′\(K∪Σ′) (resp. K̂ ∪ Σ\(K∪Σ)) is a
one-dimensional analytic subset of X\(K∪Σ′) (resp. X\(K∪Σ). Note first
that K̂ ∪ Σ cannot contain a relatively open subset of φt(f(Dr\D)). If it did,
it would, by the identity principle for analytic sets, contain φt(f(Dr \ D)),
and so K̂ ∪ Σ \K would be an analytic subset of X \K. This is impossible
since K is holomorphically convex. Since ̂K ∪ φt(f(D)) ⊂ K̂ ∪ Σ′ we get
that

̂K ∪ φt(f(D)) \ (K ∪ φt(f(D))) ∩ (K ∪ φt(f(D))) = K ∪A,

where A is a finite set of points. By Rossi’s local maximum principle we
have that ̂K ∪ φt(f(D)) = (K ∪ φt(f(D))) ∪ K̂ ∪A which implies that
K ∪ φt(f(D)) is holomorphically convex. �

Proof of Proposition 3.2. —
Since X is an Oka manifold we may assume, by approximation, that f
is already defined on R2; the task is is to find an approximation which
achieves (2). Note that K ∪ f(R0) is holomorphically convex.

Define A := R1, and let B ⊂ R2 be a Stein compact such that the pair
A, B is a Cartan pair as in Theorem 3.3, A ∩ B simply connected and
contained in V , and L ⊂ (A ∪ B)◦. We will approximate f on a certain
thickening of A∪B in R2×Cn−1 which will allow us to exploit the density
property of X.

Since f is an immersion, we have by Corollary 3.5 that f extends to an
immersion

F : R2 × µ · Dn−1 → X,

such that F |R2×{0} = f . Since f |V is an embedding, we may assume that
F |V×µDn−1 is an embedding whose image does not intersect K ∪ f(R0).

Set ω̃ := F ∗ω. By choosing µ1 small enough we get from Lemma 3.6 that
ϕt extends to an isotopy φt : U × µ1 · Dn−1 → (R2 \ R0)× µ · Dn−1 of the
form

φt(x,w) = (ϕt(x), σt(x,w)), σt(x, 0) = 0,

and such that φ∗t ω̃ = ω̃ for all t ∈ [0, 1].

ANNALES DE L’INSTITUT FOURIER
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Now the following is our strategy: note that there is an open neighbor-
hood W of C = A ∩ B, relatively compact in V , such that on the image
Ω := F (W × µ1 · Dn−1) we have a well defined isotopy

Φt := F ◦ φt ◦ F−1 : Ω→ X \ (K ∪ f(R0)).

Choose W such that Hn−1(W × µ1 ·Dn−1,C) = 0, and note that Φ∗tω = ω

for all t. Note also that the composition FB := F ◦ φ1 is well defined near
B×µ1 ·Dn−1. We will approximate Φ1 well enough by an automorphism Λ
of X, essentially fixing K ∪ f(R0), such that the map Λ ◦ F may be glued
with minor perturbations to the map FB .

By Lemma 3.7 there exist a neighborhood Ω1 of K ∪ f(R0) and a neigh-
borhood Ω2 ⊂ Ω of f(W ) such that Φt(Ω1 ∪Ω2) is Runge for each t, where
Φt|Ω1 ≡ id. Fix a 0 < µ2 < µ1 such that F (W × µ2 · Dn−1) ⊂ Ω2. For
any 0 < δ < µ2 let Aδ, Bδ denote the Cartan pairs A × δ · Dn−1 and
B × δ · Dn−1, respectively. Let C̃δ be a neighborhood of Cδ := Aδ ∩ Bδ
contained in W ×µ2 ·Dn−1, and let C ′δ be the corresponding neighborhood
of Cδ in Theorem 3.3.

Now let Λj be a sequence of automorphisms ofX converging uniformly to
Φ1 near F (C ′δ) and such that each Λj stays uniformly close to the identity
nearK∪f(R0). This is possible by the (volume) density property (Theorem
2.3 and the remark following it) of X and the choices made above.

Then γj := F−1 ◦ Λ−1
j ◦ F ◦ φ1 converges to the identity uniformly on

C ′δ. Decompose γj = αj ◦ β−1
j using Theorem 3.3. Define Gj := Λj ◦F ◦αj

on A′δ and Gj := F ◦ φ1 ◦ βj on B′δ. Now put G := Gj for a large enough j
and then g := G|(A∪B)×{0}. �

Proof of Proposition 3.1. —
(1) The extension from f to g will be achieved in two steps, attaching

in each step a simply connected domain in R2 using Proposition
3.2. Since f is defined on R1 ⊂ R2, it extends immersively to a
neighborhood R′1 ⊂⊂ R2 such that f is injective on a neighborhood
V ⊂ R2 of bR′1 which is generically the case.

(2) We embed the annulus A in C as a planar domain A′. Now we
can work entirely in C and identify all subsets of A with subsets
of C in order to construct the sets U and isotopies ϕ needed for
Proposition 3.2. The curve Γ is mapped to a smooth curve Γ′ in the
image A′ of A. Let D denote the bounded domain in C bordered
by Γ′. Then D is homeomorphic to a disk and A′ \ D is again
an annular region, which we can identify with an annulus A′′ =:

TOME 64 (2014), FASCICULE 2
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(a) Overlapping (shaded) of L1 and
L2

(b) Glueing the disk

Figure 3.2. Glueing an annulus to a bordered Riemann surface

`D \ D, ` > 0 via another uniformizing map. This map is a C∞-
smooth diffeomorphism up to the boundary and therefore extends
to a small neighborhood. The set L∩A′′ can be written as a union of
two compact overlapping sets L1 and L2 which are both homotopic
to disks inside in A′′, as depicted in figure 3.2(a).
Set f0 := f . The immersion after the first extension to any com-

pact L1 ⊂ U1 ⊂ A′ will be denoted by f1, and after the second
extension to L2 ⊂ U2 ⊂ A′ by f2 = g.

(3) Define U1 to be

U1 :=
{
r · eiθ ∈ C : (1− δ) < r < `(1− δ), α < θ < β

}
where 1 > δ > 0, and α, β ∈ R are such that L ⊂ (1 − δ)`D. The
C∞-smooth isotopy ϕ1(z, t), t ∈ [0, 1], of holomorphic injections is
given explicitly in equation (3.1) below:

(3.1) ϕ1(z, t) = exp (log(z) · ((γ − 1) · t+ 1))

with log defined on C\R− and suitable angle γ ∈ R. We now apply
Proposition 3.2 to approximately extend f0 to L1 ⊂ U1 using the
isotopy ϕ1. We denote the “extension” by f1.

(4) Now consider A′′ \ L1 which is again homeomorphic to an annulus
and can be mapped toA′′′ =: `′D\D, `′ > 0 by another uniformizing
map. Then we are back in the previous situation and define U2 and
ϕ2 the same way. This leads to the desired approximation g =
f2. �

ANNALES DE L’INSTITUT FOURIER
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4. Approximating in the critical case

Definition 4.1. — A strongly subharmonic exhaustion function ρ of a
Riemann surface R is said to be a Morse function with nice singularities, if
the set of critical values Σ is discrete, if for any value c ∈ Σ the set ρ−1(c)
is a single point, and any critical point ξ is either a local minimum, or there
exist local coordinates z = x+ iy : Uξ → C such that ρ is of the form

ρ(z) = ρ(ξ) + x2 − µ · y2,

for some µ ∈ (0, 1).

Any open Riemann surface has a Morse exhaustion function with nice
singularities.

The following proposition tells us that we can extend immersions also
across nice critical points. The construction is standard, and we include
only a brief sketch of the proof.

Proposition 4.2. — Let R be an open connected Riemann surface,
and let ρ ∈ C∞(R) be a Morse exhaustion function with nice singularities.
Let ξ ∈ R be a critical point of ρ which is not a local minimum, and let
c = ρ(ξ). Then there exists a δ > 0 such that the following holds: Let X be
a Stein manifold with the density property or volume density property, let
K ⊂ X be a holomorphically convex compact set with X \K connected,
let f : Rc−δ → X be a holomorphic immersion with f(bRc−δ) ∈ X \ K,
and let ε > 0. Then there exists a holomorphic immersion f̃ : Rc+δ → X

such that
(1) ‖f̃ − f‖Rc−δ < ε

(2) f̃(Rc+δ \ Rc−δ) ⊂ X \K.

Proof. — We will describe how to cross the connected component of
{ρ = c} which contains the critical point ξ; we follow known arguments
in the literature which can be found e.g. in [18, Sect. 3.8]. Crossing the
other components is done by applying Proposition 3.1. Let z : Uξ → C
be local coordinates with z(ξ) = 0, and such that, in local coordinates,
ρ(x, y) = x2 − µ · y2, 0 < µ < 1 (for simplicity we assume ρ(ξ) = 0).
Choosing δ small enough there are no critical values other than 0 in the
interval [−δ, δ], and if we let γ denote the arc γ = {iy : −δ 6 y 6 δ},
the set A := {ρ 6 −δ} ∪ z−1(γ) is holomorphically convex, and has a
neighborhood basis of domains that non-critically extend to {ρ < δ}. Now
by the connectedness of X \K the map f extends smoothly to γ with the
property that also f(γ) ⊂ X\K, and by Megelyan’s Theorem the extension

TOME 64 (2014), FASCICULE 2
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may be approximated by holomorphic map f̃ on some neighborhood of A.
In particular, f̃ is defined on some neighborhood U of A such that {ρ < δ}
is a noncritical extension of U , and now Proposition 3.1 applies. �

5. Main theorem and Applications

Theorem 5.1. — Let X be a Stein manifold with the density property
or with the volume density property and R an open Riemann surface.

(a) If dimX > 3 then there is a proper holomorphic embedding R ↪→
X.

(b) If dimX = 2 then there is a proper holomorphic immersionR → X.

The main ingredients in the proof are Propositions 3.1 and 4.2 from the
previous sections. They will be used in an inductive framework provided by
Lemma 6.3 from Drinovec-Drnovšek and Forstnerič [9] which we cite here.

Definition 5.2. — Assume that X is a complex manifold, R is a rela-
tively compact strongly pseudoconvex domain with C2 boundary in a Stein
manifold S, and σ is a finite set of points in R. A spray of maps of class
A2(R) with the exceptional set σ of order k ∈ N (and with values in X)
is a map f : R× P → X, where P (the parameter set of the spray) is an
open subset of a Euclidean space Cm containing the origin, such that the
following hold:

(1) f is holomorphic on R× P and of class C2 on R× P
(2) the maps f(·, 0) and f(·, t) agree on σ up to order k for t ∈ P , and
(3) for every z ∈ R \ σ and t ∈ P the map

∂tf(z, t) : TtCm = Cm → Tf(z,t)X

is surjective (the domination property).
The map f0 = f(·, 0) is called the core (or central) map of the spray f .

Lemma 5.3. — Let X be an irreducible complex space of dimension
n > 2, and let τ : X → R be a smooth exhaustion function which is
(n − 1)-convex on {x ∈ X : τ(x) > M1}. Let R be a finite Riemann
surface, let P be an open set in CN containing 0, and let M2 > M1.
Assume that f : R × P → X is a spray of maps of class A2(R) with the
exceptional set σ ⊂ R of order k ∈ N, and U ⊂ R is an open subset such
that f0(z) ∈ {x ∈ Xreg : τ(x) ∈ (M1,M2)} for all z ∈ R \ U . Given ε > 0
and a number M3 > M2, there exist a domain P ′ ⊂ P containing 0 ∈ CN
and a spray of maps g : R× P ′ → X of class A2(R), with exceptional set
σ of order k, satisfying the following properties:
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(1) g0(z) ∈ {x ∈ Xreg : τ(x) ∈ (M2,M3)} for z ∈ bR,
(2) g0(z) ∈ {x ∈ X : τ(x) > M1} for z ∈ R \ U ,
(3) d(g0(z), f0(z)) < ε for z ∈ U , and
(4) f0 and g0 have the same k-jets at each of the points in σ.

Moreover, g0 can be chosen homotopic to f0.

First we note that X in our case will be a Stein manifold and therefore
τ can be taken to be a strongly plurisubharmonic exhaustion function, and
we have X = Xreg as well. The existence of a metric follows in the general
case from para-compactness, but in our case of Stein manifolds we can
work with the restriction of an euclidean norm. We also cite from [11] their
definition of spray of maps of class A2(R):

In our case, S will be a fixed finite open Riemann surface and in any
step R the sublevel set of a strongly plurisubharmonic exhaustion function
of S. The core map of the spray will be the holomorphic immersion f

of R into the complex manifold X of dimension n, and we construct a
spray as follows: Let R′ be a Riemann surface with R ⊂⊂ R′. Since the
tangent bundle of R′ is trivial, we may choose a non-vanishing holomorphic
vector field V on R′, and we let ϕt denote its flow. Define a map f̃ :
R × Dn−1 × δ · D → R′ × Dn−1 by (z, t1, t2) 7→ (ϕt2(z), t1). Choose an
immersion F : R′ × Dn−1 → X according to Corollary 3.5, and define
f := F ◦ f̃ .
Proof of Theorem 5.1. —
1. Let R be an open connected Riemann surface. Since R is a Stein

manifold we have that R admits a C2 strictly subharmonic exhaus-
tion function ρ : R → R+. Since strict subharmonicity is stable
under small C2-perturbations we may assume that ρ is a Morse func-
tion, meaning that all critical points of ρ are non-degenerate, and
if ξ and ξ′ are two critical points of ρ then ρ(ξ) 6= ρ(ξ′). By Lemma
2.5 in [23] we may further assume that any critical point ξ is either a
local minimum, or there exist local coordinates z = x+ iy : Uξ → C
such that ρ is of the form

ρ(z) = ρ(ξ) + x2 − µ · y2,

for some µ ∈ (0, 1), i.e. that ρ has only nice singularities. In the
following we denote by {ξk}k∈I⊆N the critical points of ρ, and by
ck := ρ(ξk) the corresponding critical values, where I is either N
or a I = [1, . . . kmax] for some kmax ∈ N. If there is only a finite
number of critical points, we define inductively ck+1 := ck + 1 for
k > kmax.
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Let τ denote a strictly plurisubharmonic exhaustion function of
the Stein manifold X. Choose a sequence of real εk > 0 such that∑∞
k=1 εk < 1. By

Rγ := {z ∈ R : ρ(z) < γ}, γ ∈ R

we denote the γ-sublevel set of ρ.
Let {Kj}j∈N denote an exhaustion of the Stein manifold X with

holomorphically convex compacts. Note that by a remark of Serre
[29, p. 59], given as proposition with proof by Gilligan and Huckle-
berry [21, p. 186], the complements X \Kj are always connected,
provided the Stein manifold X is at least of dimension 2. Therefore
this assertion is always true when applying Proposition 4.2 in the
following.

2. For each k > 2 we do the following: if ξk is a local minimum we
put δk := 1

2min{ck − ck−1, ck+1 − ck}, and otherwise we choose a
small δk according to Proposition 4.2. such that Rck+δk \ Rck−δk
contains no other critical point of ρ than ξk. In the case of finitely
many critical points we put δk = 0 for k > kmax.

3. Choose an initial embedding f2 : Rc2−δ2 → X. This is trivial since
Rc2−δ2 is a disk. We will now describe an inductive procedure how
to construct immersions (resp. embeddings) fk of Rck−δk into X.
Assume that we have constructed immersions (resp. embeddings)
fk : Rck−δk → X and real numbers rk for k = 2, ..., N , rk >
rk−1 + 1, and assume that fk(Rck−δk \ Rck−1) ⊂ X \ Krk , ‖fk −
fk−1‖Rck−1−δk−1

< εk−1. We will now describe the inductive step
how to construct fN+1.
(a) Choose rN+1 > rN + 1 such that X \KrN+1 is connected. We

may assume that fN (bRcN−δN ) ⊂ X \KrN+1 : since fN lives on
a neighborhood of RcN−δN , we may thicken fN as described
above, and the boundary may be pushed away using Lemma
5.3.

(b) In the case of finitely many critical points, if N > kmax, we
may reach the next level set by attaching finitely many annuli
to RcN , hence the approximation is furnished by Proposition
3.1.

(c) If ξN is a local minimum, start by extending the immersion
(resp. embedding) to the component of RcN+δN that contains
ξN ; this is trivial because this component is a disk. Make sure
that the image lies in X \ KrN+1 . Since we may now reach
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RcN+1−δN+1 by attaching a finite number of annuli, the approx-
imation fN+1 is furnished by Proposition 3.1. If dim(X) > 3
the separation of points is not a problem.

(d) If ξN is not a local minimum, we may choose an initial ap-
proximation f̃N+1 : RcN+δN → X furnished by Proposition
4.2. Now RcN+1−δN+1 may be reached by attaching a finite
number of annuli, and the approximation fN+1 is furnished by
Proposition 3.1.

(e) It is now clear that the limit f := limj→∞ fj is well defined
on R, and gives us the desired immersion (resp. embedding)
into X. For the embedding, the sequence εj should be modified
along the way to avoid self intersections in the limit. �

The main result in [6] by the first author characterizes certain Stein
manifolds by their endomorphism semigroup and gives an application of
our theorem using a properly embedded complex line in a Stein manifold:

Theorem 5.4. — LetX and Y be complex manifolds and Φ : End(X)→
End(Y ) an isomorphism of semigroups of holomorphic endomorphisms.
Then there exists a unique ϕ : X → Y which is is either biholomorphic or
antibiholomorphic and such that Φ(f) = ϕ◦f ◦ϕ−1 if the following criteria
are fulfilled:

(1) X is a Stein manifold, and
(2) X admits a proper holomorphic embedding i : C ↪→ X.

If the automorphism group of X acts (weakly) double-transitive, it is suf-
ficient for Φ to be an epimorphism.

From Theorem 5.1 and the preceeding result and noting that a Stein
manifold with the (volume) density property has a double-transitive action
by Propostion 2.5 resp. its Corollary 2.6, we immediately get the following
result:

Theorem 5.5. — LetX and Y be complex manifolds and Φ : End(X)→
End(Y ) an epimorphism of semigroups of holomorphic endomorphisms. If
X is a Stein manifold with the density- or volume density property and of
dimension at least 3, then there exists a unique ϕ : X → Y which is is either
biholomorphic or antibiholomorphic and such that Φ(f) = ϕ ◦ f ◦ ϕ−1.

A conjecture by Schoen and Yau [27] claimed that no proper harmonic
map could exist from the unit disk onto R2. The conjecture was first dis-
proved by Forstnerič and Globevnik [19] in 2001 and again more recently
disproved by Alarcón and Galvéz [1], but a much stronger result follows
easily from our main theorem:
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Theorem 5.6. — Every open Riemann surface admits a proper har-
monic map into R2.

Proof. — The Stein manifold C∗ × C∗ has the volume density property
(with standard volume form dz

z ∧
dw
w ), see [32]. According to Theorem 5.1

there exists a proper holomorphic immersion (f1, f2) : R → C∗ × C∗. The
map (log |f1|, log |f2|) : R → R2 is harmonic and still proper. �

Theorem 5.6 was also recently obtained with different methods by Alar-
cón and López [2].
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