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COADJOINT ORBITS OF SYMPLECTIC
DIFFEOMORPHISMS OF SURFACES

AND IDEAL HYDRODYNAMICS

by Anton IZOSIMOV, Boris KHESIN & Mehdi MOUSAVI (*)

Abstract. — We give a classification of generic coadjoint orbits for the groups
of symplectomorphisms and Hamiltonian diffeomorphisms of a closed symplectic
surface. We also classify simple Morse functions on symplectic surfaces with re-
spect to actions of those groups. This gives an answer to V. Arnold’s problem on
describing all invariants of generic isovorticed fields for the 2D ideal fluids. For this
we introduce a notion of anti-derivatives on a measured Reeb graph and describe
their properties.
Résumé. — Nous présentons une classification des orbites coadjointes géné-

riques pour les groupes de symplectomorphismes et de difféomorphismes hamilto-
niens des surfaces fermées symplectiques. Nous classons également les fonctions de
Morse simples sur les surfaces symplectiques par rapport à l’action de ces groupes.
Cela donne une réponse au problème posé par V. Arnold sur la description des
invariants de champs isorotationnels génériques dans des liquides idéaux en deux
dimensions. Nous introduisons la notion de primitive sur un graphe de Reeb mesuré
et nous décrivons ses propriétés.

1. Introduction

In this paper we classify generic coadjoint orbits of several diffeomor-
phism groups of surfaces. In particular, we answer a question about a com-
plete set of invariants for generic isovorticed fields in 2D ideal hydrody-
namics posed by V. Arnold in [4].
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Recall that the corresponding classification problem for diffeomorphisms
of the circle was solved by A. Kirillov in [16, 17]. He showed that it is
equivalent to classification of periodic quadratic differentials and described
Casimirs for generic orbits. Orbits of the Virasoro–Bott group, a nontrivial
extension of the circle diffeomorphism group, were classified independently
in different terms by several authors, see [16, 22, 26]. The latter prob-
lem is also equivalent to the classification of Hill’s operators or projective
structures on the circle. All those results deal with diffeomorphisms of one-
dimensional manifolds.

The classification problem for coadjoint orbits of area-preserving diffeo-
morphisms in two dimensions was known to specialists for quite a while in
view of its application in fluid dynamics, and it was explicitly formulated
in [4, Section I.5] in 1998. So far, to the best of our knowledge, the global
classification was beyond reach and there were no results in this direction.

In this paper we give an answer to this question by describing the orbit
classification for symplectic and Hamiltonian diffeomorphisms of an arbi-
trary 2D oriented surface.

To obtain these classifications we first solve an auxiliary problem, which
is of interest by itself: classify (and describe invariants of) generic Morse
functions on closed surfaces with respect to the action of area-preserving
diffeomorphisms (possibly isotoped to the identity). It turns out that in-
variants of those actions on functions are given by the Reeb graphs of
functions equipped with various collections of structures, such as a mea-
sure on the graph, homomorphisms of (local) homology groups of surfaces
to that graph, a choice of a pants decomposition, and the flux across certain
cycles as we describe in the corresponding sections. Also the corresponding
measures on Reeb graphs are not arbitrary but satisfy certain constraints
in terms of asymptotic expansions at all three-valent vertices of the graph.
To pass from classification of functions to classification of coadjoint orbits
one needs to supplement the above data by the equality of appropriately
defined circulation functions.

Example 1.1. — The following example outlines the basic constructions
below. The graph ΓF , called the Reeb graph, is the set of connected com-
ponents of the levels of a height function F on a surface M , see Figure 1.1.
Critical points of F correspond to the vertices of the graph ΓF . This graph
comes with a natural parametrization by the values of F . For a symplectic
surfaceM its area form ω induces a measure µ on the graph, which satisfies
certain properties. For each edge e P ΓF of the graph ΓF one can consider
the preimage Me Ă M bounded by the corresponding critical levels of F .

ANNALES DE L’INSTITUT FOURIER
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ΓFF

M

Figure 1.1. Reeb graph for a height function with two maxima on a torus.

Then infinitely many moments

I`,epF q :“
ż

Me

F ` ω, ` “ 0, 1, 2, ...

of the function F over each Me (or, equivalently, the moments of the in-
duced function on each edge the graph) are invariants of the SDiffpMq-
action, i.e., the action on the function F by symplectomorphisms of M .
For the action of the group SDiff0pMq consisting of symplectomorphisms
in the connected component of the identity, one encounters additional dis-
crete invariants related to pants decompositions and possible projections of
the surface to the graph. For the group of Hamiltonian diffeomorphisms the
above set of orbit invariants is supplemented by fluxes of diffeomorphisms
across certain cycles on the surface M .
In order to classify coadjoint orbits of the symplectomorphism group we

introduce a notion of an anti-derivative, or circulation function, for a Reeb
graph. It turns out that such anti-derivatives form a finite-dimensional
space of dimension equal to the first Betti number of the graph. Therefore
the space of coadjoint orbits of the symplectomorphism group of a surface
is a bundle over the space of fluid vorticities, where fiber coordinates can
be thought of as circulations, see details in Section 4.1.

Table 1.1 summarizes the main results of the paper presenting the set
of invariants in each case studied below, as well as addressing the reader
to the corresponding section and theorem for all the details. For a fixed
closed 2D surface M equipped with an area form ω we classify the objects
described in the first column of the table with respect to the group listed
in the second column. The invariants of the action are listed in the third
column, and the corresponding reference to the classification theorem can
be found in the last column.
In Section 2.3 we describe motivation for this type of classification prob-

lems coming from fluid dynamics. The case of manifolds with boundary and

TOME 66 (2016), FASCICULE 6
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classification group action invariants of the action see section
problem for G “ structure and theorem

Morse function F
on M

DiffpMq, dif-
feomorphisms

of M
ΓF – Reeb graph Section 3.1

Definition 3.1

Morse fibration F
on M

SDiffpMq,
symplectomor-

phisms
of M

ΓF – weighted graph:
graph + measure of edges
+ expansions at vertices

Section 3.2
Definition 3.16
Theorem 3.17

Morse function F SDiffpMq
ΓF – Reeb graph

+ measure µ on the graph
(satisfying conditions at vertices)

Section 3.2
Definition 3.9
Theorem 3.11

Morse function F
genuspMq “ 0

SDiff0pMq
“ SDiffpMq
“ HampMq

ΓF ` µ,
Reeb graph and measure

Section 3.2
Corollary 3.12

——————— ——————— ——————— ———————

Morse function F
genuspMq “ 1

SDiff0pMq,
connected

component of
id P SDiffpMq

ΓF ` µ
+ freezing homomorphism
π˚ : H1pT2, Zq Ñ H1pΓF , Zq

Section 3.3
Theorem 3.22

——————— ——————— ——————— ———————

Morse function F
genuspMq ě 2 SDiff0pMq

ΓF ` µ + higher freezing:
1) fixed pants decomposition

2) Zk2 -valued half-twist invariant
Section 3.6

Theorem 3.36

Morse function F
or coadjoint
orbit of F ,

genuspMq “ κ

HampMq
ΓF ` µ

+ (higher) freezing
+ flux on κ cycles

Section 5
Theorem 5.4

Morse coadjoint
orbit of

rαs P Ω1{dΩ0
SDiffpMq

ΓF ` µ for function F “ dα{ω
+ circulation function
C “

ş

α P H1pΓF ,Rq
Section 4.2
Theorem 4.6

Morse coadjoint
orbit of

rαs P Ω1{dΩ0
SDiff0pMq

ΓF ` µ for F “ dα{ω
+ circulation function C

+ (higher) freezing
Section 4.2
Theorem 4.7

Table 1.1. Sets of invariants in the classification problems studied below.

an application to computations of momenta of enstrophy will be discussed
in a separate publication. Note that the results of the paper can also be
used to describe the manifolds of steady flows of the Euler equation, cf.
the Choffrut–Šverák description of a transversal slice to special coadjoint
orbits for symplectomorphisms of an annulus [9].

This also can be used for the extension of the orbit method to infinite-
dimensional groups of 2D diffeomorphisms. According to this method, adja-
cency of coadjoint orbits of a group or its central extension mimics families
of appropriate representations of the corresponding group. This methods
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turned out to be effective for affine groups and the Virasoro–Bott group,
so one may hope to apply it to 2D diffeomorphisms and current groups as
well.
Finally, note that all objects in the present paper are infinitely smooth.

We remark on the case of finite smoothness at the end of the paper.

Remark 1.2. — It is interesting to compare the description of SDiffpMq-
orbits for a surfaceM with the classification of coadjoint orbits of the group
DiffpS1q of circle diffeomorphisms [15, 16]. Its Lie algebra is vectpS1q and
the (smooth) dual space vect˚pS1q is identified with the space of quadratic
differentials on the circle, QDpS1q :“ tF pxqpdxq2 | F P C8pS1,Rqu. For a
generic function F changing sign on the circle, a complete set of invariants
is given by the “weights”

IakpF q :“
ż ak`1

ak

a

|F pxq| dx

of the quadratic differential between every two consecutive zeros ak ă ak`1
of F pxq on the circle S1. These orbits are of finite codimension equal to the
number of zeros. In a family of functions, where two new zeros, say a1k and
a2k, appear between original zeros ak and ak`1: ak ă a1k ă a2k ă ak`1, one
gains two extra Casimir functions, Ia1

k
and Ia2

k
, and hence the codimension

of the orbit jumps up by 2.
Similarly, for functions or coadjoint orbits of symplectomorphisms on a

2D surface, the appearance of a new pair of critical points, say, a saddle and
a local maximum for a function, leads to splitting of one edge in two and,
in addition to that, to the appearance of a new edge in the corresponding
Reeb graph, and hence to two new families of Casimirs related to those
extra edges, as in Example 1.1.

2. The main setting and hydrodynamical motivation

2.1. Two classification problems

Consider a closed 2D surface M with a symplectic form ω on it. We are
interested in classifying generic coadjoint orbits of the groups of symplectic
and Hamiltonian diffeomorphisms of M .

Namely, consider the following three groups: SDiffpMq,SDiff0pMq, and
HampMq. The group SDiffpMq consists of area-preserving (i.e. symplectic)
diffeomorphisms of M . Its connected component of the identity diffeomor-
phism is denoted by SDiff0pMq. The group of Hamiltonian diffeomorphisms

TOME 66 (2016), FASCICULE 6
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HampMq consists of those symplectic diffeomorphisms of M which can be
connected with the identity by a Hamiltonian (non-autonomous) flow, i.e.,
by a flow of a vector field having a time-dependent Hamiltonian function.
The first question we are going to address, and which we specify later, is

Problem 1. — Classify generic coadjoint orbits of the three groups
(i) SDiffpMq, (ii) SDiff0pMq, and (iii) HampMq.

It is closely related to the following problem. Let F be a smooth Morse
function on the surface M .

Definition 2.1. — A Morse function F : M Ñ R is called simple if for
each a P R, the corresponding level F´1paq contains at most one critical
point.

Problem 2. — Classify simple Morse functions on a symplectic surface
M with respect to the action of each of the three groups (i) SDiffpMq,
(ii) SDiff0pMq, and (iii) HampMq.

2.2. Dual Lie algebras and coadjoint action

In the general setting for an n-dimensional manifold M equipped with a
volume form µ consider the Lie group G “ SDiffpMq of volume-preserving
diffeomorphisms of M . The corresponding Lie algebra g “ svectpMq con-
sists of smooth divergence-free vector fields in M . (The same Lie algebra
corresponds to the connected subgroup SDiff0pMq Ă SDiffpMq.) The nat-
ural smooth dual space for this Lie algebra is the space of cosets rαs of
smooth 1-forms α on M modulo exact 1-forms, g˚ “ Ω1pMq{dΩ0pMq, see
e.g. [4]. The groups SDiffpMq and SDiff0pMq act on these 1-forms and
their cosets by volume-preserving diffeomorphisms, i.e. by the correspond-
ing change of coordinates. This means that Problems 1(i) and 1(ii) reduce
to description of invariants of cosets rαs of 1-forms on a surface M with
respect to area-preserving diffeomorphisms and those diffeomorphisms iso-
toped to the identity, respectively.
For the Lie group of Hamiltonian diffeomorphisms HampMq its Lie alge-

bra hampMq consists of Hamiltonian vector fields onM . It can be identified
with the Poisson algebra of functions on M modulo additive constants, i.e.
the Poisson algebra of Hamiltonians normalized by the condition of zero
mean: hampMq “ tH P C8pMq |

ş

M
H ω “ 0u. For a surface M the

smooth dual space ham˚pMq can be viewed as the space of exact 2-forms
ξ on M . Alternatively, it can also be identified with the space of functions

ANNALES DE L’INSTITUT FOURIER
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with zero mean: ham˚pMq “ tξ “ ρω |
ş

M
ρω “ 0u. Thus Problem 1(iii)

is equivalent to the classification problem of generic smooth functions with
zero mean on a surface M with respect to the action of Hamiltonian dif-
feomorphisms.
To describe coadjoint invariants with respect to all these group actions

we first consider Problem 2 of classification of generic smooth functions
with respect to these actions.

2.3. Motivation: Euler equations, vorticity, Casimirs

The problem of classification of coadjoint orbits for volume-preserving
diffeomorphisms is of particular importance in hydrodynamics. Let M be
an n-dimensional Riemannian manifold with a volume form µ and without
boundary. The motion of an inviscid incompressible fluid onM is governed
by the classical Euler equation

(2.1) Btv ` pv,∇qv “ ´∇p

describing an evolution of a divergence-free velocity field v of a fluid flow
in M , div v “ 0. The pressure function p entering the Euler equation is
defined uniquely modulo an additive constant by this equation along with
the divergence-free constraint on the velocity v. The term pv,∇qv stands
for the Riemannian covariant derivative ∇vv of the field v along itself.
According to Arnold’s approach to the Euler equation [2], the latter can

be regarded as an equation of the geodesic flow on the group SDiffpMq :“
tφ P Diff | φ˚µ “ µu of volume-preserving diffeomorphisms of M with
respect to the right-invariant metric on the group given by the L2-energy
of the velocity field: Epvq “ 1

2
ş

M
pv, vqµ. Then the Euler equation describes

an evolution of the fluid velocity field vptq, i.e. an evolution of a vector in
the Lie algebra svectpMq “ tv P vectpMq | Lvµ “ 0u, tracing the geodesic
on the group SDiffpMq defined by the initial condition vp0q “ v0.
The geodesic point of view implies that the Euler equation has the

following Hamiltonian reformulation. Consider the (regular) dual space
g˚ “ svect˚pMq to the space g “ svectpMq of divergence-free vector fields
on M . As mentioned above, this dual space g˚ has a natural description
as the space of cosets g˚ “ Ω1pMq{dΩ0pMq, where the coadjoint action of
the group SDiffpMq on the dual g˚ is given by the change of coordinates in
(cosets of) 1-forms on M by means of volume-preserving diffeomorphisms.

TOME 66 (2016), FASCICULE 6



2392 Anton IZOSIMOV, Boris KHESIN & Mehdi MOUSAVI

Recall that the manifold M is equipped with a Riemannian metric p., .q,
and it allows one to identify the (smooth parts of) the Lie algebra and its
dual by means of the so-called inertia operator: given a vector field v on M
one defines the 1-form α “ v5 as the pointwise inner product with vectors
of the velocity field v: v5pW q :“ pv,W q for all W P TxM , see details in [4].
(Note that divergence-free fields v correspond to co-closed 1-forms v5.) The
Euler equation (2.1) rewritten on 1-forms is

Btα` Lvα “ ´dP

for the 1-form α “ v5 and an appropriate function P onM . In terms of the
cosets of 1-forms rαs “ tα` df | f P C8pMqu P Ω1pMq{dΩ0pMq, the Euler
equation looks as follows:

(2.2) Btrαs ` Lvrαs “ 0

on the dual space g˚, where Lv is the Lie derivative along the field v. The
latter form has several important features.
First of all, the Euler equation (2.2) on g˚ is a Hamiltonian equation.

As the dual space to a Lie algebra, svect˚pMq has the natural Lie–Poisson
structure. The corresponding Hamiltonian operator is given by the Lie
algebra coadjoint action ad˚v , which coincides with the Lie derivative in
the case of the diffeomorphism group: ad˚v “ Lv. Its symplectic leaves are
coadjoint orbits of the corresponding group SDiffpMq. The Euler equation
is the Hamiltonian equation on the dual space g˚ with respect to this Lie–
Poisson structure and with the Hamiltonian functional H given by the
fluid’s kinetic energy, Hprαsq “ Epvq “ 1

2
ş

M
pv, vqµ for α “ v5, see details

in [2, 4].
Secondly, the equation form (2.2) shows that according to the Euler

equation the coset of 1-forms rαs evolves by a volume-preserving change of
coordinates, i.e. during the Euler evolution it remains in the same coadjoint
orbit in g˚. Introducing the vorticity 2-form ξ :“ dv5 as the differential of
the 1-form α “ v5 we note that the vorticity exact 2-form is well-defined for
cosets rαs: 1-forms α in the same coset have equal vorticities ξ “ dα. The
corresponding Euler equation assumes the vorticity (or Helmholtz) form

(2.3) Btξ ` Lvξ “ 0 ,

which means that the vorticity form is transported by (or “frozen into”)
the fluid flow (Kelvin’s theorem).

ANNALES DE L’INSTITUT FOURIER
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Remark 2.2. — The definition of vorticity ξ as an exact 2-form ξ “ dv5

makes sense for a manifold M of any dimension. In 3D the vorticity 2-
form is identified with the vorticity vector field ξ̂ “ curl v by means of the
relation iξ̂µ “ ξ for the volume form µ. In 2D one identifies the vorticity
2-form ξ with a function ξ̂ satisfying ξ “ ξ̂ ¨ µ.

In this paper we will be dealing with two-dimensional oriented surfaces
M without boundary, while the group SDiffpMq of volume-preserving dif-
feomorphisms of M coincides with the group SymppMq of symplectomor-
phisms of M with the area form µ “ ω given by the symplectic structure.

Remark 2.3. — The fact that the vorticity ξ is “frozen into” the in-
compressible flow allows one to define Casimirs, i.e., first integrals of the
hydrodynamical Euler equation valid for any Riemannian metric on M .
These Casimirs are invariants of the coadjoint action of the corresponding
group SDiffpMq.
In 2D the Euler equation on M has infinitely many enstrophy invariants

Iλpξq :“
ż

M

λpξqω ,

where λpξq is an arbitrary function of vorticity. In particular, the enstrophy
momenta Inpξq :“

ş

M
ξn ω are invariants for any n P N. These invariants

are fundamental in the study of hydrodynamical stability of 2D flows, and
in particular, were the basis for Arnold’s stability criterion, see [2, 4, 23].
In the energy-Casimir method one studies the second variation of the en-
ergy functional with an appropriately chosen combination of Casimirs. A
description of orbits by means of Casimirs also allows one to construct as-
ymptotic solutions to the Navier–Stokes equation, localized near a curve
or a surface [19], as well as to obtain a precise structure of the set of Euler
steady solutions [9].
However, the functionals Iλ do not form a complete set of Casimirs in

either of the groups SDiffpMq, SDiff0pMq, or HampMq, even for the case
M “ S2. In the present paper we give a complete description of these
invariants, namely, a complete classification of generic coadjoint orbits of
those groups, and hence, in particular, of generic vorticity functions ξ.
Roughly speaking, for the symplectomorphism groups one needs to consider
analogs of the functionals Iλ associated with every edge of a special graph
related to the vorticity function, as well as a collection of discrete invariants.
For the group of Hamiltonian diffeomorphisms all these are supplemented
by the flux type functionals over certain cycles on M , as will be discussed
below.

TOME 66 (2016), FASCICULE 6
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3. Simple Morse functions on symplectic surfaces

3.1. Measured Reeb graphs

Throughout the paper let M be a connected oriented two-dimensional
surface without boundary, and let F : M Ñ R be a Morse function on
M . Consider the space ΓF of connected components of F -levels with the
induced quotient topology. This space is a finite connected graph, whose
vertices correspond to critical levels of F .

Definition 3.1. — This graph ΓF is called the Reeb graph(1) of the
function F .

The function F on M descends to a function f on the Reeb graph ΓF .
In what follows, by a Reeb graph we always mean a pair: a graph, and a
function on it. It is also convenient to assume that ΓF is oriented: edges
are oriented in the direction of increasing f .

F

M

ΓF

Figure 3.1. Reeb graph for a height function on a torus.

Example 3.2. — Figure 3.1 shows a torus and the Reeb graph of the
height function on this torus.

We will confine ourselves to the study of simple Morse functions F : M Ñ

R, i.e., those Morse functions whose critical values are all distinct. Such
functions form an open dense set in C2-topology among all smooth func-
tions on M .

(1)This graph is also called the Kronrod graph of a function, see [1].

ANNALES DE L’INSTITUT FOURIER
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Proposition 3.3. — Let M be a closed connected 2D surface, and let
F : M Ñ R be a simple Morse function. Let also π : M Ñ ΓF be the natural
projection. Then:

(i) All vertices of ΓF are either 1-valent or 3-valent.
(ii) If v is a 1-valent vertex of ΓF , then π´1pvq is a single point; this is

a point of local minimum or local maximum of the function F .
(iii) If v is a 3-valent vertex of ΓF , then π´1pvq is a figure eight; the

self-intersection point of this figure eight is a saddle critical point
of F .

(iv) If x is an interior point of some edge e Ă ΓF , then π´1pxq is a circle.
(v) For each 3-valent vertex of ΓF , there are either two incoming and

one outgoing edge, or two outgoing and one incoming edge (see
Figure 3.2).

(vi) The first Betti number of the graph ΓF is equal to the genus of M .

Proof. — The proof follows from standard Morse theory considerations.
�

tr
un

k

bra
nc
hbranch tr

un
k

bra
nc
h branch

Figure 3.2. Trunk and branches.

Assume that e0, e1, and e2 are three edges of ΓF which meet at a 3-valent
vertex v. Then e0 is called the trunk of v, and e1, e2 are called branches of v
if either e0 is an outgoing edge for v, and e1, e2 are its incoming edges, or e0
is an incoming edge for v, and e1, e2 are its outgoing edges, see Figure 3.2.

Now, fix an area form ω on the surface M . Then the natural projection
map π : M Ñ ΓF induces a measure µ on ΓF . By definition, a set X Ă ΓF
is measurable if and only if its preimage π´1pXq Ă M is measurable. For
a measurable set X Ă ΓF , its measure µpXq equals the area of π´1pXq.

Proposition 3.4. — The measure µ has the following properties.
(i) Let rv, ws be an edge of ΓF , and let fpvq ă fpwq. Then there

exists a function ηpzq smooth in the interval pfpvq, fpwqq such that

TOME 66 (2016), FASCICULE 6
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µprv, xsq “ ηpfpxqq for any point x P pv, wq, and η1pzq ‰ 0 for any
z P pfpvq, fpwqq.

(ii) If, in addition, v is a 1-valent vertex, then ηpzq is smooth up to
fpvq, and moreover, η1pzq ‰ 0 at z “ fpvq. Analogously, if w is a
1-valent vertex, then ηpzq is smooth up to fpwq, and η1pzq ‰ 0 at
z “ fpwq.

(iii) Assume that v is a 3-valent vertex of ΓF . Without loss of generality
assume that fpvq “ 0 (if not, we replace f by f̃pxq :“ fpxq ´

fpvq). Let e0 be the trunk of v, and let e1, e2 be the branches of v.
Then there exist functions ψ, η0, η1, η2 of one variable, smooth in
the neighborhood of the origin 0 P R and such that for any point
x P ei sufficiently close to v, we have

(3.1) µprv, xsq “ εiψpfpxqq ln |fpxq| ` ηipfpxqq,

where ε0 “ 2, ε1 “ ε2 “ ´1, ψp0q “ 0, ψ1p0q ‰ 0, and η0 ` η1 `

η2 “ 0.

For the proof, we need two preliminary lemmas. The first of them is
known as the Morse–Darboux lemma. This lemma is a particular case of
Le lemme de Morse isochore due to Colin de Verdière and Vey [25].

Lemma 3.5. — Assume that M is a two-dimensional manifold with an
area form ω, and let F : M Ñ R be a smooth function. Let also O be a
Morse critical point of F . Then there exists a chart pp, qq centered at O in
M such that ω “ dp ^ dq, and F “ λ ˝ S where S “ p2 ` q2 or S “ pq.
The function λ of one variable is smooth in the neighborhood of the origin
0 P R, and λ1p0q ‰ 0.

Note that since λ1p0q ‰ 0, the function S can be expressed in terms of
F . The latter allows one to descend S to a locally defined function s on the
Reeb graph of F near the corresponding vertex.
The second lemma is due to Dufour, Molino, and Toulet [10].

Lemma 3.6. — Let F : M Ñ R be a simple Morse function, and let v
be a 3-valent vertex of ΓF . Let also e0 be the trunk of v, and let e1, e2 be
the branches of v. Then there exist functions ζ0pzq, ζ1pzq, ζ2pzq of one real
variable, smooth in the neighborhood of the origin, and such that for any
point x P ei sufficiently close to v, we have

(3.2) µprv, xsq “ εispxq ln |spxq| ` ζipspxqq

where ε0 “ ´2ε1 “ ´2ε2 “ ˘2, ζ0 ` ζ1 ` ζ2 “ 0, and the function spxq,
well-defined on ΓF for x sufficiently close to the vertex v, is obtained by
descending the function S from the preceding lemma.
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Remark 3.7. — Note that the latter lemma is formulated in [10] in terms
of infinite jets of functions ζi, as the corresponding expansion involves the
functions ζ0 and ζ1,2 on different sides of the origin. The relation ζ0` ζ1`
ζ2 “ 0 for jets provides the existence of the corresponding smooth functions
defined in the whole neighborhood of the origin. The same holds for the
functions ψ and ηi in Proposition 3.4.

Proof of Proposition 3.4. — Let us prove statement (i). The preimage
of the open edge pv, wq under the projection π is a cylinder Cyl. For any
z P pfpvq, fpwqq, the set tP P Cyl : F pP q “ zu is a periodic trajectory
of the Hamiltonian vector field XF “ ω´1dF . Denote the period of this
trajectory by T pzq. Then a standard argument shows that

µprv, xsq “

ż fpxq

fpvq

T pzqdz.(3.3)

Now statement (i) follows from the fact that T pzq is a smooth non-vanishing
function of z.

To prove statement (ii) it suffices to consider the case of a 1-valent vertex
v; the second case is analogous. For a 1-valent vertex v the preimage of the
interval rv, wq under the projection π is an open disk D Ă M . The only
critical point of F in the disk D is O “ π´1pvq; the point O is a non-
degenerate minimum point. By Lemma 3.5, there exists a Darboux chart
pp, qq centered at the point O such that F “ λ ˝ S where S “ p2 ` q2. Let

Dx “ π´1prv, xqq Ă D.

In pp, qq coordinates, the set Dx is a closed disk radius
a

spxq center
p0, 0q. Therefore,

µprv, xsq “

ż

Dx

ω “ πspxq “ πλ´1pfpxqq,

which implies the statement.
The third statement is proved by substituting s “ λ´1 ˝ f into for-

mula (3.2). �

Remark 3.8. — The statement of Proposition 3.4 can be understood
within the framework of topology of integrable systems (cf. e.g. [8]). In
the setting of integrable systems, the measure µ can be interpreted as the
action variable for the integrable Hamiltonian vector field XF . Indeed, let
e be an edge of ΓF , and let Cyl “ π´1peq. Choose a 1-form α on Cyl such
that dα “ ω. Let x0 and x be interior points of e. Then, by the Stokes
formula, we obtain

µprx0, xsq “ Ipxq ´ Ipx0q
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where
Ipxq “

ż

π´1
pxq

α.

The latter expression, up to a factor 2π, is the Arnold–Mineur formula for
the action (see [3]).

The above properties of the measure µ on the graph ΓF make it natural to
introduce the following definition of an abstract Reeb graph with measure.

Definition 3.9. — A measured Reeb graph pΓ, f, µq is an oriented con-
nected graph Γ with a continuous function f : Γ Ñ R and a measure µ which
satisfy the following properties.

(i) All vertices of Γ are either 1-valent or 3-valent.
(ii) For each 3-valent vertex, there are either two incoming and one

outgoing edge, or vice versa.
(iii) The function f is strictly monotonous on each edge of Γ, and the

edges of Γ are oriented towards the direction of increasing f .
(iv) The measure µ satisfies the properties listed in Proposition 3.4.

Two measured Reeb graphs are isomorphic if the graphs are homeomorphic
as topological spaces, and the homeomorphism between them preserves the
function and the measure. Whenever there is no ambiguity, we denote the
measured Reeb graph pΓ, f, µq by its graph notation Γ only.

Definition 3.10. — A measured Reeb graph pΓ, f, µq is compatible
with a symplectic surface pM,ωq if dim H1pΓ,Rq is equal to the genus of
M , and the volume of Γ with respect to the measure µ is equal to the
volume of M :

ş

Γ µ “
ş

M
ω.

Thus to each simple Morse function F on a symplectic surface pM,ωq,
we associate a measured Reeb graph pΓF , f, µq compatible withM . Clearly,
this graph does not change, i.e. is invariant, under the action of SDiffpMq
on simple Morse functions. In what follows, we show that this invariant is
complete.

3.2. Classification of simple Morse functions under the SDiffpMq
action

Theorem 3.11. — Let M be a closed connected symplectic surface.
Then there is a one-to-one correspondence between simple Morse functions
on M , considered up to symplectomorphism, and (isomorphism classes of)
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measured Reeb graphs compatible with M . In other words, the following
statements hold.

(i) Let F,G : M Ñ R be two simple Morse functions. Then the follow-
ing two conditions are equivalent:
(a) there exists a symplectomorphism Φ: M Ñ M such that

Φ˚F “ G;
(b) the measured Reeb graphs ΓF and ΓG are isomorphic.
Moreover, any isomorphism φ : ΓF Ñ ΓG can be lifted to a sym-
plectomorphism Φ: M ÑM such that Φ˚F “ G.

(ii) For each measured Reeb graph pΓ, f, µq compatible with M , there
exists a simple Morse function F : M Ñ R such that its measured
Reeb graph ΓF coincides with pΓ, f, µq .

This theorem gives a complete classification of simple Morse functions on
a closed symplectic surfaceM with respect to the SDiffpMq-action in terms
of their measured Reeb graphs. Assume now that M is a 2-dimensional
sphere S2. In this case, the group SDiffpS2q is connected, i.e. coincides
with SDiff0pS

2q, and moreover all symplectomorphisms are Hamiltonian,
i.e., SDiffpS2q “ SDiff0pS

2q “ HampS2q. Note also that the Reeb graph of
any Morse function on S2 has no cycles, and hence it is a tree. In this case
Theorem 3.11 allows one to completely classify simple Morse functions
on S2 with respect to actions of both Hamiltonian diffeomorphisms and
symplectomorphisms.

Corollary 3.12. — Let M be a 2-dimensional sphere S2. Then there
is a one-to-one correspondence between simple Morse functions on M, con-
sidered either up to symplectomorphisms or up to Hamiltonian diffeomor-
phisms, and measured Reeb graphs compatible with S2, i.e., acyclic mea-
sured Reeb graphs of total measure equal to the symplectic area of S2.

Before we prove Theorem 3.11, we need to discuss symplectic invariants
of simple Morse fibrations. Roughly speaking, a simple Morse fibration is
a fibration locally given by level sets of a simple Morse function. A precise
definition is as follows.

Definition 3.13. — Let pM,ωq be a closed connected symplectic sur-
face, and let F be a (possibly singular) fibration on M . Let also ΓF be the
base of F , and let π : M Ñ ΓF be the projection map. Then F is a called
a simple Morse fibration if for each x P ΓF there exists its neighborhood
Upxq and a simple Morse function F : π´1pUpxqq Ñ R such that for each
y P Upxq the fiber π´1pyq is a connected component of a level set of F .
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Invariants of simple Morse fibrations under symplectic diffeomorphisms
were described by Dufour, Molino, and Toulet [10]. Let us recall the con-
struction of these invariants. The first invariant is the Reeb graph, i.e. the
base ΓF of the fibration F . Note that the Reeb graph associated with a
fibration does not have a natural function on it and hence the graph is no
longer parametrized and oriented. However the notions of a trunk and a
branch for a given vertex still make sense.
Further, we can construct a measure on ΓF in the same way as in Sec-

tion 3.1. On each of the edges of ΓF , this measure is completely charac-
terized by the total length of this edge. Apart from this, there are certain
invariants associated to each of the 3-valent vertices. To describe these
invariants, we need the following stronger version of Lemma 3.5.

Lemma 3.14 (Dufour, Molino, and Toulet [10]). — Assume that M is
a closed connected symplectic surface, and let F : M Ñ R be a smooth
function. Let also O be a hyperbolic Morse critical point of the function F .
Then the following statements hold.

(i) There exists a chart pp, qq centered at O such that ω “ dp^dq, and
F “ λ˝S where S “ pq. The function λ is smooth in a neighborhood
of the origin, and λ1p0q ‰ 0. Moreover, the chart pp, qq can be chosen
in such a way that the constant ε0 entering expansion (3.2) is equal
to `2.

(ii) If pp1, q1q is another chart with the same properties, then p1q1 “ pq

modulo a function flat at the point O.

Remark 3.15. — Let O be a hyperbolic (i.e., saddle) singular point of
the fibration F on M . Since the fibration F is locally given by level sets of
a simple Morse function F , we can apply Lemma 3.14. It follows from the
second statement of the lemma that the function S “ pq is well defined up
to a flat function. In particular, its Taylor expansion at the point O does
not depend on the choice of F . This implies that the Taylor expansions of
the functions ζ0pzq, ζ1pzq, and ζ2pzq entering the expansion (3.2) are well-
defined symplectic invariants of the fibration F at a trivalent point. Let us
denote these Taylor power series by rζ0s, rζ1s, rζ2s.

Definition 3.16. — A weighted Reeb graph pΓ, t`peq, rζjspvquq is a con-
nected graph Γ such that all its vertices are either 1-valent or 3-valent, with
the following additional data (see Figure 3.3).

(i) Each edge e is equipped with a positive real number - its length
`peq.
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`peiq

rζ0s, rζ1s, rζ2spvkq

ΓF

Figure 3.3. A weighted Reeb graph ΓF , whose weights are as follows:
each edge ei is assigned its length `peiq, and each 3-vertex vk is assigned
its triple of Taylor series rζ0s, rζ1s, rζ2spvkq.

(ii) For each 3-valent vertex, two of the adjacent edges are called
branches, and the third is called a trunk. Each such a vertex v

is equipped with three real power series rζ0s, rζ1s, rζ2s of a vari-
able z at 0 P R, where rζ0s is assigned to the trunk, while rζ1s
and rζ2s are assigned to two branches respectively, and such that
rζ0s ` rζ1s ` rζ2s “ 0.

Note that an edge can be a branch for one of its endpoints, and a trunk
for the other. Of course, only two of the power series, say rζ1s and rζ2s, are
independent, while rζ0s “ ´prζ1s ` rζ2sq.
Two weighted Reeb graphs are isomorphic if they are isomorphic as com-

binatorial graphs, and the isomorphism between them preserves all the ad-
ditional data. In particular, trunks are mapped to trunks and branches are
mapped to branches.

As explained in the remark above, the Reeb graph ΓF associated with
a fibration F can be naturally endowed with the structure of a weighted
Reeb graph.

Theorem 3.17 (Dufour, Molino, and Toulet [10]). — Simple Morse fi-
brations on closed connected symplectic surfaces are classified by weighted
Reeb graphs. More precisely, the following statements hold.

(i) Let M and N be two closed connected symplectic surfaces and let
F and G be simple Morse fibrations onM and N respectively. Then
the following statements are equivalent:
(a) there exists a symplectomorphism Φ: M Ñ N which maps the

fibers of F to fibers of G;
(b) the weighted Reeb graphs ΓF and ΓG are isomorphic.
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(ii) For each weighted Reeb graph pΓ, t`peq, rζjspvquq, there exists a
closed connected symplectic surface M , and a simple Morse fibra-
tion F onM such that the weighted Reeb graph ΓF of the fibration
F is pΓ, t`peq, rζjspvquq.

In what follows, we need a slightly stronger version of Theorem 3.17(i).

Theorem 3.171. — Let M and N be two closed connected symplectic
surfaces and let F and G be simple Morse fibrations on M and N respec-
tively. Let also φ : ΓF Ñ ΓG be an isomorphism of weighted Reeb graphs.
Then there exists a symplectomorphism of surfaces Φ: M Ñ N which is a
lift of the graph isomorphism φ in the following sense.

(a) The mapping Φ maps fibers of F to fibers of G.
(b) If e1 is an edge of ΓF and φpe1q “ e2, then the cylinder π´1

F pe1q is
mapped under Φ to the cylinder π´1

G pe2q where πF : M Ñ ΓF and
πG : N Ñ ΓG are natural projections.

The proof of Theorem 3.171 follows the lines of the proof of Theo-
rem 3.17(i). Details of the proof can be found in Toulet’s thesis [24].
Now, note that each measured Reeb graph pΓ, f, µq can be viewed as a

weighted Reeb graph pΓ, t`peq, rζjspvquq. Namely, assume that Γ is a mea-
sured Reeb graph ΓF associated with a simple Morse function F on a sym-
plectic manifoldM . The function F defines a fibration F onM . Clearly, the
weighted Reeb graph ΓF coincides, as an abstract graph, with the graph Γ.
We claim that the structure of a measured Reeb graph on Γ uniquely deter-
mines the structure of a weighted Reeb graph pΓ, t`peq, rζjspvquq. Obviously,
the lengths `peq of the edges are immediately recovered from the measure,
so it suffices to show how to recover the powers series rζjs associated with
3-valent vertices.

Proposition 3.18. — Let v be a 3-valent vertex of Γ. Let also e0 be
the trunk of v, and let e1, e2 be the branches of v. Then rζispzq is equal to
the Taylor expansion of the function

(3.4) εiz ln
ˇ

ˇ

ˇ

ˇ

ψ´1pzq

z

ˇ

ˇ

ˇ

ˇ

` ηipψ
´1pzqq

at z “ 0 where ε0 “ 2, ε1 “ ε2 “ ´1, and ψ, η0, η1, η2 are defined in
Proposition 3.4(iii).

Proof. — Combining formulas (3.1) and (3.2) we get

εis ln |s| ` ζipsq “ εiψpfq ln |f | ` ηipfq

“ εiψpfq ln |s| ` εiψpfq ln
ˇ

ˇ

ˇ

ˇ

f

s

ˇ

ˇ

ˇ

ˇ

` ηipfq .
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Therefore, modulo flat functions, we have

s ” ψpfq, ζipsq ” εiψpfq ln
ˇ

ˇ

ˇ

ˇ

f

s

ˇ

ˇ

ˇ

ˇ

` ηipfq.

Then the statement follows by substituting f ” ψ´1psq into the latter
equation. �

Thus, if we have an “abstract” measured Reeb graph (i.e. any object sat-
isfying Definition 3.9), then we can regard Proposition 3.18 as a definition.
Therefore, any measured Reeb graph can be viewed as a weighted Reeb
graph as well.

Proof of Theorem 3.11. — Let us prove the first statement of Theo-
rem 3.11. The implication (a) ñ (b) follows from the construction of the
measured Reeb graph associated with a simple Morse function, so it suffices
to prove the implication (b) ñ (a).

Assume that φ : ΓF Ñ ΓG is an isomorphism of measured Reeb graphs.
Then it can be viewed as an isomorphism of weighted Reeb graphs. There-
fore, by Theorem 3.171, there exists a symplectomorphism Φ: M Ñ M

which maps the fibers of F to fibers of G. Moreover, if e1 is an edge of ΓF
and φpe1q “ e2, then the map Φ takes the cylinder Cyl1 “ π´1

F pe1q to the
cylinder Cyl2 “ π´1

G pe2q.
Now, let us again consider ΓF and ΓG as measured Reeb graphs. Since

the map Φ: Cyl1 Ñ Cyl2 is fiberwise, it descends to a map φ1 : e1 Ñ e2.
Moreover, since the diffeomorphism Φ is symplectic, the graph map φ1 is
measure-preserving, so φ1 “ φ. This implies that the symplectomorphism
Φ is the lift of φ, and moreover that this diffeomorphism Φ maps function
F to G.
Now, let us prove the second statement. Consider the measured Reeb

graph Γ as a weighted Reeb graph. By Theorem 3.17(ii), there exist a
symplectic surface N and a fibration F on N such that ΓF “ Γ. Since the
first Betti number of Γ is equal to the genus of M , the surfaces M and
N have the same genus. Moreover, since the volume of Γ is equal to the
volume of M , the surfaces M and N are of the same area. Therefore, by
Moser’s theorem [20], surfaces M and N are symplectomorphic. Using this
symplectomorphism, we transport the fibration F from N to M . In this
way we obtain a fibration F on M such that the measured Reeb graph of
F is Γ.
Note that, a priori, there is no projection π : M Ñ Γ, since a weighted

Reeb graph is defined as a combinatorial object. However, there is an iden-
tification between cylinders separating critical fibers of F , and edges of
Γ. As it is easy to see, there exists a unique projection π : M Ñ Γ which
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realizes this identification and respects the measure. This means that the
measure on Γ is the push-forward of the symplectic measure on M under
the map π.
Then lift the function f from the graph Γ to a function F onM by means

of the projection π. We need to check that F is a smooth function on M .
Away from hyperbolic fibers, this follows from the first two statements of
Proposition 3.4 (recall that these statements are included in the definition
of a measured Reeb graph). Therefore, it suffices to prove that F is smooth
near each hyperbolic fiber.
Let v be a 3-valent vertex of Γ. Let also e0 be the trunk of v, and let e1, e2

be the branches of v. As it follows from the construction of the weighted
Reeb graph associated with F , there exists a smooth function S defined
in a neighborhood of π´1pvq such that the fibration F is locally given
by connected components of level sets tS “ constu, and for each x P ei
sufficiently close to v, we have

(3.5) µprv, xsq “ εispxq ln |spxq| ` ζipspxqq

where ε0 “ 2, ε1 “ ε2 “ ´1, and s is a function defined in the neighborhood
of v by descending the function S. By definition of a weighted Reeb graph,
the Taylor expansion of ζipzq at z “ 0 coincides with the power series
rζis associated with the vertex v. On the other hand, since the graph Γ is
actually a measured Reeb graph, the power series rζis is equal to the Taylor
expansion of

(3.6) ζ̃ipzq “ εiz ln
ˇ

ˇ

ˇ

ˇ

ψ´1pzq

z

ˇ

ˇ

ˇ

ˇ

` ηipψ
´1pzqq

at z “ 0. Therefore, ζi ” ζ̃i modulo a flat function. Now, we need the
following technical lemma.

Lemma 3.19. — Let apzq, bpzq be two functions which are defined and
smooth in a punctured neighborhood of the origin 0 P R. Assume that the
difference apzq´ bpzq is a smooth function flat at the origin, and that b1pzq
is bounded away from zero. Then there exists a diffeomorphism of the form

hpzq “ z ` flat function,

defined in a (possibly smaller) neighborhood of the origin, such that b is
obtained from a by the diffeomorphism h : b “ a ˝ h.

Remark 3.20. — The statement of the lemma is also true if b1pzq is not
bounded away from zero, but there exists an integer n such that b1pzq{zn
is bounded away from zero in a punctured neighborhood of the origin.
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Proof of Lemma 3.19. — Apply the Moser path method. Instead of
looking for one diffeomorphism h, we will be looking for a family of diffeo-
morphisms hpz, tq such that

(3.7) bpzq “ t ¨ aphpz, tqq ` p1´ tq ¨ bphpz, tqq

and hpz, 0q “ z. Differentiating (3.7) with respect to t, we obtain the fol-
lowing differential equation

(3.8) dh
dt “

bphq ´ aphq

b1phq ` t ¨ pa1phq ´ b1phqq
.

Using that b1 is bounded away from zero, we conclude that the right-hand
side of (3.8) is flat in h for any fixed t. This easily implies that if z is
sufficiently small, the solution of (3.8) with initial condition hpz, 0q “ z is
extendable up to time t “ 1 and has the form

hpz, tq “ z ` rpz, tq

where rpz, tq is flat in z for all t P r0, 1s, and rpz, 0q “ 0. Finally, note that
equation (3.8) together with the condition hpz, 0q “ z imply (3.7), therefore
bpzq “ aphpz, 1qq. �

Now, we use Lemma 3.19 to find functions hipsq such that hipsq ´ s is
flat at s “ 0, and

εis ln |s| ` ζipsq “ εihipsq ln |hipsq| ` ζ̃iphipsqq.(3.9)

Combining equations (3.1), (3.5), and (3.9), for a function f normalized by
the condition fpvq “ 0 we obtain

εiψpfq ln |f | ` ηipfq “ εihipsq ln |hipsq| ` ζ̃iphipsqq.

Using (3.6), we conclude that

εihipsq ln |ψ´1phipsqq| ` ηipψ
´1phipsqqq “ εiψpfq ln |f | ` ηipfq,

and thus
fpxq “ ψ´1phipspxqqq

for any x P ei sufficiently close to v. Therefore, on π´1peiq ĂM , one has

F “ ψ´1 ˝ hi ˝ S.

Hence, since hipzq ´ z is flat at z “ 0, we conclude that F is a smooth
function near a hyperbolic level and hence everywhere. It is also easy to
see that F is a simple Morse function (since so is the function S), and
that its measured Reeb graph coincides with Γ, as desired. Theorem 3.11
is proved. �
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As we mentioned, Theorem 3.11, in addition to classifying generic func-
tions with respect to SDiffpMq-action on any surface M , also describes
the SDiff0pMq-classification in the case of M “ S2. In the general case
of M of an arbitrary genus the classification of functions with respect to
the SDiff0pMq-action, i.e. by symplectomorphisms isotoped to the identity,
is much more subtle than that for SDiffpMq-action. Now we describe this
classification, i.e., the discrete invariants, for the SDiff0pMq-action on sim-
ple Morse functions. It turns out it is convenient to treat separately the
cases of genuspMq “ 1 and genuspMq ě 2.

3.3. Classification of simple Morse functions under the
SDiff0pMq action: genus one case

Assume thatM “ T2 is a symplectic two-dimensional torus, a symplectic
surface of genus one with a fixed symplectic form ω, and let F : T2 Ñ R
be a simple Morse function on T2. The projection π : T2 Ñ ΓF from T2 to
the Reeb graph ΓF of F induces an epimorphism

π˚ : H1pT2,Zq Ñ H1pΓF ,Zq.

Definition 3.21. — Let T2 be a symplectic two-dimensional torus. A
measured Reeb graph Γ compatible with T2 is frozen into T2 if it is en-
dowed with an epimorphism π˚ : H1pT2,Zq Ñ H1pΓ,Zq. Two measured
Reeb graphs pΓ1, pπ1q˚q and pΓ2, pπ2q˚q frozen into the same torus T2 are
isomorphic if there exists an isomorphism φ : Γ1 Ñ Γ2 of measured Reeb
graphs such that the following diagram commutes

(3.10)
H1pT2,Zq

H1pΓ1,Zq H1pΓ2,Zq ,

pπ1q˚ pπ2q˚

φ˚

where pπ1q˚ is the freezing homomorphism of Γ1, and pπ2q˚ is the freezing
homomorphism of Γ2.

Thus, to each simple Morse function F on a symplectic two-dimensional
torus pT2, ωq, we associate a measured Reeb graph pΓF , pπF q˚q frozen into
T2. This graph is invariant under the action of SDiff0pT2q on simple Morse
functions. The following theorem states that this invariant is complete.

Theorem 3.22. — Let pT2, ωq be a symplectic two-dimensional torus.
Then there is a one-to-one correspondence between simple Morse functions
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on T2, considered up to symplectomorphism isotopic to the identity, and
(isomorphism classes of) measured Reeb graphs frozen into T2. In other
words, the following statements hold.

(i) Let F,G : T2 Ñ R be two simple Morse functions. Then the follow-
ing two conditions are equivalent:
(a) there exists a symplectomorphism Φ: T2 Ñ T2 isotopic to the

identity such that Φ˚F “ G;
(b) the measured Reeb graphs pΓF , pπF q˚q and pΓG, pπGq˚q frozen

into pT2, ωq are isomorphic.
Moreover, any isomorphism φ : pΓF , pπF q˚q Ñ pΓG, pπGq˚q of mea-
sured Reeb graphs frozen into the same torus T2 can be lifted to a
symplectomorphism Φ: T2 Ñ T2 isotopic to the identity such that
Φ˚F “ G.

(ii) For each measured Reeb graph pΓ, π˚q frozen into T2, there exists
a simple Morse function F : T2 Ñ R such that the frozen measured
Reeb graph pΓF , pπF q˚q of F is pΓ, π˚q.

Proof. — Let us prove the first statement. The implication (a) ñ (b)
is obvious, so it suffices to prove the implication (b) ñ (a). Assume that
φ : ΓF Ñ ΓG is an isomorphism of measured Reeb graphs frozen into T2. By
Theorem 3.11, it can be lifted to a symplectomorphism Φ1 : T2 Ñ T2 such
that Φ1˚F “ G. From diagram (3.10) we obtain the following commutative
diagram

(3.11)
H1pT2,Zq H1pT2,Zq

H1pΓG,Zq ,

Φ1˚

pπGq˚ pπGq˚

where πG : T2 Ñ ΓG is the natural projection. Let a P H1pT2,Zq be a
cycle homologous to a connected component of a regular G-level, and let
b P H1pT2,Zq be any cycle such that pa, bq is a basis of H1pT2,Zq. Then we
can find a basis element c P H1pΓG,Zq such that

π˚Gpaq “ 0, π˚Gpbq “ c.

Taking into account that Φ1 is orientation-preserving, we see from dia-
gram (3.11) that

Φ1˚paq “ a, Φ1˚pbq “ b`ma

where m P Z. Now, we claim that there exists a symplectomorphism
Ψ: T2 Ñ T2 such that Ψ˚G “ G, and

Ψ˚paq “ a, Ψ˚pbq “ b´ma.
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Indeed, such a symplectomorphism can be constructed as a suitable power
of the Dehn twist about any connected component of a regular G-level.

Now, set Φ “ Ψ ˝ Φ1. Clearly, Φ is a symplectic diffeomorphism, and
Φ˚F “ G. Furthermore, Φ is identical in homology. For a torus, this implies
that Φ is isotopic to the identity (see e.g. [12, Theorem 2.5]), as desired.
Now, prove the second statement. By Theorem 3.11, there exists a simple

Morse function F 1 : T2 Ñ R such that the measured Reeb graph associ-
ated with F 1 is Γ. A priori, the map pπF 1q˚ : H1pT2,Zq Ñ H1pΓ,Zq does
not coincide with the prescribed freezing homomorphism π˚ : H1pT2,Zq Ñ
H1pΓ,Zq. However, we may find a symplectic map Ψ: T2 Ñ T2 such that
π˚ ˝Ψ˚ “ pπF 1q˚. Indeed, we can find an orientation preserving diffeomor-
phism with this property, and, by Moser’s trick, there exists a symplectic
diffeomorphism in each isotopy class of orientation preserving diffeomor-
phisms. Now, taking F “ Ψ˚F 1, we obtain a function with desired proper-
ties. �

Remark 3.23. — The consideration in this section works for a surfaceM
of any genus, and it classifies functions up to symplectomorphisms trivially
acting in the homology ofM . The fact that symplectomorphisms trivial on
homology must be isotopic to the identity holds only for genus not greater
than one, see [12]. For the SDiff0pMq-classification in higher genera one
needs to incorporate finer tools and we consider them in the next section.

3.4. Reduced Reeb graphs and pants decompositions

In order for Theorem 3.22 to hold for higher genera, we need to modify
the definition of freezing. Let M be a closed connected two-dimensional
manifold of genus κ ě 2, and let F : M Ñ R be a simple Morse function
on M . Let also ΓF be the Reeb graph of F . Take an edge e Ă ΓF , and let
Cpeq “ π´1pxeq, where xe P e is any interior point (clearly, the isotopy class
of Cpeq is independent of the choice of interior point xe P e). Note that some
of the cycles Cpeq are isotopic to each other, and some are contractible. To
keep only non-isotopic cycles and get rid of redundant ones, we make use
of a construction by Hatcher and Thurston [14], which associates a pants
decomposition of M to each simple Morse function on M .

Definition 3.24. — Let Γ1F be the maximal subgraph of ΓF with no 1-
valent vertices (equivalently, the minimal subgraph to which ΓF retracts).
The reduced Reeb graph Γ̄F is defined by disregarding all bivalent vertices
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of Γ1F (see Figure 3.4). There is a natural projection M Ñ Γ̄F constructed
as follows. The graph ΓF can be presented as

ΓF “ Γ1F Y T1 Y ¨ ¨ ¨ Y Tm

where T1, . . . , Tm Ă ΓF are pairwise disjoint trees, Ti X Γ1F “ tviu, and
v1, . . . , vm are bivalent vertices of Γ1F . The mapping r : ΓF Ñ Γ1F » Γ̄F
that is identical on Γ1F and maps Ti to vi is a deformation retraction. A
projection M Ñ Γ̄F is defined by composing the projection π : M Ñ ΓF
with the retraction mapping r. We shall denote the projection M Ñ Γ̄F by
the same letter π.

Let e be an edge of Γ̄F , and let x P e be its interior point. We say that
x is regular if it is not a bivalent vertex of Γ1F .

Proposition 3.25. — The reduced Reeb graph Γ̄F has the following
properties.

(i) Γ̄F is homotopy equivalent to ΓF .
(ii) All vertices of Γ̄F are 3-valent. The number of vertices is 2κ ´ 2,

and the number of edges is 3κ ´ 3 where κ is the genus of M .
(iii) Let e be an edge of Γ̄F . Then for all regular interior points xe P e,

the set π´1pxeq Ă M is an embedded circle. Moreover, the isotopy
class of π´1pxeq is non-trivial and does not depend on the choice of
a regular xe P e.

(iv) Let e1, e2 be two distinct edges of Γ̄F , and let x1 P e1 and x2 P e2
be regular interior points. Then the isotopy classes of π´1px1q and
π´1px2q are distinct.

Proof. — The proof is straightforward. �

This way we obtain a collection C1, . . . , C3κ´3 of pairwise disjoint non-
trivial distinct isotopy classes of simple closed curves. It is well known that
such cycles decompose M into 2κ ´ 2 manifolds with boundary P1, . . . ,
P2κ´2, and that each Pi is homeomorphic to a pair of pants, i.e. a sphere
with three holes. For this reason, a choice of 3κ ´ 3 nontrivial pairwise
disjoint distinct isotopy classes of simple closed curves is called a pants
decomposition of M . Pants decomposition are also known as maximal cut
systems. Thus, to each simple Morse function F onM we associate a pants
decomposition PF of M .

Example 3.26. — Figure 3.4 shows a height function on a pretzel, as
well as its Reeb graph, reduced Reeb graph and the associated pants de-
composition.
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C1

C2

C3

M

F ΓF Γ̄F

Figure 3.4. Reeb graph, reduced Reeb graph and pants decomposition
for a height function on a pretzel.

For each pants decomposition P , there is an associated graph ΓpPq. This
graph is defined as follows: the vertices of this graph are pairs of pants
P1, . . . , P2κ´2. Two vertices vi and vj are joined by an edge if the pairs of
pants Pi and Pj have a common boundary component.
In other words, there exist bijections

C : tedges of ΓpPqu Ñ tcycles of Pu,
P : tvertices of ΓpPqu Ñ tpairs of pants of Pu ,

such that a vertex v of the graph ΓpPq is adjacent to an edge e if and only
if the circle Cpeq is a boundary component of the pair of pants P pvq. Note
that if the graph ΓpPq admits non-trivial automorphisms, then there exist
different maps C,P with these properties. This motivates us to give the
following definition.

Definition 3.27. — A colored pants decomposition of a surface M is
a quadruple pP ,Γ, C, P q where P is a pants decomposition of M , Γ is a
3-valent graph, and C,P are bijections

C : tedges of ΓpPqu Ñ tcycles of Pu,
P : tvertices of ΓpPqu Ñ tpairs of pants of Pu ,

such that a vertex v of the graph Γ is adjacent to an edge e if and only if
the circle Cpeq is a boundary component of the pair of pants P pvq.
Two colored pants decompositions pP1,Γ1, C1, P1q and pP2,Γ2, C2, P2q

are isomorphic if the pants decompositions coincide (P1 “ P2) and there
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exists an isomorphism of graphs φ : Γ1 Ñ Γ2, such that P1 “ P2 ˝ φ,
and C1 “ C2 ˝ φ. Note that the map C entering this definition uniquely
determines the map P with the only exception: unless P and Γ are the
ones depicted in Figure 3.5.

Figure 3.5. A pants decomposition P of a pretzel and the associated
graph ΓpPq.

Clearly, any pants decomposition P can be viewed as a pants decom-
position colored by its graph ΓpPq. Therefore, when we say that a pants
decomposition P is colored by a graph Γ, this means that Γ is isomorphic
to ΓpPq, and that the isomorphism between Γ and ΓpPq is fixed.

F ΓF Γ̄F

Figure 3.6. A height function on a pretzel whose reduced Reeb graph
has no simple loops.

Clearly, the graph of the pants decomposition PF associated with a
Morse function F has a natural structure of a pants decomposition col-
ored by the reduced Reeb graph Γ̄F . The colored pants decomposition
pPF , Γ̄F q, together with the measured Reeb graph ΓF is invariant under
the SDiff0pMq-action on simple Morse functions onM . If the reduced Reeb
graph Γ̄F has no simple loops (see e.g. Figure 3.6), then it turns out that
there are no other invariants. Otherwise, there are additional invariants
associated to each of the loops. These invariants are constructed as follows.
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Ñ
π

v

e

Cpeq

e1

Cpe1q

P pvq

Figure 3.7. Pair of pants corresponding to a loop.

Assume that e is a loop in Γ̄F , i.e., an edge joining some vertex v with
itself. Then the pair of pants P pvq is embedded into the surface M as de-
picted in Figure 3.7. Choose an arbitrary orientation of the loop e. Then,
using the projection π : M Ñ Γ̄F , one can lift this orientation to a coorien-
tation of the cycle Cpeq (see Figure 3.7). Since the surface M is oriented,
a coorientation of the cycle Cpeq canonically defines an orientation of this
cycle. This way, we obtain a bijective mapping

hte : torientations of eu Ñ torientations of Cpequ .

Since there are two such bijections, the invariant hte can take two values.

Definition 3.28. — The map hte is called the half-twist invariant as-
sociated with the loop e.

Existence of half-twist invariants is related to the presence of so-called
half twists in the automorphism group of a pants decomposition (see the
next section).

Note that one has to consider the invariant hte for each loop e in the
reduced graph Γ̄F , so that there are exactly 2k possible values of this in-
variant, where k is the number of loops in Γ̄F for a fixed colored pants
decomposition.

Remark 3.29. — More formally, the half-twist invariant can be defined
as the isomorphism

H1 pP pvq Y Cpeq,Zq { Z rCpeqs Ñ H1 peY v,Zq .

induced by the projection π. Since both groups are isomorphic to Z, there
are two such isomorphisms, and the half-twist invariant may take two
values.
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As we show below, a complete list of invariants of the SDiff0pMq action
on simple Morse function consists of a measured Reeb graph, colored pants
decomposition, and half-twist invariants for each of the loops in the reduced
Reeb graph.

3.5. Action of the mapping class group on pants decompositions

Let M be a closed connected surface of genus κ ě 2, and let PpMq be
the set of all possible pants decompositions ofM , considered up to isotopy.
Then there is a natural action of the mapping class group ModpMq on the
set PpMq. The following description of orbits of this action can be found,
e.g., in [21, 27].

Theorem 3.30. — Two pants decompositions P1 and P2 belong to the
same orbit of the ModpMq action if and only if the associated graphs ΓpP1q

and ΓpP2q are isomorphic. Moreover, any isomorphism φ : ΓpP1q Ñ ΓpP2q

gives rise to a certain mapping class Φ P ModpMq.

Let P be a pants decomposition of M given by non-oriented cycles
tC1, . . . , C3κ´3u. Following Wolf [27], we define the pointwise stabilizer of
P as the set of mapping classes which map every cycle Ci to itself:

StabpwpPq :“ tΦ P ModpMq | ΦpCiq “ Ci for all Ci P Pu.

180˝

Ci

Figure 3.8. Half twist about a genus-1-separating curve.

A cycle Ci is called genus-1-separating if MzCi “ M1 \M2 and either
M1 or M2 has genus one, i.e. it is a torus with a hole, see Figure 3.7. For
each genus-1-separating cycle Ci, there is an associated half twist, that is
a mapping class which twists a genus-one component of the complement
MzCi by 180 degrees and is isotopic to the identity on the second compo-
nent, see Figure 3.8 (also remark that the square of a half twist is a Dehn
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twist). Note that such separating cycles are in one-to-one correspondence
with loops in ΓpPq, provided that not both M1 and M2 are of genus one.
We also note that if both M1 and M2 have genus one (which is only pos-
sible if M has genus two and the pants decomposition is the one depicted
in Figure 3.4), then there are two distinct half twists about the curve Ci:
one twisting M1, and the other twisting M2. Thus for an arbitrary surface
M of genus ě 2 and its pants decomposition without exception there is a
one-to-one correspondence between half twists and loops in ΓpPq.
Now without loss of generality, assume that the curves C1, . . . , Ck are

genus-1-separating, while the curves Ck`1, . . . , C3κ´3 are not. We refer
to [27] for the following result on the structure of the stabilizer subgroup.

Lemma 3.31. — Assume that κ ě 3. Then the pointwise stabilizer
StabpwpPq is generated by half twists about the curves C1, . . . , Ck and
Dehn twists about the curves Ck`1, . . . , C3κ´3.

180˝

C1 C2 C3

P1

P2

Figure 3.9. Hyperelliptic involution.

As it is easy to see from the proof, the lemma is true for κ “ 2 as well,
unless P is the pants decomposition depicted in Figure 3.5. This is the only
case when each of the cycles is mapped to itself but the map on vertices can
be nontrivial. For this pants decomposition, the pointwise stabilizer has one
more generator which is depicted in Figure 3.9; this mapping class is known
as the hyperelliptic involution. Note that the hyperelliptic involution indeed
preserves the isotopy classes of the curves C1, C2, C3, but interchanges the
pairs of pants P1, P2. This leads us to the following definition:

Stab0pPq :“ tΦ P ModpMq | ΦpCiq “ Ci for all Ci P P ;
ΦpPjq “ Pj for all Pj P Pu ,

where C1, . . . , C3κ´3 are the cycles defining P , and P1, . . . , P2κ´2 are the
pairs of pants of P . This consideration implies the following proposition.
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Proposition 3.32. — Let M be a closed connected surface of genus
κ ě 2. Assume that P is a pants decomposition of M . Further, assume
that the curves C1, . . . , Ck P P are genus-1-separating, and the curves
Ck`1, . . . , C3κ´3 P P are not. Then Stab0pPq is generated by half twists
about the curves C1, . . . , Ck and Dehn twists about the curves Ck`1, . . . ,
C3κ´3.

Note that the group Stab0pPq is not Abelian but almost Abelian (i.e.
it has an Abelian subgroup of finite index). Namely, the group Stab0pPq
has an Abelian normal subgroup KpPq » Z3κ´3 generated by Dehn twists
about the curves C1, . . . , C3κ´3, and

Stab0pPq{KpPq » Zk2 ,

where k is the number of loops in the graph ΓpPq. Also note that if the pants
decomposition P is obtained from a simple Morse function F , then the
subgroup KpPq Ă Stab0pPq acts trivially on half-twist invariants defined
in the previous section, while each generator of the quotient group Zk2
changes the value of the corresponding invariant.

3.6. Classification of simple Morse functions under the
SDiff0pMq action: higher genus case

Now we are ready to give the definition of a graph frozenness for higher
genus.

Definition 3.33. — Let M be a closed connected symplectic surface
of genus κ ě 2. A measured Reeb graph Γ compatible with M is frozen
into M if it is endowed with the following additional data:

(i) a pants decomposition P ofM colored by the reduced Reeb graph Γ̄;
(ii) half-twist invariant hte for each loop e Ă Γ̄.

Definition 3.34. — Let pΓ1,P1, thte,1uq and pΓ2,P2, thte,2uq be two
measured Reeb graphs frozen into the same surface M . We say that the
frozen Reeb graphs Γ1 and Γ2 are isomorphic if there exists an isomorphism
φ : Γ1 Ñ Γ2 of measured Reeb graphs such that

(i) φ gives rise to an isomorphism of the corresponding colored pants
decompositions P1 to P2;

(ii) φ intertwines half-twist invariants thte,1u and thte,2u.

Remark 3.35. — Definition 3.21 of Reeb graphs frozen into torus can
be regarded as a particular case of Definition 3.33. Indeed, if M “ T2
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the reduced graph Γ̄F is a circle for any simple Morse function F . Then,
although one does not have a pants decomposition of the torus, one needs to
fix the image of the cycle corresponding to the edge e, which boils down to
fixing a surjective homomorphism of the homology groups π˚ : H1pT2,Zq Ñ
H1pΓ̄F ,Zq.

Theorem 3.36. — Under the above definition of freezing, Theorem 3.22
holds true for arbitrary surfaces of genus κ ě 1: for a symplectic surfaceM
of any genus there is a one-to-one correspondence between simple Morse
functions on M , considered up to symplectomorphism isotopic to the iden-
tity, and (isomorphism classes of) measured Reeb graphs frozen into M .

Proof. — Let us prove the first statement of Theorem 3.22 for any genus
κ ě 2. The implication (a) ñ (b) is obvious, so it suffices to prove the
implication (b) ñ (a). Assume that φ : ΓF Ñ ΓG is an isomorphism of
measured Reeb graphs frozen into M . By Theorem 3.11, it can be lifted
to a symplectomorphism Φ1 : M Ñ M such that Φ1˚F “ G. Since the iso-
morphism of reduced Reeb graphs induced by φ identifies colored pants
decompositions PF and PG, we have Φ1 P Stab0pPF q “ Stab0pPGq. There-
fore, by Proposition 3.32 the mapping class of Φ1 is a finite composition of
half twists and Dehn twists about connected components of F -levels.

Furthermore, since φ intertwines half-twist invariants thte,1u and thte,2u,
for every loop e in the reduced Reeb graph Γ̄1 this means commutativity
of the following diagram:

(3.12)

orientations of C1peq “ C2pφpeqq

orientations of e orientations of φpeq.φ

hte,1 htφpeq,2

This implies that the mapping class of Φ1 actually lies in the normal sub-
group of Stab0pPF q generated by Dehn twists. Finally, we can get rid of
Dehn twists in the same way as in the proof of Theorem 3.22.
Now, let us prove the second statement. By Theorem 3.11, there exists

a simple Morse function F 1 : M Ñ R such that the measured Reeb graph
associated with F 1 is Γ. Of course, the pants decomposition associated with
F 1 does not have to coincide with the one prescribed by freezing. However,
they have the same graphs, so by Theorem 3.30 there exists a mapping
class which maps one of these pants decompositions into the other one.
Taking a symplectic diffeomorphism Φ belonging to this mapping class, we
obtain a function F “ Φ˚F 1 such that the pants decomposition associated

ANNALES DE L’INSTITUT FOURIER



COADJOINT ORBITS OF SURFACE SYMPLECTOMORPHISMS 2417

with F is as desired. Further, by composing Φ with a suitable number of
half twists, we adjust the values of half-twist invariants. As a result, we
obtain a function F with desired properties. �

Corollary 3.37. — A complete set of invariants of a simple Morse
function on a closed symplectic surface M with respect to the SDiff0pMq-
action consists of invariants of a measured Reeb graph of the function, a
choice of a colored pants decomposition of M , and a Zk2-valued invariant
of possible orientations of the cycles described above.

4. Classification of coadjoint orbits of symplectomorphism
groups

4.1. Graph’s anti-derivatives, or circulation functions

Recall that the regular dual svect˚pMq of the Lie algebra svectpMq of
divergence-free vector fields on a manifold M is identified with the space
Ω1pMq{dΩ0pMq of smooth 1-forms modulo exact 1-forms onM . The coad-
joint action of a SDiffpMq on svect˚pMq is given by the change of co-
ordinates in (cosets of) 1-forms on M by means of a volume-preserving
diffeomorphism:

Ad˚Φ rαs “ rΦ˚αs.

In what follows, the notation rαs stands for the coset of 1-forms α in
Ω1pMq{dΩ0pMq. In particular, if the form α is closed, then rαs is the co-
homology class of α.
For a symplectic surface pM,ωq consider the surjective mapping

D : Ω1pMq{dΩ0pMq Ñ C80 pMq :“
"

F P C8pMq |

ż

M

Fω “ 0
*

given by taking the vorticity function,

Drαs “ dα
ω
.

(One can view this map as taking the vorticity function ξ̂ “ dα{ω of a vector
field v “ α7, as we discussed in Section 2.3.) Clearly, if cosets rαs, rβs P
svect˚pMq belong to the same coadjoint orbit, then the functions Drαs and
Drβs are conjugated by a symplectic diffeomorphism. In particular, if Drαs
is a simple Morse function, then so is Drβs.
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Definition 4.1. — We say that a coset of 1-forms rαs P svect˚pMq is
generic if Drαs is a simple Morse function. A coadjoint orbitO Ă svect˚pMq

is generic if any coset rαs P O is generic (equivalently, if at least one coset
rαs P O is generic).

Remark 4.2. — Assume that rαs and rβs belong to the same generic
coadjoint orbit. Then the functions Drαs, and Drβs are simple Morse func-
tions which have isomorphic measured Reeb graphs. Therefore, the mea-
sured Reeb graph of Drαs is an invariant of the coadjoint action of SDiffpMq
on svect˚pMq. However, this invariant is not complete. Indeed, assume that
Drαs and Drβs have isomorphic measured Reeb graphs. Then there exists
a symplectic diffeomorphism Φ such that Φ˚Drβs “ Drαs, and thus the
1-form

γ “ Φ˚β ´ α

is closed. However, it is not necessarily exact, so α and β do not necessar-
ily belong to the same coadjoint orbit. Nevertheless, we can conclude that
the moduli space of SDiffpMq coadjoint orbits corresponding to the same
measured Reeb graph is finite-dimensional and its dimension is at most
dim H1pM,Rq “ 2κ, where κ is the genus of M . As we show below, this
dimension is actually equal to κ. The reason for a half-dimensional reduc-
tion is that the symplectic diffeomorphism Φ that maps Drαs to Drβs is
not unique, and we may use this freedom to vary the cohomology class of
γ within a κ-dimensional subspace of H1pM,Rq.

Let rαs P svect˚pMq be generic, and let F “ Drαs. Consider the measured
Reeb graph ΓF . Let π : M Ñ ΓF be the natural projection. Take any point
x lying in the interior of some edge e P ΓF . Then π´1pxq is a circle C. It is
naturally oriented as the boundary of the set of smaller values. The integral
of α over C does not depend on the choice of a representative α P rαs. Thus,
we obtain a function

C : ΓF zV pΓF q Ñ R

given by

Cpxq “
¿

π´1
pxq

α ,

where V pΓF q is the set of vertices of the graph ΓF . Note that in the presence
of a metric on M , the value Cpxq is the circulation over the level π´1pxq of
the vector field α7 dual to the 1-form α .
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Proposition 4.3. — The function C has the following properties.
(i) Assume that x, y are two interior points of some edge e Ă ΓF . Then

(4.1) Cpyq ´ Cpxq “
y
ż

x

fdµ.

(ii) Let v be a 1-valent vertex of ΓF . Then

(4.2) lim
xÑv

Cpxq “ 0.

(iii) Let v be a 3-valent vertex of ΓF . Let e0 be the trunk of v, and let
e1, e2 be the branches of v. Let also xi P ei. Then

(4.3) lim
x0Ñv

Cpx0q “ lim
x1Ñv

Cpx1q ` lim
x2Ñv

Cpx2q.

Proof. — The proof is straightforward and follows from the Stokes for-
mula and additivity of the circulation integral. �

Definition 4.4. — Let pΓ, f, µq be a measured Reeb graph. Any func-
tion C : ΓzV pΓq Ñ R satisfying properties listed in Proposition 4.3 is called
a circulation function (or an anti-derivative). A measured Reeb graph en-
dowed with a circulation function is called a circulation graph pΓ, f, µ, Cq.
Note that the function f on the graph can be recovered from the cir-

culation function C, as formula (4.1) implies: f “ dC{dµ. Two circulation
graphs are isomorphic if they are isomorphic as measured Reeb graphs, and
the isomorphism between them preserves the circulation function.
Above we associated a circulation graph Γrαs :“ pΓ, f, µ, Cq to any generic

coset rαs P svect˚pMq.
Similarly, a frozen measured Reeb graph endowed with a circulation func-

tion is called a frozen circulation graph. Two frozen circulation graphs are
isomorphic if they are isomorphic as measured Reeb graphs frozen into a
surface, and the isomorphism between them preserves the circulation func-
tion.

Proposition 4.5. — Let pΓ, f, µq be a measured Reeb graph.
(i) The graph Γ admits a circulation function if and only if

(4.4)
ż

Γ
fpxqdµ “ 0.

(ii) If Γ admits a circulation function, then the set of circulation func-
tions on Γ is an affine space of dimension equal to the first Betti
number of Γ.
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Proof. — Let us prove the first statement. Assume that Γ admits a cir-
culation function. Let e P Γ be an edge of Γ going from v to w, and let
x P e. Let C´peq and C`peq be the limits of Cpxq as x tends to v and w,
respectively. We have

ż

Γ
fpxqdµ “

ÿ

e PEpΓq

`

C`peq ´ C´peq
˘

.

On the other hand, properties (4.2) and (4.3) imply that the sum at the
right-hand side of the latter equation vanishes, and hence (4.4) holds.
Conversely, assume that (4.4) holds. By Theorem 3.11, one can construct

a symplectic surface M and a simple Morse function F : M Ñ R such that
the measured Reeb graph of F is pΓ, f, µq. Since F has zero mean, we
have F “ Drαs for some 1-form α on M . Integrating α over connected
components of level sets of F , we obtain a circulation function on Γ, as
desired.
Now, let us prove the second statement. Let C and C 1 be two circulation

functions. Then, in view of property (4.1), their difference is constant on
each edge. Consider the 1-chain

C ´ C 1 “
ÿ

e PEpΓq
pCpxeq ´ C 1pxeqqe ,(4.5)

where EpΓq is the set of edges of Γ, and xe P e is any interior point.
Properties (4.2) and (4.3) imply that C ´ C 1 is a 1-cycle. On the other
hand, if we add a 1-cycle to a circulation function, we obtain a circulation
function. Therefore, the space of circulation functions is an affine space
with underlying vector space H1pΓ,Rq. �

4.2. Coadjoint orbits of SDiffpMq and SDiff0pMq

Theorem 4.6. — LetM be a closed connected symplectic surface. Then
generic coadjoint orbits of SDiffpMq are in one-to-one correspondence with
(isomorphism classes of) circulation graphs pΓ, f, µ, Cq compatible with M .
In other words, the following statements hold:

(i) For a symplectic surface M and generic cosets rαs, rβs P svect˚pMq
the following conditions are equivalent:
(a) rαs and rβs lie in the same orbit of the SDiffpMq coadjoint

action;
(b) circulation graphs Γrαs and Γrβs corresponding to the cosets

rαs and rβs are isomorphic.
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(ii) For each circulation graph Γ which is compatible(2) with M , there
exists a generic rαs P svect˚pMq such that Γrαs “ pΓ, f, µ, Cq.

Similarly, we have the following result:

Theorem 4.7. — LetM be a closed connected symplectic surface. Then
generic coadjoint orbits of SDiff0pMq are in one-to-one correspondence with
(isomorphism classes of) circulation graphs frozen into M .

The proofs of these two theorems are identical, with the only difference
that the proof of Theorem 4.6 is based on Theorem 3.11, while the proof
of Theorem 4.7 is based on Theorem 3.36. For this reason, we shall only
prove Theorem 4.6. We start with the following preliminary lemma.

Lemma 4.8. — LetM a closed connected oriented surface, and let F be
a simple Morse function on M . Assume that rγs P H1pM,Rq is such that
the integral of γ over any connected component of any F -level vanishes.
Then there exists a C8 function H : M Ñ R such that the 1-form HdF is
closed, and its cohomology class is equal to rγs. Moreover, H can be chosen
in such a way that the ratio H{F is a smooth function.

Proof. — Since the integral of rγs over any connected component of any
F -level vanishes, the cohomology class rγs on M belongs to the image of
the inclusion

i : H1pΓF ,Rq Ñ H1pM,Rq.
Let α be a 1-cochain on the graph ΓF representing the cohomology class
i´1prγsq. Then α is a real-valued function on the set of edges of ΓF . Recall
that the function f is the pushforward of the function F to the graph ΓF .
Consider a continuous function h : ΓF Ñ R such that

(i) it is a smooth function of f in a neighborhood of each point x P ΓF ;
(ii) it vanishes if f is sufficiently close to zero;
(iii) for each edge e, we have

αpeq “

ż

e

hdf.

Obviously, such a function does exist. Now, lifting h to M , we obtain a
smooth function H with the desired properties. �

Proof of Theorem 4.6. — Let us prove the first statement. The impli-
cation (a) ñ (b) is immediate, so it suffices to prove the implication (b)
ñ (a). Let φ : Γrαs Ñ Γrβs be an isomorphism of circulation graphs. By
Theorem 3.11, φ can be lifted to a symplectomorphism Φ: M Ñ M that

(2)See Definition 3.10 for compatibility of a graph and a surface.
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maps the function F “ Drαs to the function G “ Drβs. Therefore, the
1-form γ defined by

γ “ Φ˚β ´ α
is closed.
Assume that Ψ: M Ñ M is a symplectomorphism which maps the

function F to itself and is isotopic to the identity. Then the composition
rΦ “ Φ ˝Ψ´1 maps F to G, and

rrΦ˚β ´ αs “ rΦ˚β ´Ψ˚αs “ rγs ´ rΨ˚α´ αs.

We claim that Ψ can be chosen in such a way that rΦ˚β ´ α is exact, i.e.
one has the equality of the cohomology classes

rΨ˚α´ αs “ rγs.

Moreover, let us show that there exists a time-independent symplectic vec-
tor field X that preserves F and satisfies

(4.6) rΨ˚t α´ αs “ trγs ,

where Ψt is the phase flow of X. Differentiating (4.6) with respect to t, we
get in the left-hand side

rΨ˚t LXαs “ rLXαs “ riXdαs “ rF ¨ iXωs ,

since LXα is closed and Ψ˚t does not change its cohomology class. Thus

(4.7) rF ¨ iXωs “ rγs.

Since Φ preserves the circulation function, the integrals of γ over all con-
nected components of F -levels vanish. Therefore, by Lemma 4.8, there ex-
ists a smooth function H such that

rγs “ rHdF s.

Now we set
X :“ H

F
ω´1dF.

It is easy to see that the vector field X is symplectic, preserves the levels
of F , and satisfies the equation (4.7). Therefore, its phase flow satisfies
the equation (4.6), and then the symplectomorphism rΦ “ Φ ˝Ψ´1

1 for the
time-one map Ψ “ Ψ1 has the required properties.
Now, let us prove the second statement. By Theorem 3.11, there exists a

simple Morse function F : M Ñ R such that the measured Reeb graph of F
is pΓ, f, µq. Since the graph Γ admits a circulation function, Proposition 4.5
implies that F has zero mean. Therefore, there exists a 1-form α P Ω1pMq

such that Drαs “ F . Further, if γ is a closed 1-form, then Drα`γs “ F as
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well. For any 1-form α̃ such that Drα̃s “ F , let Cα̃ denote the corresponding
circulation function on Γ. Consider the mapping

ρ : H1pM,Rq Ñ H1pΓ,Rq

given by
ρ prγsq “ Cα`γ ´ Cα ,

where the right-hand side is defined by equation (4.5). The mapping ρ can
be written as

ρprγsq “
ÿ

e PEpΓq

˜

ż

Cpeq

γ

¸

e ,

where Cpeq “ π´1pxeq and xe P e is any interior point of the edge e.
Therefore, the kernel of the homomorphism ρ consists of those cohomology
classes which vanish on cycles homologous to connected components of
regular F -levels, and dim Ker ρ “ κ, where κ is the genus of M . So, by the
dimension argument, the homomorphism ρ is surjective. (Also note that
the mapping ρ can be written as π˚ ˝ p, where p : H1pM,Rq Ñ H1pM,Rq
is the Poincaré duality, and π˚ : H1pM,Rq Ñ H1pΓ,Rq is the epimorphism
induced by the projection π.)

Now, since the homomorphism ρ is surjective, one can find a closed 1-
form γ such that

ρprγsq “ C ´ Cα,
where C is a given circulation function on Γ, and therefore Cα`γ “ C, as
desired. �

5. Coadjoint orbits of the group of Hamiltonian
diffeomorphisms

Let M be a symplectic manifold, and let Φ P SDiff0pMq be a symplectic
diffeomorphism ofM isotopic to the identity. Recall that Φ is called Hamil-
tonian if a path Φt joining the identity Φ0 “ id and Φ1 “ Φ can be chosen
in such a way that the vector field

Xt :“
ˆ

d
dtΦt

˙

˝ Φ´1
t

is Hamiltonian for every t. In other words, a symplectic diffeomorphism is
Hamiltonian if it is a time-one map for a suitable time-dependent Hamil-
tonian vector field. Smooth Hamiltonian diffeomorphisms of M form an
infinite-dimensional group, which we denote by HampMq. The aim of this

TOME 66 (2016), FASCICULE 6



2424 Anton IZOSIMOV, Boris KHESIN & Mehdi MOUSAVI

section is to describe generic coadjoint orbits of HampMq in the case of a
two-dimensional surface M .
The Lie algebra hampMq of the group HampMq consists of all smooth

Hamiltonian vector fields on M . This Lie algebra is naturally isomorphic
to the Lie algebra

hampMq » C80 pMq “

"

F P C8pMq |

ż

M

F ¨ ω “ 0
*

of all smooth functions with zero mean with respect to the Poisson bracket.
The adjoint action of the group HampMq on its Lie algebra hampMq is the
natural action of diffeomorphisms on functions. The Lie algebra hampMq

is endowed with a bi-invariant inner product

pF,Gq :“
ż

M

FG ¨ ω,

therefore the regular dual ham˚pMq is naturally isomorphic to hampMq,
and the group coadjoint orbits coincide with the adjoint ones. Thus, coad-
joint orbits of the group HampMq are exactly the orbits of the natural
action of this group on functions.

Remark 5.1. — Since HampMq is a subgroup of the group SDiff0pMq

of symplectomorphisms isotopic to identity, the SDiff0pMq invariants of
functions described by Theorems 3.22 and 3.36 are also HampMq invari-
ants. Note that the natural projection of the dual spaces svect˚pMq Ñ

ham˚pMq, which follows from the embeddings of the corresponding Lie al-
gebras hampMq ãÑ svectpMq, is nothing but the operator Drαs :“ dα{ω
defined in Section 4.1.

The image of any SDiff0pMq-orbit contains whole HampMq-orbits, as
the HampMq-orbits are finer than SDiff0pMq-ones. Additional invariants
of the Hamiltonian orbits can be described in terms of certain flux-type
quantities.
Namely, let F andG be two simple Morse functions ofM belonging to the

same SDiff0pMq orbit. Then there exists an isomorphism φ : ΓF Ñ ΓG of
frozen measured Reeb graphs. Let κ be the genus ofM . Then the first Betti
number of ΓF is equal to κ. Therefore, one can choose κ edges e1, . . . , eκ
of ΓF in such a way that ΓF zte1, . . . , eκu is a maximal sub-tree of ΓF .
In other words, after dropping edges e1, . . . , eκ from the graph ΓF it still
remains connected but has no cycles.
On each edge ei, we choose an interior point xi P ei Ă ΓF and consider

the corresponding images φpxiq P ΓG. Denote by

CF,i “ π´1
F pxiq, CG,i “ π´1

G pφpxiqq
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ΓF

ΓG

x1 P e1
e1

CF,1
CG,1

πF

φ

φpx1q
πG

Figure 5.1. Construction of the curves CF,i and CG,i.

the corresponding level curves of the functions F and G, where πF : M Ñ

ΓF , πG : M Ñ ΓG are canonical projections (see Figure 5.1). Since the
isomorphism φ preserves freezing, the curves CF,i and CG,i are isotopic for
each i.

Definition 5.2. — The area between the curves CF,i and CG,i is equal
to zero if

(5.1)
ż

Cyl
Ψ˚ω “ 0

for a smooth mapping Ψ : Cyl ÑM of the cylinder Cyl to M which maps
two boundary components of Cyl to CF,i and CG,i respectively.

Lemma 5.3. — If the genus of M is κ ě 2, then the integral in the
left-hand side does not depend on the choice of the cylinder map Ψ. If the
genus κ “ 1, i.e., M “ T2, the integral is well-defined modulo symplectic
area of T2.

Proof. — Indeed, if we have two different maps Ψ1,Ψ2 : Cyl Ñ M that
coincide on boundary components of C, then together they can be regarded
as a map Ψ12 : T2 ÑM of a torus T2 to the surface M . If the genus of M
is bigger than one, then the induced map Ψ˚12 : H2pM,Rq Ñ H2pT2,Rq is
the zero map, therefore we have

ż

T2
Ψ˚12ω “ 0,

which implies that
ż

Cyl
Ψ˚1ω “

ż

Cyl
Ψ˚2ω.
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If the genus of M is one, then we have
ż

T2
Ψ˚12ω “ n

ż

M

ω

where n P Z, and therefore the integral on the left-hand side of (5.1) is
well-defined modulo a multiple of the area of M . So, if M has genus one,
we define the area between the curves CF,i and CG,i to be equal to zero if

ż

Cyl
Ψ˚ω “ n

ż

M

ω

for n P Z. Note that if this identity holds for some choice of Ψ, then it is
always possible to choose another mapping Ψ in such a way that n “ 0. �

Theorem 5.4. — Let F and G be two simple Morse functions on a
symplectic surface M belonging to the same SDiff0pMq orbit. Then they
belong to the same HampMq coadjoint orbit if and only if there exists
an isomorphism φ : ΓF Ñ ΓG between the corresponding measured Reeb
graphs frozen into M such that the area between the curves CF,i and CG,i
defined above is equal to zero for each i.

Before proving Theorem 5.4 we recall the notion of the flux homomor-
phism. Let Φ P SDiff0pMq be a symplectic diffeomorphism isotopic to the
identity, and let Φt be smooth a path such that Φ0 “ id,Φ1 “ Φ, and Φt
is a symplectic diffeomorphism for every t P r0, 1s. Then the vector field

Xt “

ˆ

d
dtΦt

˙

˝ Φ´1
t

is symplectic if the 1-form αt “ iXtω is closed for every t. Consider the
cohomology class

FluxpΦtq “
ż 1

0
rαtsdt P H1pM,Rq ,(5.2)

where rαts is the cohomology class of αt. A priori, FluxpΦtq may depend
on the path Φt.

Proposition 5.5. — The cohomology class FluxpΦtq is uniquely de-
termined by the homotopy type of the family of symplectomorphisms Φt.
Explicitly, let apsq be any parametrized loop in M , aps ` 1q “ apsq and
let Cyl “ R{Z ˆ r0, 1s be a cylinder understood as a family of such loops.
Then for a map Ψ: Cyl ÑM given by Ψps, tq “ Φtpapsqq one has

xFluxpΦtq, ras y “
ż

Cyl
Ψ˚ω ,(5.3)

where x , y denotes the canonical pairing between H1pM,Rq and H1pM,Rq.
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Proof. — Choose a 1-form β on Cyl such that ξ˚ω “ dβ, and let Ct “
tps, uq P Cyl | u “ tu be the loop on the cylinder corresponding to param-
eter t. Then

ż

Cyl
Ψ˚ω “

ż

C1

β ´

ż

C0

β “

ż 1

0

ˆ

d
dt

ż

Ct

β

˙

dt.

When computing the integral of β over Ct, we may assume that β “ Ψ˚γ,
where the 1-form γ is an antidifferential of ω defined in the small neigh-
borhood of the curve ΨpCtq. So,

d
dt

ż

Ct

β “
d
dt

ż

Ct

Ψ˚γ “ d
dt

ż

Φtpaq
γ “

d
dt

ż

a

Φ˚t γ “
ż

a

d
dtΦ

˚
t γ

“

ż

a

Φ˚t LXtγ “
ż

a

Φ˚t piXtdγ ` diXtγq “
ż

a

Φ˚t αt “ x rαts, ras y,

which proves formula (5.3). �

From (5.3), it follows that Fluxpφtq depends only on the homotopy type
of Φt, since the integral in the right-hand side does not change under a
deformation of the map Ψ fixed on the boundary circles of Cyl. This way
we obtain a map

ĆFlux : ĆSDiffpMq Ñ H1pM,Rq

where ĆSDiffpMq is the universal cover of SDiff0pMq. It is easy to see that
this map is a homomorphism of groups. Let L be the image of the funda-
mental group of SDiff0pMq under the map ĆFlux.

Definition 5.6. — The homomorphism

Flux : SDiff0pMq Ñ H1pM,Rq {L ,

obtained by descending the mapping ĆFlux, is called the flux homomor-
phism.

It follows from the construction of Flux, that if Φ P HampMq, then
FluxpΦq “ 0. The converse result is also true:

Theorem 5.7 (Banyaga [5]). — Let Flux : SDiff0pMq Ñ H1pM,Rq {L
be the flux homomorphism. Then Ker Flux “ HampMq.

Remark 5.8. — Let us comment on the structure of the group L whenM
is a surface. As follows from the Moser theorem, the group SDiff0pMq is a
deformation retract of the ambient group Diff0pMq of all diffeomorphisms of
M isotopic to the identity. Furthermore, the group Diff0pMq is contractible
if genus of M is κ ě 2, and it is a deformation retract to the subgroup of
linear automorphisms for κ “ 1 (see [11, 12, 13]). Therefore, if the genus
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of M is at least two, then the group SDiff0pMq is contractible, and thus
L “ 0. If M is a torus, then SDiff0pMq is a deformation retract to linear
automorphisms, which easily implies that

L “

ˆ
ż

M

ω

˙

H1pM,Zq .

Note that formula (5.3) implies that the value of the cohomology class
FluxpΦq on a homology class ras can be defined as the area between the
curves a and Φpaq. If M is a surface of genus κ ě 2, then this area is
well-defined. If M is a torus, the area between a and Φpaq is defined only
modulo the total area of M . However, as follows from our description of
the group L, one still obtains a well-defined element of H1pM,Rq {L. In
the proof of Theorem 5.4 below, we interchangeably use both definitions of
flux, by means of formula (5.2) and as the area between curves.

Proof of Theorem 5.4. — First, let F and G be two simple Morse
functions of M such that G “ Φ˚F , where Φ P HampMq. Suppose that
φ : ΓF Ñ ΓG is the corresponding isomorphism of frozen measured Reeb
graphs. Then, since Φ is the lift of φ, it follows from the definition of the
cycles CF,i and CG,i that the diffeomorphism Φ maps CF,i to CG,i for each
i. Therefore, since FluxpΦq “ 0, the area between the curves CF,i and CG,i
is equal to zero.
Conversely, assume that F and G are two simple Morse functions of M

such that G “ Φ˚F , where Φ P SDiff0pMq, and that the area between
the curves CF,i and CG,i for all i is equal to zero. The area condition im-
plies that the cohomology class FluxpΦq vanishes on the homology classes
rCF,is. Moreover, it follows from the construction of the curves CF,i that
every connected component of any regular F -level is homologous to a lin-
ear combination of classes rCF,is, so FluxpΦq vanishes on all connected
components of all regular F -levels. Therefore, by Lemma 4.8, there exists
such a C8 function H : M Ñ R that the 1-form HdF is closed, and its
cohomology class is equal to FluxpΦq. Set

X :“ ω´1HdF.

Then the flow of the vector field X preserves the symplectic structure and
the function F . Let Ψ be the time-one map of X, and let rΦ “ Φ ˝ Ψ´1.
Then rΦ P SDiff0pMq, and rΦ˚F “ G. Furthermore, one has

FluxprΦq “ FluxpΦq ´ FluxpΨq

“ FluxpΦq ´
ż 1

0
riXωs dt “ FluxpΦq ´ rHdF s “ 0.
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Therefore, by Theorem 5.7, the diffeomorphism rΦ is Hamiltonian, as re-
quired. �

6. Related classifications results

In this section, we discuss the relation of Theorem 3.11 on the classifica-
tion of simple Morse functions on a surface with respect to the SDiff-action
to the following two previous classification results:

(A) Dufour, Molino, and Toulet classified in [10] simple Morse fibra-
tions on surfaces with area forms under the action of symplectic
diffeomorphisms.

(B) Bolsinov [6] and Kruglikov [18] classified Hamiltonian vector fields
on surfaces up to the action of arbitrary diffeomorphisms.

First note that the classification provided by Theorem 3.11 above is finer
than either of these classifications. Indeed, for the classification (A) we
assume that two simple Morse functions F andG on a symplectic surfaceM
are equivalent in the sense of Theorem 3.11, i.e. they can be obtained from
each other by means of a symplectic diffeomorphism. Then the associated
fibrations F and G, which are given by connected components of F - and G-
levels respectively, are also symplectomorphic. Thus, equivalence of F and
G in the sense of Theorem 3.11 implies the equivalence of the associated
fibrations F and G in the sense of Dufour, Molino, and Toulet. On the other
hand, the converse is not true in general: a symplectomorphism mapping
fibrations F to G does not have to map function F to G. E.g., for different
height functions on the unit sphere, such as z and 2z, their associated
fibrations are the same, formed by circles of latitude on S2.
Similarly, an equivalence of two simple Morse functions F and G in the

sense of Theorem 3.11 implies the equivalence of the associated Hamiltonian
vector fields ω´1dF and ω´1dG in the sense of Bolsinov and Kruglikov. The
converse statement is again not true in general, since a diffeomorphism
mapping the Hamiltonian vector field ω´1dF to the Hamiltonian vector
field ω´1dG does not have to be symplectic and does not have to map F
to G (note that if at least one of these conditions holds, then the second
condition holds as well).
Thus, since the classification described in this paper is more delicate, in-

variants involved in the above mentioned classifications (A) and (B) should
be representable in terms of the invariants of Section 3, i.e., in terms of the
measured Reeb graph. For classification (A), this was already explained in
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Section 3.2. Below we briefly describe the invariants involved in classifi-
cation (B) and show how they can be computed from the corresponding
measured Reeb graph.
Let M be a surface and F a simple Morse function on M . Further,

let X “ ω´1dF be the Hamiltonian vector field corresponding to F and
a certain symplectic form ω on M . Note that given a vector field X on
M Hamiltonian with respect to some symplectic structure, its representa-
tion as a Hamiltonian field is not unique. Namely, for any function Gpzq

of one variable such that G1pzq ‰ 0, we have X “ pωGq
´1dGpF q, where

ωG :“ G1pF q ¨ ω is another symplectic form on M . Nevertheless, the Reeb
graph ΓF (without measure on it) is uniquely determined by the vector field
X and does not depend on the representation of X in the form ω´1dF . In-
deed, generic integral trajectories of X are periodic and coincide with con-
nected components of F -levels. Therefore, the fibration ofM into connected
components of F -levels, and thus the Reeb graph ΓF , can be reconstructed
from X. In particular, if the field X is diffeomorphic to another Hamil-
tonian vector field Y , then their Reeb graphs are isomorphic as abstract
graphs.
To emphasize that the Reeb graph associated with a Hamiltonian vector

field X depends only on X, but not on the particular choice of a Hamilton-
ian F , we denote this graph by ΓX . Note that the graph ΓX is no longer
endowed with either the measure µ, or the function f , since these objects
do depend on a representation of X in the form ω´1dF and cannot be
reconstructed from the field X itself. Instead, we have a period function
Π: ΓX Ñ RYt8u intrinsically related to the field X and defined as follows.
For each x P ΓX that is not a vertex, the value Πpxq is equal to the period of
the trajectory of X that is mapped to x under the projection π : M Ñ ΓX .
Now, if x tends to a vertex v, then it can be shown that Πpxq has a finite
limit for a 1-valent vertex v, and it tends to infinity for a 3-valent vertex
v. Thus, Π can be extended to a continuous function Π: ΓX Ñ R Y t8u,
which is called the period function. Clearly, two diffeomorphic Hamilton-
ian vector fields have the same period functions. One should mention that
there are three kinds of invariants of Hamiltonian fields with respect to
the diffeomorphism action: invariants associated with edges of ΓX , invari-
ants associated with 1-valent vertices, and the so-called Λ-invariants that
are associated with 3-valent vertices. It turns out that all invariants of
the Hamiltonian vector field X under diffeomorphisms can be expressed in
terms of the period function Π, cf. [3, 6, 18].
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Now, we assume that the representation X “ ω´1dF is fixed, and show
that the invariants of X described above can be computed from the mea-
sured Reeb graph ΓF . As we mentioned above, these invariants are con-
structed in terms of the period function Π. Therefore, to show that they
are expressible in terms of the measure µ and the function f on the graph
ΓF , it suffices to express the period function Π in terms of µ and f . This
can be easily done as follows:

Πpxq “ dµprv, xsq
dfpxq ,

where v is the starting point of an edge rv, ws of the graph ΓF , and
x P rv, ws. To prove that, consider formula (3.3) from the proof of Proposi-
tion 3.4, and note that Πpxq “ T pfpxqq. Thus, invariants of the Hamiltonian
vector field ω´1dF under diffeomorphisms can indeed be computed from
the measured Reeb graph ΓF .
One should note that if F is any Morse function, not necessarily simple,

then its Hamiltonian vector field ω´1dF has additional invariants that are
not expressible in terms of the period function, such as the so-called ∆ and
Z-invariants, see [6, 18]. However, if F is a simple Morse function (and the
set of such functions is open dense), then those invariants become trivial
(see [7, p. 245]), and hence the invariants of the corresponding Hamiltonian
field with respect to the symplectomorphism action are covered by our
consideration.

Remark 6.1. — Both classifications (A) and (B) have counterparts for
finitely smooth fields and diffeomorphisms actions. In the Ck-smooth case,
the corresponding invariants (such as the invariants rζis in classification (A))
become polynomials instead of infinite series, see [18]. However, in all clas-
sifications considered in this paper the invariants remain unchanged in the
Ck-case. What is different for finite smoothness is the restriction on ad-
missible measures µ on Reeb graphs. In particular, both asymptotics and
compatibility conditions at three-valent vertices for the series expansion of
µ (see Section 3.1) now need to be satisfied only for finite number of terms
depending on k. All the discrete invariants are the same in both cases of
finite and infinite smoothness.
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