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1. - INTRODUCTION 

The concept of a fluctuating driving force in its very general form is
imbedded in many a physical phenomenon as the motive cause behind
them. The motion of a Brownian particle suffering random changes in
its accelerations provides an example of such a process. The theoretical

implications of such a motion and its impact on physics in general was not
realised to an appreciable extent until 1905, when Einstein [1] published
his investigations on the statistical properties of the displacements expe-
rienced by such a particle. Detailed study of such a fluctuating force F(t)
and the resultant Brownian motion was carried out by Uhlenbeck and
Ornstein [2], Chandrasekhar [3] and Wang and Uhlenbeck [4]. In fact

the particles executing Brownian oscillations obey the equation

where u is the velocity of the particle. The influence of the surrounding
medium has been visualised to consist essentially of two parts : (1) A deter-
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ministic part - fu which causes friction (2) A stochastic part F(t) charac-
terised by the following two properties :

(i) The mean of F(t) at a given t, over an ensemble of particles is zero

(ii) The values of F(t) at two different times ti and t2 are not correlated at
all except for extremely small intervals of t i. e. for small values of I t 1 2014 ~ ! ’
More precisely

where is a function with a very sharp maximum at x = 0. If we

superpose on the above the following restrictions on the higher order corre-
la tions of F(t),

we obtain a complet description for u and such a process is known as the
Uhlenbeck-Ornstein process.
However it may be worthwhile to explore the possibility of generating

the Uhlenbeck-Ornstein process from a force field F(t) which need not
necessarily be of Gaussian character. It is relevant in this context to

visualise certain density fields introduced by Ambarzumian [5] and Chan-
drasekhar [6] who have studied the distribution of interstellar matter in
the galectic region. A particular model of a fluctuating density field has
been investigated by Ramakrishnan [7] in detail.

In this paper we propose to investigate, the possibility of representing a
general density field by a Markovian process p(t ) evolving with t and
depending on a large parameter a. The parameter a can be related in a

way to the distance (measured along t) within which the correlations

persist. It is shown that there exist a wide class of distributions for F(t)
which will give rise to physical phenomena like Brownian Motion.

Section 2 of the paper contains a short discussion on the Fokker-Planck

equation and its solution with special reference to Markovian features
of F(t) and u(t). Since the authors have not come across any proof of the
Markovian character of u(t) in the literature, a short discussion of this
aspect has been considered to be not entirely out of context. The model

of the density field p(t) is introduced in section 3 which also contains an
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explicit demonstration of the approximate equivalence of the solution with
the Uhlenbeck-Ornstein process. Physical applications of the model are
discussed in the final section.

2. - GAUSSIAN PROCESS
AND FOKKER-PLANCK EQUATIONS

As mentioned in section 1, (1.1) has been the starting point of many
an investigation in this field. Our object is to solve (1.1) using the given
random characteristics of F(t). By solution we mean the probability fre-
quency function of u at different times. In solving for the distribution
function of u, it is tacitly assumed that u(t) constitutes a Markov process
(see for example Chandrasekhar [7a], p. 32 remarks under equation (218)).
The markovian assumption implies that P(u Mo, t ) (where P(u Mo, t) du
denotes the probability that u(t) has a value between u and u + du given
u(t) had a value uo at t = 0) is given by (1) Smoluchowski equation

If we consider

where O(u) is an arbitrary smooth function of u tending to zero as M 2014~ ± 00

and feed (2.1) into (2.2), we obtain after some manipulation,

where we have assumed

(~) We have also assumed that the process is homogeneous.



306 S. K. SRINIVASAN AND R. VASUDEVAN

An application of this method to P(u Mo, t) where u(t) satisfies the Langevin
equation (1.1) leads to the familiar equation

if 03B2 = flm
where it has been tacitly assumed that u(t) is markovian and also that

It is interesting to note that (2.3) is not a good approximation, if every
one of the moments of At) is proportional to At (see for example
Lax [8]). In fact there exist a variety of phenomena wherein P(u’ ] u; At)
is given by

and in such a case we obtain the generalized Fokker-Planck equation

where

(2.8) is still based on the markovian character of u(t). Though the mar-
kovian character is quite plausible from intuitive physical argument (see
Chandrasekhar [7a] and Moyal [9]), it is worthwhile to investigate whether
the Langevin equation (1.1) together with the conditions imposed on F(t)
do imply such a property of u(t). To this end we first notice that the

vector (u, F) constitutes a Markov process and hence we have

Let us consider
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where W(u, F) is an arbitrary smooth function of u and F vanishing at ± oo .

Using (2.10) in the first integral and expanding F) about (u’, F’),
we obtain

where

It is easy to note that

and P in turn due to the delta correlated nature of the process F, can be
assumed to be of the form

In view of the Langevin equation (1.1) and the nature of assumptions on
F(t), it follows that

and

Also 03B101 = 0 and adopting the same technique as that used in obtain-
ing (2 . 3), we arrive at a Fockker-Planck equation for F [ uo, Fo ; t)
involving Ct20, 03B102, Q0 1 and oclo.

If we integrate both sides of such an equation over the entire domain of F,

remembering that both n and ~, are well behaved at ± oo, we regain
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the usual Fokker-Planck equation, corresponding to the Langevin equation
without starting with the usual markovian assumption for the u(t ) process

3. - A PROBABILISTIC MODEL
OF DENSITY FIELD

The object of the present section is to demonstrate explicitly the possibility
of arriving at a Gaussian distribution as an approximation. We emphasise
on the word approximation since the deviation from Gaussian law can be
readily deduced on more detailed considerations. Towards this end let us

assume that p(t) describes a process evolving with respect to t. t can stand

for time or spacial coordinate and we shall take p to be a density field and
hence assumes positive values for p. Thus with every t we can associate

a function po t, to) where po t, to) denotes the probability
that p(t) takes a value between p and p + dp at the parametric value t,
given that p had assumed a value po at to. If the process is homogeneous
than po ; t, to) is a function only of (t - to) and we denote

- to) by I Po, t)~ setting to = 0. We next make use of the

markovian nature of p(t) to write

In the derivation of Fokker-Planck equation it is usually assumed that

] p’ ; At) is of such a nature that

are proportional to At while the higher moments of (p - p’) are of smaller
order of magnitude than At. However it is worthwhile to examine whether

the following conditions, imposed on ] p’ ; At) can lead to physicalIy
meaningful results :

(i) The probability that in the interval (t, t + At), p jumps to a value
different from the one that it has assumed at t, is proportional to At.

(ii) The probability that p continues to take the same value as it had at t,



309FLUCTUATING DENSITY FIELDS

in the interval (t, t + At) is approximately equal to 1. Stated precisely
the asymptotic form for 1t for small At is given by

Thus n(p ] p’, t) satisfies the Kolmogorov forward equation

Next we assume R(p’ (see Ramakrishnan [7]) is function only of p’.

This yields

where

This equation can be solved using the initial condition

Thus

Notice (3 . 3) admits a sationary solution :

where ~(p) is not necessarily a Gaussian distribution.
It is interesting to compare the differential equation (3.5) with the

corresponding Fokker-Planck equation for 7r itself. The coefficients al,

a2, ..., a~, can be calculated in terms of the moments of R(p).
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We notice a"(p) is a polynomial, in p, of degree utmost equal to n. How-

ever, we can arrive at the usual Fokker-Planck equation if an(p) « 1 for
n &#x3E; 2. We shall show that this is exactly the case if we make a suitable
choice of the distribution ~r(p). -

Apart from these general comments, let us ask a definite question:
Is the density correlation at two points the same as that expected from a
Gaussian law? This can be answered by merely stipulating that a be
very large. In fact larger the a, more wild is the fluctuation for a denotes
the total probability per unit t of a change in p.

If t ~&#x3E; - then e-at is vanishingly small and the second term can be neglected.
a

Thus probability distribution of the density at t is independent of that

at t = 0. On the other hand if t == - , then the densities are correlated.
a

The statement a is very large implies the substitution rule

where 5 is the Dirac delta function.

To get a clear picture of the distribution, we calculate the correlation
functions of different orders. The second order correlation is given by

where

If we wish to calculate the higher order moments then we need the joint
probability frequency function p2, ..., pn, ti, t2, ..., This can

be calculated by the markovian nature of the problem. There are many

approaches to the problem. In the work of Ramakrishnan, all moments
of p are assumed to be of order unity
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We will take the role played by a more explicitly by noting

where a is very large and

We can expect a)dp to be dependent on a. We can think of

many models, and some of these are listed in the table below, along with
the expressions for the moments.

P P2 Pn

I ! a 2a2 ann ! t
a

II a 2a2 ann ! t

III a1 ~~ 2a t

IV 2a t

The joint probability frequency-function ..., pn, tl, ..., tn) for large
values of tl, t2, ..., t,~ is given by

We can easily calculate the correlations of the variable
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Thus the only nonvanishing term in the mth order correlation has a factor

(1 a)I(m+1 2)
where I(m+1 2 ) is the integral part of (m + 1)/2. Let us find

the mean and moments of the integral of p over t defined by

If we take the model

we have

Removing the time ordering within each bracket gives 1 2n and removing
the ordering 0, t2, t4, ... , t2n- 2 of the brackets relative to each other we
obtain another n !. Finally we arrive at

neglecting lower order terms. If E(x2) is of order less than a, for a given
distribution, we are led to the result that skewness and flatness factor

vanish to order ~ .
a

All the old moments lead to terms of order 0 a£ 1 8 &#x3E; 0. Thus in this

approximation we get the usual moments of the Gaussian distribution.
However, if p = 0 and p is distributed over the interval - 00 to + 00 as

2 the odd moments of p are automatically zero. ° The probability

frequency function is therefore the well-known one for the Gaussian pro-
cess. We can obtain this result in a more straightforward manner if we
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construct the generalised Fokker-Planck equation from the forward equa-
tions. Before going to this, let us find the moments of the stochastic

variable in the above approximation

since all the odd moments of M vanish. Thus

(3.28) is useful in the determination of the fluctuations in brightness of
Milky way considered in reference [7] and we shall illustrate this in the
final section of this paper.

4. - LANGEVIN EQUATIONS

For convenience we shall rewrite (1.1) as

where

Let us assume that p(t) is a fluctuating density field of the type described
in section 3. Since p(t) is markovian, it is clear that the vector process (u, p)
is again markovian and hence we can obtain a partial differential equation
for p, t) the joint probability frequency function of u and p by the
forward differential equation technique of Kolomogorov (see Feller, 1951).
Thus if we increase t by A we notice that there are two mutually exclusive
events according as whether or not the random variable p makes a transi-
tion to a different value in the infinitesimal interval. Using elementary
probability arguments and taking into account the changes in u as governed
by (4 .1 ), we notice
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Proceeding to the limit as e --~ 0, we obtain

The above deviation can be suitably modified to lead to the usual Fokker-
Planck equation if we take note of the fact that p changes very rapidly, in
comparison with the variations in u, in the time At. To incorporate this
we replace (4 . 3) by the following :

which can be rewritten in view of the Langevin equation as

r+e

where M(4) - p(t’)dt’. Expanding right hand side in Taylor series,

we obtain after integrating over dp on both sides, in the limit A - 0, the
following:

If is of such a type, that e { (p - p’)2 ~ or e { M(A2) } is of

order At and higher moments of order 0(At), s(p 2014 p’) and e { M(A) } are
equal to zero, when we take the limit A - 0 and when we integrate both

(2) We use the same symbol r to denote the probability frequency function
of u(t ).
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sides of (4.6) with respect to p, we are left with the usual Focker Planck
equation

In equation (4.7) it is to be pointed out that the mixed term ~203C0 ~u~03C1 which
may be muitipiied by Lim 20142014.20142014 does not survive since when inte-
grated over /?, ~03C0(u,03C1,t) ~u is well behaved enough to go to zero at the limits
of one of its arguments p.
Now we can examine whether we can obtain a Fokker-Planck equation

for 7:(M, ~). Using the technique employed in section 2, we obtain

where

We shall assume that the mean value of p is zero. It is easy to note

The rest of the am, ns are evaluated by making use of the magnitude of the
parameter a. Using (3.19), we find

in some suitable units.

Next we calculate the coefficients aoms :

Using the form (3.8) for the p. f. f. of p(t) and form IV for ~(p) we find

aom = is a polynomial in p, of highest power m = f ’~(p). (4 .14)
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Thus the Fokker-Planck equation for p, t) is given by

Integrating over the entire domain of p and making use of the smoothness
property of p, t) we obtain

which is identical with the corresponding equation if p were to be taken
a Gaussian random process.

5. - APPLICATION
TO AN ASTROPHYSICAL PROBLEM

We shall next consider how Chandrasekhar’s theory of fluctuations in
brightness of Milky Way can be described in terms of our fluctuating
density field. Following the ref. [7] we will attempt to solve the problem
of moments of the intensity distribution by assuming the density of the
interstellar matter to vary in a continuous but fluctuating albeit widly.
The problem is treated essentially as a one dimensional problem and the
observer at the origin t = 0 measures the intensity received at the origin
due to the stars which are uniformly distributed along the line of sight.
If k is the absorption coefficient and p the density of interstellar matter,

then M(t) = k t0 03C1d03C4 is the optical thickness of matter corresponding to

the distance t. K can be put equal to 1/s { p ~ without loss of generality
by suitably choosing the unit of t. Thus unit intensity, on passing through
matter of extension t, is cut down to an intensity e-M(t) where

Assuming the production of intensity to be f3dï: in any interval di, and
taking f3 = 1, without l oss of generality the cumulative net intensity observed
at t = 0 is given by
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and it is the variable I(t) whose probability frequency function we seek.
Thus the nth moment of I(t) is given by

where

We next order the variables t1, t2, ..., tnandevaluatee {Y(tl)Y(t2)... 
by taking over equation (3.28). The ... Y(tn) } can be written
down by visualising and adding up the intensities allowed to pass through
from the intervals, t to tn-l to tn - 2, ..., ti = 0 where

If we write 2014-20142014 = B we obtain for the nth order moment (as medium
extends up to 00 )

Taking to be equal to 1, according to the normalization in equa-

tion (5.1) and substituting for rx2 = ~ ) " ~~ and To = ~-~ we[e(p)]" a

obtain

The second term in the right hand side of expression (5.6) differ from the
expressions obtained in reference [7] by some factors.
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