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ON THE GEOMETRY OF POLYNOMIAL MAPPINGS
AT INFINITY

by Anna VALETTE & Guillaume VALETTE (*)

Abstract. — We associate to a given polynomial map from C2 to itself
with nonvanishing Jacobian a variety whose homology or intersection homology
describes the geometry of singularities at infinity of this map.
Résumé. — On associe à une application polynomiale de C2 dans lui-même à

Jacobien constant non nul, une variété dont l’homologie ou l’homologie d’intersec-
tion décrit la géométrie à l’infini de cette application.

0. Introduction

In the study of geometrical or topological properties of polynomial map-
pings, the set of points at which those maps fail to be proper plays an
important role. As an example, recall the famous Jacobian conjecture, for-
mulated in 1939 by O. H. Keller [8] and asserting that any polynomial map
F : Cn → Cn with nowhere vanishing Jacobian is a polynomial automor-
phism. The problem remains open today. We call the smallest set A such
that the map F : Cn \F−1(A)→ Cn \A is proper, the asymptotic set of F .
The Jacobian conjecture reduces to show that the asymptotic set of a com-
plex polynomial mapping with nonzero constant Jacobian is empty. It is
therefore natural to study the topology of the asymptotic set of polynomial
maps. In the 90’s of the previous century Z. Jelonek studied the properties
of this set and obtained very important results. We briefly recall some of
them in the next section. The starting point of his study is the simple ob-
servation that the asymptotic set of a given map F : Cn → Cn is the image

Keywords: complex polynomial mappings, singularities at infinity, asymptotical values,
intersection homology, Jacobian conjecture.
Math. classification: 14P10, 14R15, 32S20, 55N33.
(*) This research was done during the authors stay in the Fields Institute in 2009 and
supported by the NCN grant 2011/01/B/ST1/03875.
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under canonical projection of the graph(F ) \ graph(F ), where the closure
is taken in the Pn × Cn. This gives many important consequences. But if
one wishes to keep the assumption of constancy of the Jacobian, compact-
ifications have to be avoided. For instance a compactification drastically
affects the volume of subsets of Cn. If the Jacobian is constant then the
mapping F preserves the volume locally. Thus, most of the information is
lost in the compactification.
Our aim is to give a new approach of the Jacobian conjecture. In general,

singularities of mappings are much more difficult to handle than singulari-
ties of sets. Our theorem reduces the study of a mapping F : Cn → Cn to
the study of a singular semi-algebraic set. We construct a pseudomanifold
NF associated to a given polynomial map F : Cn → Cn. In the case n = 2,
we will then prove that the map F with non-vanishing Jacobian is not
proper iff the homology or the intersection homology of NF is nontrivial.
Our approach is of metric nature. The significant advantage of a metric

approach is to be able to investigate the singularities, without looking at
singularities themselves, but just at the regular points nearby. For instance,
it was proved in [11] that the L∞ cohomology of the regular locus of a given
subanalytic pseudomanifold (which may be proved to be a subanalytic bi-
Lipschitz invariant of the regular locus) is a topological invariant of the
pseudomanifold. Hence, being able to work beside the singularities could
prove to be useful to investigate singularities at infinity (where we hardly
can go). In this paper we shall relate the L∞ cohomology of the regular
locus of the constructed pseudomanifold NF to the behavior of F at infinity
(Corollary 3.4). This result relies on the de Rham theorem proved in [11],
which yields an isomorphism between L∞ cohomology and intersection
cohomology in the maximal perversity.
The idea is to transfer the problem to differential geometry so as to

reformulate the problem in terms of differential equations later in order to
make it possible to take advantage of the fact that the Jacobian is not only
nonzero but constant.

It seems indeed more useful to find intersection homology than homology.
The reason is that we are also able to prove that the set NF is a stratified
pseudomanifold with only even codimensional strata. The main feature of
intersection homology is that M. Goresky and R. MacPherson were able
to show in their fundamental paper that their theory satisfies Poincaré
duality for stratified pseudomanifolds and this duality is particularly nice
in the case of the middle perversity if the considered pseudomanifold can
be stratified by only even codimensional strata. The case of the maximal
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perversity is also of importance since, as we said above, it makes it possible
to relate the geometry of F at infinity to the L∞ cohomology of NF . Our
main theorem (Theorem 3.2) relates the intersection homology of NF to
the behavior of F at infinity.
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1. Preliminaries and basic definitions

In this section we set-up our framework. We begin by recalling the con-
cept of intersection homology and then define the L∞ cohomology.

1.1. Notations and conventions.

Given a semialgebraic set X, the singular simplices of X will be the
semi-algebraic continuous mappings σ : Ti → X, where Ti is the standard
simplex of Ri. We denote by Ci(X) the group of i-dimensional singular
chains with coefficients in R; if c is an element of Ci(X), we denote by |c| its
support. By Reg(X) and Sing(X) we denote respectively the regular and
singular locus of the set X. Given A ⊂ Rn, A will stand for the topological
closure of A. Given a point x ∈ Rn and α > 0, we write S(x, α) for the
sphere of radius α centered at x and B(x, α) for the corresponding ball.

1.2. Intersection homology.

We briefly recall the definition of intersection homology; for details, we
refer to the fundamental work of Goresky and MacPherson [2]. This requires
to first introduce the notion of stratification.

Definition 1.1. — Let X be a semi-algebraic set of dimension m. A
semi-algebraic stratification of X is a finite semi-algebraic filtration

∅ = X−1 ⊂ X0 ⊂ · · · ⊂ Xm = X,
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such that for every i, Xi \Xi−1 is either empty or a topological manifold
of dimension i. A connected component of Xi \Xi−1 is called a stratum
of X.

We denote by cL the open cone on the space L, c∅ being a point. Observe
that if L is a stratified set then cL is stratified by the cones over the
strata. We now define inductively on the dimension the topologically trivial
stratifications. For m = 0, every stratification is topologically trivial.

A stratification of X is said to be locally topologically trivial if for
every x ∈ Xi \Xi−1, i > 0, there is a semi-algebraic homeomorphism

h : Ux → (0; 1)i × cL,

with Ux neighborhood of x in X and L ⊂ X compact set having a lo-
cally topologically trivial semi-algebraic stratification such that h maps the
strata of Ux (induced stratification) onto the strata of (0; 1)i× cL (product
stratification).

Definitions 1.2. — A pseudomanifold is a semi-algebraic subsetX ⊂
Rn whose singular locus is of codimension at least 2 in X and whose regular
locus is dense in X.

A stratified pseudomanifold (of dimension m) is the data of an m-
dimensional pseudomanifold X together with a semi-algebraic filtration:

∅ = X−1 ⊂ X0 ⊂ · · · ⊂ Xm = X,

with Xm−1 = Xm−2, which constitutes a locally topologically trivial strat-
ification of X.

Definition 1.3. — A stratified pseudomanifold with boundary
is a semi-algebraic couple (X, ∂X) together with a semi-algebraic filtration

∅ = X−1 ⊂ X0 ⊂ · · · ⊂ Xm−2 = Xm−1 ⊂ Xm = X,

such that:
(1) X \ ∂X is an m-dimensional stratified pseudomanifold (with the

filtration Xj \ ∂X),
(2) ∂X is a stratified pseudomanifold (with the filtration X ′j := Xj+1∩

∂X),
(3) ∂X has a stratified collared neighborhood: there exist a neigh-

borhood U of ∂X in X and a semi-algebraic homeomorphism h :
∂X × [0, 1] → U such that h(X ′j−1 × [0, 1]) = U ∩Xj and h(∂X ×
{0}) = ∂X.

Definition 1.4. — A perversity is a (m − 1)-uple of integers p̄ =
(p2, p3, . . . , pm) such that p2 = 0 and pk+1 ∈ {pk, pk + 1}.
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Traditionally we denote the zero perversity by 0 = (0, . . . , 0), the max-
imal perversity by t = (0, 1, . . . ,m − 2), and the middle perversities by
m = (0, 0, 1, 1, . . . , [m−2

2 ]) (lower middle) and n = (0, 1, 1, 2, 2, . . . , [m−1
2 ])

(upper middle). We say that the perversities p and q are complementary
if p+ q = t.

Given a stratified pseudomanifold X, we say that a semi-algebraic subset
Y ⊂ X is (p̄, i)-allowable if dim(Y ∩Xm−k) 6 i− k + pk for all k > 2.
In particular, a subset Y ⊂ X is (t, i)-allowable if dim(Y ∩ Sing(X)) <

i− 1.
Define ICpi (X) to be the R-vector subspace of Ci(X) consisting of those

chains ξ such that |ξ| is (p, i)-allowable and |∂ξ| is (p, i− 1)-allowable.

Definition 1.5. — The ith intersection homology group of perversity
p, denoted by IHp

i (X), is the ith homology group of the chain complex
ICp• (X).

Goresky and MacPherson proved that these groups are independent of
the choice of the stratification and are finitely generated [2, 3].

Recall also the remarkable

Theorem 1.6 (Goresky, MacPherson [2]). — For any orientable com-
pact stratified semi-algebraic pseudomanifold X, generalized Poincaré du-
ality holds:

(1.1) IHp
k (X) ' IHq

m−k(X),

where p and q are complementary perversities.

In the non-compact case the above isomorphism holds for Borel-Moore
homology:

(1.2) IHp
k (X) ' IHq

m−k,BM (X),

where IH•,BM denotes the intersection homology with respect to Borel-
Moore chains [3, 9]. A relative version is also true in the case where X has
boundary.

1.3. L∞ cohomology

Let M ⊂ Rn be a smooth submanifold.

Definition 1.7. — We say that a differential form ω on M is L∞ if
there exists a constant C such that for any x ∈M :

|ω(x)| 6 C.

TOME 64 (2014), FASCICULE 5
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We denote by Ωj∞(M) the cochain complex constituted by all the j-forms
ω such that ω and dω are both L∞.
The cohomology groups of this cochain complex are called the L∞-

cohomology groups of M and will be denoted by H•∞(M).

Recently the second author showed that the L∞ cohomology of a pseu-
domanifold coincides with its intersection cohomology in the maximal per-
versity ([11], Theorem 1.2.2):

Theorem 1.8. — LetX be a compact subanalytic pseudomanifold (pos-
sibly with boundary). Then, for any j:

Hj
∞(Reg(X)) ' IH t̄

j(X).

Furthermore, the isomorphism is induced by the natural map provided by
integration on allowable simplices.

The theorem presented in the latter paper was devoted to pseudoman-
ifolds without boundary but actually still applies when the boundary is
nonempty (as mentioned in the introduction of the cited article).

2. The variety NF

We will consider polynomial maps F : Cn → Cn as real ones F : R2n →
R2n. By Sing(F ) we mean the singular locus of F , which is the zero set of
its Jacobian determinant and we denote by K0(F ) the set of critical values
of F , i.e. the set F (Sing(F )).
We denote by ρ the Euclidean Riemannian metric of R2n. We can pull

it back in a natural way:

F ∗ρx(u, v) := ρ(dxF (u), dxF (v)).

This metric is non degenerate outside the singular locus of F .
Define the Riemannian manifoldMF := (Cn\Sing(F ), F ∗ρ) and observe

that the map F induces a local isometry nearby any point of MF .

2.1. The Jelonek set.

For a polynomial map F : Cn → Cm, we denote by JF the set of points
at which the map F is not proper, i.e.

JF = {y ∈ Cm such that ∃{xk} ⊂ Cn, |xk| → ∞, F (xk)→ y},
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and call it the asymptotic variety or the Jelonek set of F . The geometry
of this set was studied by Jelonek in series of papers [5, 6, 7]. Jelonek
obtained a nice description of this set and gave an upper bound for the
degree of this set. For the details and applications of these results we refer
to the works of Jelonek. In our paper, we will need the following powerful
theorem.

Theorem 2.1 (Jelonek [6]). — If F : Cn → Cm is a generically finite
polynomial map then JF is either an (n− 1) pure dimensional C-unirulled
algebraic variety or the empty set.

Here, by C-unirulled variety we mean that through any point of this
variety passes a rational curve included in this variety (X is C-unirulled if
for all x ∈ X there exists a non-constant polynomial map ϕx : C→ X such
that ϕx(0) = x).
In the real case, the Jelonek set is an R-unirulled semi-algebraic set but

there is not such a severe restriction on its dimension: it can be any number
between 1 and (n− 1) (if JF is nonempty) [7].

2.2. Construction of an embedding

The first important step is to embed the manifold MF into an affine
space. To do this, we can make use of F . The only problem is that F is
not necessarily one-to-one but just locally one-to-one. We begin by proving
the following lemma. We will implicitly assume below that F is generically
finite since otherwise MF is reduced to the empty set and all the results of
this section are clear.

Lemma 2.2. — There exists a finite covering of MF by open semi-
algebraic subsets such that on every element of this covering, the mapping
F induces a diffeomorphism onto its image.

Proof. — Let ΓF ⊂ R2n × R2n be the set constituted by the elements
(y, x) in R2n×MF such that y = F (x). Consider a Nash cell decomposition
C of R2n × R2n compatible with the set ΓF (see [1]). Let π1 and π2 be
the mappings respectively defined by π1(y, x) := y and π2(y, x) := x, if
(y, x) ∈ ΓF . The mapping π2 is a homeomorphism onto its image and
the mapping π1 is locally invertible near every point of ΓF . Moreover, by
definition of cells, if the restriction of π1 to a cell C of C which is included
in ΓF is not injective then it cannot be finite-to-one. But, as F is finite-to-
one, so is π1. Consequently, π1 induces a one-to-one map on every cell of C
which is a subset of ΓF .

TOME 64 (2014), FASCICULE 5
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Now, fix a cell C ∈ C included in ΓF . Since C is a Nash manifold, it admits
a tubular neighborhood UC (see [1]). There exists a strong deformation of
UC onto C. Hence, as the restriction of π1 to C is one-to-one and since
the mapping π1 is locally invertible near every point, the mapping π1 must
be injective on the whole of UC (since UC retracts by deformation on C).
It means that the mapping F induces an injective map on VC , if VC :=
π2(UC). As the family constituted by the UC , C ∈ C, C ⊂ ΓF , covers
ΓF , the subsets VC cover the whole of MF . On every VC , F is injective
and, since it is a local diffeomorphism at every point of MF , it induces a
diffeomorphism onto its image. �
The next proposition will enable us to transfer the geometry at infinity

of a given polynomial map F : C2 → C2 to the constructed set. Namely, the
intersection homology of the set NF provided by the following proposition
determines the geometry of F at infinity as we will see in the main theorem.

Proposition 2.3. — Let F : Cn → Cn be a polynomial map. There
exists a real semi-algebraic pseudomanifold NF ⊂ Rν , for some ν > 2n,
such that

(2.1) Sing(NF ) ⊂ (JF ∪K0(F ))× {0}

and there exists a semi-algebraic bi-Lipschitz map:

hF : MF → Reg(NF ),

where NF is equipped with the Riemannian metric induced by Rν .

Proof. — Let U1, . . . , Up be the open sets provided by Lemma 2.2. We
may find some semi-algebraic closed subsets of MF , Vi ⊂ Ui, which cover
MF as well.
Thanks to Mostowski’s separation theorem [10], see also Lemma 8.8.8 in

[1], there exist Nash functions ψi : MF → R, i = 1, . . . , p, such that for
each i, ψi is positive on Vi and negative on MF \ Ui. Define:

(2.2) hF := (F,ψ1, . . . , ψp) and NF := hF (MF ).

We first check that the mapping hF is injective on MF . Take x 6= x′

with hF (x) = hF (x′), and let i be such that x ∈ Vi. As F (x′) = F (x), the
injectivity of F on Ui entails that x′ /∈ Ui. But this means that ψi(x) > 0
and ψi(x′) < 0. A contradiction.
We claim that if the functions ψi are chosen sufficiently small then the

mapping hF is bi-Lipschitz. To show this, we will use the famous Ło-
jasiewicz inequality as well as the following less usual form of this inequality:

ANNALES DE L’INSTITUT FOURIER
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Proposition 2.4. — Let A ⊂ Rn be a closed semi-algebraic set and
f : A → R a continuous semi-algebraic function. There exist c ∈ R and
p ∈ N such that for any x ∈ A we have

|f(x)| 6 c(1 + |x|2)p.

For the proof see [1], Proposition 2.6.2.
Fix an open set Ul. Define, for y ∈ F (Ul), the following functions:

(2.3) ψ̃i(y) := ψi ◦ (F|Ul)
−1(y),

for i = 1, . . . , p, and

(2.4) ψ̂(y) := (y, ψ̃1(y), . . . , ψ̃p(y)).

We then have the formula for x ∈ Ul:

(2.5) hF (x) = (F (x), ψ̃1(F (x)), . . . , ψ̃p(F (x))) = ψ̂(F (x)).

As the map F : (Ul, F ∗ρ) → F (Ul) is bi-Lipschitz, it is enough to show
that ψ̂ : F (Ul)→ R2n+p is bi-Lipschitz. This amounts to prove that ψ̃i has
bounded derivatives for any i = 1, . . . , p. By Łojasiewicz inequality (see
Proposition 2.4), there exist a positive constant ε and integers µ and N

such that
inf

u∈S2n−1
|dxF (u)| > εjac(F )(x)2µ

(1 + |x|2)N ,

for any x ∈ MF (here jac(F ) stands for the Jacobian determinant of F ).
Since for y = F (x) we have sup

u∈S2n−1
|dyF−1(u)| = 1/ inf

u∈S2n−1
|dxF (u)|, this

implies that we have:

|dyF−1| 6 C(1 + |x|2)N · jac(F )(x)−2µ,

where C = 1
ε . By Łojasiewicz inequality, possibly multiplying the ψi’s by a

huge power of jac(F )2, we may assume that they extend to C1 functions
on R2n. Hence, by Proposition 2.4, the ψi’s satisfy for some constant C ′
and some integer N ′:

|ψi(x)|+ |dxψi| 6 C ′(1 + |x|2)N
′
,

and a similar inequality also holds for jac(F ).

The partial derivatives of ψ̃i are combinations of the
∂F−1
|Ul

∂yj
(y)’s and the

∂ψi
∂xj

(F−1
|Ul (y))’s. Therefore, the two above inequalities show that, multiplying

ψi by a huge power of jac(F )2 and then a power of 1
1+|x|2 (which are

Nash functions) if necessary, we can assume that the first order partial
derivatives of ψ̃i are bounded, as required. It establishes that hF is bi-
Lipschitz provided the ψi’s are decreasing fast enough.

TOME 64 (2014), FASCICULE 5
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We may also assume that the functions ψi tend to zero at infinity and
near Sing(F ). Consequently, the set NF \ hF (MF ) is contained in (JF ∪
K0(F ))×{0}, which is of codimension 2 in R2n thanks to Theorem 2.1, so
that the set NF is a pseudomanifold. �

Remark 2.5. — From the proof we get immediately that the image of
hF is NF \R2n × {0} (since the ψi’s tend to zero at the points of Sing(F )
and at infinity). We thus have the following commutative diagram:

MF

NF \ R2n × {0}

R2n-
��

��
�*

?
πF

hF

F

Where πF is induced by the canonical projection and is locally bi-Lipschitz.

Lemma 2.6. — Let F : C2 → C2 be a polynomial map. There exists a
natural stratification of the set NF , with only strata of even (real) dimen-
sion, which is locally topologically trivial along the strata.

Proof. — For simplicity set D := JF ∪K0(F ) and consider the set

A := π−1
F (D) \ R4 × {0Rν−4}.

We first check the following fact:
Claim. The set B := A ∩ R4 × {0Rν−4} is finite.

Let x ∈ B. There exists a (real analytic) curve α in A tending to x.
This curve lies in the image of hF (see Remark 2.5). Clearly, πF (α(s)) ∈ D
entails h−1

F (α(s)) ∈ F−1(D). As α ends at point which does not belong to
the image of hF , the preimage of α by hF must go either to infinity or to
a point of Sing(F ) ∩ F−1(D) \ Sing(F ).

If h−1
F (α) goes to infinity then πF (x) is an asymptotical value of F|F−1(JF ).

As F−1(D) is a complex algebraic curve and F is a polynomial, the set of
asymptotical values of F|F−1(D) is finite. We are thus done in this case.
It is therefore enough to make sure that Sing(F ) ∩ F−1(D) \ Sing(F )
is finite. Both Sing(F ) and F−1(D) are complex algebraic curves. The
set F−1(D) \ Sing(F ) is therefore constituted by the branches of F−1(D)
which are not branches of Sing(F ). The intersection with Sing(F ) is there-
fore finite because it is the intersection of distinct branches of complex
algebraic curves. This yields the claim.
Let now

N0 = B ∪ Sing(JF ∪K0(F ))× {0Rν−4},
and take x0 ∈ D × {0Rν−4} \N0.
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We are going to show that x0 has a neighborhood in NF which is locally
topologically trivial. As we will also show that this topological trivializa-
tion preserves D × {0Rν−4}, this will show that the stratification given by
(N0, D × {0Rν−4}) is locally topologically trivial along the strata.
By definition of N0, x0 is a nonsingular point of D × {0Rν−4}. Since the

problem is purely local we may identify D × {0Rν−4} with R2 × {0Rν−4}
and work nearby the origin. Consider now the following local isotopies

µi : U × [−ε, ε]→ U,

where U is a neighborhood of 0 in R4 and µi(x, t) = x + tei, i = 1, 2.
Choosing U small enough, we can assume U ×{0Rν−4}∩B = ∅. Above the
complement of D ∩ U , these isotopies may be lifted to local isotopies in
π−1
F (U) for πF induces a covering map.
We denote this lifting by µ̃i. The obtained isotopies may not fall into

D×{0Rν−4} since µi preserves the complement of D and U does not meet
the set B. On U ∩ D × {0Rν−4}, πF (x, 0) = x, so that each µ̃i extends
continuously. �

Remark 2.7. — The setMF is indeed well defined for any semi-algebraic
map F : Rn → Rn. The proof of Proposition 2.3 is still valid in this
framework. Nevertheless, the obtained setNF is no longer a pseudomanifold
sinceK0(F ) and JF have no reason to be of codimension 2. It is just a semi-
algebraic stratified set.

Let us provide a concrete example by drawing the set NF for a specific
F : R2 → R2.

Example 2.8. — Let F : R2 → R2 be defined by F (x, y) = (x, xy3

1+y6 ).
First, a quick computation gives:

Sing(F ) = {(x, y) ∈ R2 : y = ±1 or xy = 0},

so that
K0(F ) = {(x, y) ∈ R2 : y = ±x2 or y = 0}.

Let us determine the set of asymptotical values. If xi is a sequence of real
numbers tending to infinity then F (xi, y) goes to infinity. If xi is a sequence
tending to some real number a and yi is a sequence going to infinity then
F (xi, yi) tends to (a, 0). This shows that the Jelonek set is the x-axis.
For a 6= 0, the equation F (x, y) = (a, b) reduces to x = a and

by6 − ay3 + b = 0,

TOME 64 (2014), FASCICULE 5
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which has two solutions if |b| < |a|
2 , one if b = ±a2 or b = 0, and zero if

|b| > |a|
2 . Hence, the fiber of F at an element (a, b) with a 6= 0 is constituted

by two points if 0 < |b| < |a|
2 . The fibers of πF have the same cardinal since

hF is a bijection.
We thus can draw a picture of the set NF in this case:

ON THE GEOMETRY OF POLYNOMIAL MAPPINGS AT INFINITY 9

which has two solutions if |b| < |a|
2 , one if b = ±a

2 or b = 0, and zero if |b| > |a|
2 . Hence,

the fiber of F at an element (a, b) with a 6= 0 is constituted by two points if 0 < |b| < |a|
2 .

The fibers of πF have the same cardinal since hF is a bijection.

We thus can draw a picture of the set NF in this case:

Figure 1. The set NF for F : R2 → R2, (x; y) 7→ (x; xy3

1+y6
).

The projection πF maps NF onto the subset {|y| ≤ |x|
2 }.

3. Non properness and vanishing cycles.

In the case n = 2, the singular homology as well as the intersection homology of the
constructed set NF captures the behavior at infinity of a nonsingular polynomial mapping
F . Indeed, if F is proper then NF is nothing but R4 and thus

H2(NF ) = IHt
2(NF ) = 0.

We are going to show that the converse is also true (Theorem 3.2). For this purpose we
need a preliminary lemma.

A semi-algebraic family of subsets of Rm (parametrized by Rn) is a semi-
algebraic set A ⊂ Rm × Rn, the last n variables being considered as parameters.

In the lemma below, the subset A of Rm×R will be considered as a family parametrized
by t ∈ R. We write At, for “the fiber of A at t” i.e.:

At := {x ∈ Rm : (x, t) ∈ A}.
Lemma 3.1. Let β be a j-cycle and let A ⊂ Rm × R be a compact semi-algebraic family
of sets with |β| ⊂ At for any t. Assume that β bounds a (j + 1)-chain in each At, t > 0
small enough. Then β bounds a chain in A0.

Proof. Given a compact family of sets A ⊂ Rn × [0, ε], there exists a semi-algebraic trian-
gulation of A such that A0 is a union of image of simplices (here A0 denotes the zero fiber
of the family A). Therefore, there exists a continuous strong deformation retraction of a
neighborhood U of A0 in A onto A0. As At ⊂ U for t small enough, the lemma ensues. �

Figure 2.1. The set NF for F : R2 → R2, (x; y) 7→ (x; xy3

1+y6 ).

The projection πF maps NF onto the subset {|y| 6 |x|2 }.

3. Non properness and vanishing cycles.

In the case n = 2, the singular homology as well as the intersection
homology of the constructed set NF captures the behavior at infinity of
a nonsingular polynomial mapping F . Indeed, if F is proper then NF is
nothing but R4 and thus

H2(NF ) = IHt
2(NF ) = 0.

We are going to show that the converse is also true (Theorem 3.2). For this
purpose we need a preliminary lemma.
A semi-algebraic family of subsets of Rm (parametrized by Rn)

is a semi-algebraic set A ⊂ Rm ×Rn, the last n variables being considered
as parameters.
In the lemma below, the subset A of Rm × R will be considered as a

family parametrized by t ∈ R. We write At, for “the fiber of A at t” i.e.:

At := {x ∈ Rm : (x, t) ∈ A}.
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Lemma 3.1. — Let β be a j-cycle and let A ⊂ Rm × R be a compact
semi-algebraic family of sets with |β| ⊂ At for any t. Assume that β bounds
a (j + 1)-chain in each At, t > 0 small enough. Then β bounds a chain in
A0.

Proof. — Given a compact family of sets A ⊂ Rn × [0, ε], there exists
a semi-algebraic triangulation of A such that A0 is a union of images of
simplices (here A0 denotes the zero fiber of the family A). Therefore, there
exists a continuous strong deformation retraction of a neighborhood U of
A0 in A onto A0. As At ⊂ U for t small enough, the lemma ensues. �

3.1. Nonproper maps of the complex plane.

By Lemma 2.6, if F : C2 → C2 denotes a polynomial map with nowhere
vanishing Jacobian, the set NF has a natural stratification. Indeed, in this
case, we have shown that it is simply given by the filtration:

(Sing(JF ) ∪B)× {0} ⊂ JF × {0} ⊂ NF ,

where B is given by all the asymptotical values at infinity of the restriction
F|F−1(JF ) : F−1(JF ) → JF . As the strata are all of even real dimension
and since the dimension of NF is 4, there are in fact basically three perver-
sities which may provide different intersection homology groups: the top
perversity t, the 0 perversity and the middle perversity m.

Below, a semi-algebraic family of simplices (parametrized by Rm)
will be a continuous semi-algebraic map σ : Ti × Rm → Rn. A semi-
algebraic family of chains will be a linear combination of semi-algebraic
families of simplices.
For every t ∈ Rm, σt := σ(x, t) is then a semi-algebraic simplex. The

union of all the |σt| × {t} is a semi-algebraic family of sets.

Theorem 3.2. — Let F : C2 → C2 be a polynomial map with nowhere
vanishing Jacobian. The following conditions are equivalent:

(1) F is non proper,
(2) H2(NF ) 6= 0,
(3) IHp

2 (NF ) 6= 0 for any perversity p,
(4) IHp

2 (NF ) 6= 0 for some perversity p.

Proof. — We first show that (1) implies (2). As the cycle that we will
exhibit will be (p̄, 2)-allowable for any perversity p̄, this will also establish
that (1) implies (3).
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Assume that F is not proper. It means that there exists a complex
Puiseux arc γ : D(0, η)→ R4,

γ(z) = azα + . . . ,

(with α negative and a ∈ R4 unit vector) tending to infinity in such a
way that F (γ) converges to an element x0 ∈ R4, generic point of JF
(i.e. (x0, 0) is not in a zero dimensional stratum of NF ). Indeed, as the
Jelonek set coincides with the image under the canonical projection of the
set graph(F )\graph(F ), where the closure is taken in the P2×C2, this arc
is provided by the famous Curve Selection Lemma.
Let C be an oriented triangle in R4 whose barycenter is the origin. Then,

as the map hF ◦γ extends continuously at 0, it provides a singular 2-simplex
in NF that we will denote by c. This simplex is (0, 2)-allowable since

JF ∩ |c| = {x0}.

The support of ∂c lies in NF \JF ×{0}. As, by definition of NF , NF \JF ×
{0} ' R4, it means that ∂c bounds a singular chain e ∈ C2(NF \JF ×{0}).
But then σ = c− e is a (0, 2)-allowable cycle of NF . We claim that σ may
not bound a 3-chain in NF .
Assume otherwise, i.e. assume that there is a chain τ ∈ C3(NF ), satisfy-

ing ∂τ = σ.
Let A := h−1

F (|σ| \ JF ) and B := h−1
F (|τ | \ JF ). For R large enough, the

sphere S(0, R) is transverse to A and B (at regular points). Therefore, after
a triangulation, the intersection σR := S(0, R)∩A is a chain bounding the
chain τR := S(0, R) ∩B.
Given a subset X ⊂ R4 we define the “tangent cone at infinity” by:

C∞(X) := {λ ∈ S3 : ∃γ : (0, ε]

→ X semi-algebraic, lim
t→0

γ(t) =∞, lim
t→0

γ(t)
|γ(t)| = λ},

(this is rather the link of a cone than a cone but it will be more convenient
to work with this set).
Let F̂1 and F̂2 be the respective initial forms of the components of F :=

(F1, F2) and let α(t) := btm + . . . be any real Puiseux arc in R4, tending
to infinity and such that F (α) does not tend to infinity. For any i = 1, 2,
the Puiseux expansion of Fi(α(t)) must start like:

(3.1) Fi(α(t)) = F̂i(b)tmdi + . . . ,
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where di is the homogeneous degree of F̂i. As the arc F (α) does not diverge
to infinity as t tends to zero and m is negative, we see that

F̂i(b) = 0, i = 1, 2.

As a matter of fact, if a semi-algebraic set X ⊂ R4 is mapped onto a
bounded set by F then C∞(X) is included in the zero locus V of F̂ :=
(F̂1, F̂2). Hence, C∞(A) and C∞(B) are both subsets of V ∩ S3.
Observe that, in a neighborhood of infinity, A coincides with the support

of the Puiseux arc γ. Thus, C∞(A) is nothing but S1 ·a (denoting the orbit
of a ∈ C2 under the action of S1 on C2, (eiη, z) 7→ eiηz). Observe that,
since V ∩ S3 is a union of circles, the homology class of S1 · a in this set is
nontrivial.
Consider a Nash strong deformation retraction ρ : W × [0, 1]→ S1 · a, of

a neighborhood W of S1 · a in S3 onto S1 · a.
Let σ̃R := σR

R , R positive real number. The image of the restriction of γ
to a sufficiently small neighborhood of 0 in C entirely lies in the cone over
W . Consequently, |σ̃R| is included in W , for R large enough.

Let σ′R be the image of σ̃R under the retraction ρ1 (where ρ1(x) :=
ρ(x, 1)). As, near infinity, |σR| coincides with the intersection of the support
of the arc γ with S(0, R), for R large enough the class of |σ′R| in S1 · a is
nonzero.
Since the retraction ρ1 is isotopic to the identity, there exists a chain

θR ∈ C2(S3) such that:

(3.2) ∂θR = σ′R − σ̃R.

As A is semi-algebraic, the family σR is a semi-algebraic family of chains
(considering R as a parameter, see the beginning of this section for the
definition of families). The chain θR actually results from the composition
of σ̃R and ρ (after a subdivision of Ti × [0, 1]). As ρ is semi-algebraic,
the family θ1/r, r > 0, must constitute a semi-algebraic family of chains.
Their supports thus constitute a semi-algebraic family of sets. Denote by
E ⊂ R4×R its closure and set E0 := E∩R4×{0}. As the strong deformation
retraction ρ is the identity on S1 · a× [0, 1], we see that

(3.3) E0 ⊂ ρ(C∞(A)× [0, 1]) = S1 · a ⊂ V ∩ S3.

Let now τ̃R = τR
R

and define a semi-algebraic family of chains by:

θ′R := τ̃R + θR,
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and denote by E′ the semi-algebraic family of sets constituted by the sup-
ports of the semi-algebraic family of chains θ′1

r
, r > 0. Denote by E′0 the

fiber at 0, that is to say, the set E′ ∩R4 × {0}. By (3.3) and the definition
of θ′R we have

(3.4) E′0 ⊂ E0 ∪ C∞(B) ⊂ V ∩ S3.

Moreover, we immediately derive from (3.2) and the definition of θ′R:

∂θ′R = σ′R.

The class of σ′R in S1 · a is, up to a product with a nonzero constant,
equal to the generator of S1 · a. Therefore, since σ′R bounds the chain θ′R,
the cycle S1 · a must bound a chain in |θ′R| as well. By Lemma 3.1 (applied
to the family |θ′1/r| and the cycle S1 · a, r > 0) this implies that S1 · a
bounds a chain in E′0 which is included in V ∩ S3. This is a contradiction
since S1 · a is a nontrivial cycle of V ∩S3. This establishes that (1) implies
(2), (3), and (4).
If F is a proper map, then the set NF is homeomorphic to C2 and

consequently H2(NF ) = IHt
2(NF ) = 0. Thus (2), (3) and (4) all fail. �

Observation 3.3. — The set NR
F := NF ∩ B̄(0, R) is a pseudomanifold

with boundary, for large enough R.

Proof. — We have to construct a collared neighborhood of ∂NR
F :=

S(0, R) ∩ NF , R large enough. First of all, observe that if R is chosen
large enough then R is not a critical value of the distance function to the
origin on the set NF and thus NR

F is a smooth manifold with boundary
at any point of NF ∩ S(0, R) \ JF . Furthermore, by Hardt’s Theorem [4],
the level surfaces NF ∩ S(0, R) are pseudomanifolds constituting a semi-
algebraically topologically trivial family. The trivialization may be required
to preserve JF . Consequently, the couple (NR

F , ∂N
R
F ) constitutes a pseudo-

manifold with boundary if R is chosen large enough. �
Now, thanks to the de Rham theorem for L∞ forms (Theorem 1.8) we

get the following immediate corollary.

Corollary 3.4. — Let F : C2 → C2 be a polynomial map with
nowhere vanishing Jacobian. The following conditions are equivalent:

(1) F is nonproper,
(2) H2

∞(Reg(NR
F )) 6= 0.
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