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Section A :

Physique théorique.

ABSTRACT. - Some facts concerning symplectic vector spaces, their

automorphism groups Spl(2n, R, E), and derivation Lie algebras
spl(2n, R, E) are given. For every element R of these Lie algebras a sol-
vable Lie group exp(RR) x E x R is constructed, which is nilpotent
iff R is nilpotent. We calculate the Lie algebras f~R (B E of these

groups, all of which contain the Heisenberg Lie algebra. Automorphism
groups and derivation Lie algebras of RR fl3 E fl3 R, and faithful finite
dimensional representations of them together with the corresponding
representations of exp(RR) x E x R are given. In Part II a modifica-

tion weyl(E, cr) of the universal enveloping algebra of the Heisenberg Lie
algebra is defined. We realize the Lie algebras E E9 R in this

algebra. Finally some automorphisms and derivations of 
are constructed by means of the adjoint representation of weyl(E, ~).
Attention is given to the case of the harmonic oscillator and especially
to the free nonrelativistic particle whose group is nilpotent.

RESUME. - Quelques qualites concernant des espaces vectoriels symplec-
tiques, leurs groupes d’automorphismes Spl(2n, R, E) et leurs algèbres
de Lie des derivations sont discutes. Pour chaque element R d’une telle

algèbre de Lie, on construit un groupe de Lie solvable, exp(RR) x E x R,
qui est nilpotent si et seulement si R est nilpotent. On calcule les algèbres
de Lie RR © E p R de ces groupes qui contiennent tous 1’algebre de Lie
d’Heisenberg. On donne les groupes d’automorphismes et les algèbres de
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Lie des derivations de E Q9 R, ainsi que des representations
finies fideles ensemble avec les representations correspondantes de
exp(RR) x E x R. Dans la 2e partie, on définit une modification weyl(E, (1)
de l’algèbre universelle enveloppante appartenant à l’algèbre de Lie d’Hei-
senberg. Dans cette algebre, nous realisons les algebres de Lie RR 0 E 0 IR.

Finalement, on construit quelques automorphismes et derivations de
RR 0 E 3 I~ avec l’aide de la representation adjointe de weyl(E, y).
On observe l’oscillateur harmonique et plus spécialement la particule libre
non relativiste (dont le groupe est nilpotent).

INTRODUCTION

In § 1-1 we collect some facts on the symplectic matrix group Spl(2n, R, E)
and its Lie algebra spl(2n, R, E). In § II-8 we give an isomorphism R
between spl(2n, R, E) and the Lie algebra of all bilinear polynomials of
the position and momentum operators qi and pi. With the help of this
isomorphism, we define for every Hamilton operator which is bilinear
in the qs and pi a 2n + 2-dimensional solvable group, each containing the
Heisenberg group as a subgroup. Their Lie algebras are isomorphic to
the Lie algebras formed by the identity element, the linear combinations
of the q and pi, and the chosen Hamilton operator in the infinite dimensional
associative algebra weyl(E, r), which is a certain modification of the uni-
versal enveloping algebra of the (Heisenberg) Lie algebra of the canonical
commutation relations.

These solvable Lie groups were suggested (see [1]) as « spectrum generat-
ing » groups of the chosen Hamilton operator, i. e. their inequivalent
irreducible unitary representations should label the physical states of the
Hamilton operator, excluding spin. We find the hard work of classifying
the unitary representations easier for the above solvable groups than for
the corresponding « invariance » groups, since their dimensions are in
general smaller and their algebraic structures easier to handle. Besides
this, in general it is not known which of the local but not global isomorphic
covering groups is the invariance group; for instance, it is hard to say
which covering group fo the infinitely connected group U(n, C) is the inva-
riance group of the n dimensional harmonic oscillator.

There is another advantage in using these solvable groups instead of
invariance groups : having classified their representations, we will have no
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trouble with the construction of position operators since they are included
from the beginning.
We denote the direct vector space sum of two vector spaces A and B

by A ae B, the direct Lie algebra sum of two Lie algebras A and B by A +) B,
their semidirect sum, B being the ideal, by B, and the semidirect

product of two groups A and B, B being the normal subgroup, by A 8 B~
their direct product by A 0 B.

PART I

A CLASS OF SOLVABLE LIE GROUPS

§ I-I: Symplectic Vector Spaces
and the Symplectic Group.

A pair (E, u) of a real vector space E (in the following we consider only
finite dimensional ones) and a nondegenerate antisymmettic bilinear form ~:
E x is called a symplectic vector space. Between the (antisymme-
tric) bilinear forms J and the (antisymmetric) matrices A exists the bijec-
tion

n

where x = 03BEiei with 03BEi e R and ei E E is the general element of E,

tT being the row vector (ç 1, ..., çn) of x and 03BE the corresponding column
vector. The bilinear form 03C3 is nondegenerate iff det (A) # 0. Because

of det (A) = (- 1)dim (E) det (A) this is possible only for evendimensional E.
We write dim (E) = : 2n.

(1) LEMMA [2; p. 10]. - In (E, a) we can introduce a basis el, ... , e~
/1, ...,/" so that for all i, k = 1, ..., n

In the following the elements of (E, 0) are written x = + çifi),
and the basis of E is chosen such that u(x, y) = where 3 is the 2n x 2n

matrix (- .. id" . The automorphism group of (E, r) is called the
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symplectic group Spl (2n, R, E). It consists of all invertible 2n x 2n matrices

which invariant the bilinear form a :

The defining condition is in matrix form STJS = J. The (abstract)
symplectic group is a n(2n + I)-dimensional, noncompact, simple, infinitely
connected, connected Lie group; with the help of the exponential mapping
we get its Lie algebra which is the derivation Lie algebra of (E, 0)

Herein the defining relation is in matrix form RTJ + 3R = 0.

Every matrix of Spl (2n, IR, E) is multiplicatively generated by 3 and

symplectic matrices of the type . ), where B is a symmetric n x n
matrix [3 ; p. 140]. From this follows det (S) = + 1 for all S ~ Spl (2~ ~ E)

and center (Spl (2n, IR, E» = { :t id2n}. The set of all matrices ( VU),
where U and V are real n x n matrices with UVT = YUT and

+ yTy = is a subgroup of Spl (2n, R, E). The correspondence
to the unitary matrix group in n dimensions is given by

B . - /

[4; p. 350]. Here (U + iV) is unitary iff U E Spl (2n, E). It is easy

to see that this correspondence is a Lie group isomorphism; we call this
2n-dimensional representation U of the unitary group in n dimensions

U(n, R, E). Similar results hold for the Lie algebras : the matrices 

with L a real antisymmetric, K a real symmetric n x n matrix, form a
Lie algebra u(n, R, E), the correspondence to the unitary matrix Lie algebra
in n dimensions being given by 4). The maximal compact subgroup of

Spl (2n, R, E) is E). This follows from [4 ; Lemma 4.3, p. 345] and

Every R E spl (2n, I~, E) can be decomposed uniquely
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where K, A and B are symmetric n x n matrices, and L is antisymmetric.
The first part is in u(n, R, E), the second not. According to this decompo-
sition we have spl(2n, R, E) = u(n, R, E) Q3 p where the vector space p
is the intersection of spl(2n, R, E) with the (Jordan algebra of) symmetric
matrices in 2n dimensions. It is not a Lie algebra but a so-called Lie triple
system [4 ; p. 1 89, 5 ; p. 78]. Actually it is the eigenspace of eigenvalue - 1
of the involutive automorphism JRJT of spl(2n, R, E). Since for
R E spl(2n, R, E) we have (RJ)T = R3, the mapping R H R3 defines
a bijection of spl(2n, R, E) onto the n(2n + 1)-dimensional Jordan algebra
of symmetric 2n x 2n matrices. By means of this bijection William-
son [6; p. 911] ] has proved that every S E Spl(2n, R, E) can be written uni-
quely in the form S = exp(aR) exp with R, R’ E spl(2n, R, E) and

E R. A one parameter subgroup exp(aR) of Spl(2n, R, E) is compact
iff R E u(n, R, E). The one parameter subgroup

is isomorphic as a Lie group to the one-dimensional torus in the usual
normtopology on U(2n, E), given by

§ 1-2: The Oscillator Group and the Heisenberg Group.

Let with a E IR and Re gl(2n, I~, E) be a one parameter subgroup
of Gl(2n, R, E). The topological manifold eDfR x E x R becomes a Lie
group if we define

and iff R E spl(2n, R, E). The identity element is 0, 0), the inverse
of (e"R, x, ~) is (e - "R, - 6T~ - fJ). The Lie group given by R = 3 is
called oscillator group Osz(2n). Its dimension is 2n + 2. We have the

subgroups 0, 0) ~ eRR, and 0, 0) (id2n, 0, ~) ~ e~R 0 R, and the
normal subgroups (id2n, 0, M) ~ R (the center), and (id2n, E, R). The
latter we call Heisenberg group Heis(2n). It is a 2n + 1-dimensional Lie.
group on the manifold E x I~, connected and simply connected with
composition

Every group eRR x E  R is the semidirect product of eRR and Heis(2n).
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In the product topology on x E x R, given by the usual topology
on Gl (2n, il~, E), the normtopology = x))1~2 on E, and the
usual topology on R, the groups eRR x E  R and Heis (2n) are noncompact
and connected. The commutant of two elements is

Calculating the successive commutants we see that x E x R is sol-

vable, and even nilpotent iff R is nilpotent. Heis (2n) is nilpotent but not
commutative.
The manifold R x E x IR can be made a Lie group if we define

and iff R E spl(2n, R, E). These groups have the same algebraic properties
as the corresponding groups above, but are simply connected for all R.
Since they have the same Lie algebras (see below) they are the universal
covering groups of the original ones. For R = 5 we get an infinite covering
of the infinitely connected Osz(2n). If the projection of R onto u(n, I~, E)
vanishes the groups are homeomorphic [4; lemma 4.3, p. 345].
On the manifold x E we define a Lie group by

with = e-CXRx) and identity element (id2n, 0). If E

denotes the commutative additive group of elements of E, we have for this

group E. Its center is { 0) ~ ; it is solvable and for nilpotent R
even nilpotent.

(12) THEOREM. - For R E spl(2n, R, E) the group x E x R is the

central extension of e"~ g) E by 0, !?), i. e. the sequence

is exact, the homomorphism cp being the restriction.
For the notation see [7]. The proof is straightforward. Without

difficulty we can define a class of locally isomorphis Lie groups on

x E x Tor if we substitute the torus for In the same way

we get bigger Lie groups by inserting the whole group Spl(2n, R, E) instead
.of eR, which remain solvable if we restrict Spl(2n, !?, E) to a commutative
subgroup.
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§ 1-3: The Lie Algebras of Osz(2n) and Heis(2n).

(13) PROPOSITION. - The Lie algebra of the group x E x R is the

vector space RR (B E ~ R together with the Lie bracket

Proof - The Lie algebra is the tangential space of eRR x e x R in
0, 0) [4 ; p. 88~]. We calculate its elements with the help of the two

one parameter subgroups 0, 0’: x E x I~ defined by 9:

u H o, 0) and ()’: ~u H ,u~3). From

follows the first statement. To get the Lie brackets consider the commutant
of the two one parameter subgroups 0 and 0’, which is (id2n, (id2n - 
a(y, from (9). From the curve segment

we get [4 ; p. 97] the tangent vector

By the same line of reasoning we get from the commutant of two different
elements of 0’ the element (id2n, 0, 2~(x, y)), and from this the tangent
vector

These Lie brackets are just those of the Heisenberg subgroup. The

isomorphic Lie algebras of the groups I~ x E x R are found in a similar

way. We call the Lie algebra M 0 E oscillator Lie algebra osz(2n) [8]
and the subalgebra E 0 1I~ Heisenberg Lie algebra heis(2n). The algebraic
facts of § 1-2 immediately carry over to the Lie algebras ; especially
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Inserting the basis from lemma 1) in the Lie algebra RR (B E Q) R,
writing - 2(R, 0, 0) = : HR, (0, ei, 0) = : (0, 0) = : and

2(0, 0, 1) = : c we get for the elements 
°

with ’R’ the general Lie bracket relations

which specializes in the case of osz(2n) to

(rest zero). The Lie algebra of the group (11) is calculated by the same
way. Its Lie bracket relations are

It will be shown in § 1-6 that this Lie algebra RR +) E is just the « adjoint »
Lie algebra of RR Q3 E ae R.

§ 1-4: Automorphisms and Derivations of Heis(2n).

Let G be a 2n x 2n matrix, a E R, bT a 2n row vector and a another 2n

column vector. Then the matrix (~ ) = : A is an automorphism of
heis(2n) iff det(A) # 0 and the defining relation for automorphisms

holds. From this we get the automorphism group of heis(2n)

With the matrix Ei: = ( ) the matrix A becomes
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with S E E). Here we used that because of E~3E~ = - 3
every antisymplectic matrix F (i. e. pTJF = - j) can be written £iS, where

now S E Spl (2n ; R, E). Proof ; Given FTjF = - 3 ; it follows

that is 03A31F = : S ~ Spl(2n, R, E) and F = E 1 S. We have

det (A) = I (X In+ 1. Aut (heis (2n)) is a n(2n + 1) + 2n + 1-dimensional
matrix group which decomposes in two nonconnected pieces. We write

its general element A(S, b, oc !, sign a). For the identity component we

have

the inverse is in the both components respectively

We set the following subgroups of the identity component

Note that the elements of ~’(2n) do not act as translations on E, as would

do the matrices (id2n J for nonvanishing a. We write the discrete group
{id2n, ~1} =: ~2- Then we have

(30) Aut (heis (2n)) = Z~ 3 (Spl (2n, R, E) (8) Dil (2n)))

where ~(2n) is the group of inner automorphisms. ~2 interchanges the

basiselements qi and /?’ ‘ of E. Therefore it is a good candidate for the

Legendre transformations known from classical mechanics. Spl(2n, I~, E)
can be interpreted as the group of canonical transformations of a linear

phase space E.
D e gl(2n + 1, R, E 0 R) is a derivation of heis(2n) iff
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The derivations of heis(2n) form a Lie algebra of linear transformations

which is given by the set of matrices (), where p is an arbitrary 2n vec-
tor, fJ e R and N is a 2n x 2n matrix subject to the condition

Therefore

where A(2n) is the Lie algebra of ~(2n) and dil (2n) that of Dil (2n).

§ 1-5: Automorphisms and Derivations
of the Oscillator Lie Algebras.

Given 0 # R E spl (2n, I~, E), the centralizer of R in spl (2n, R, E) is

and the centralizer of R in Spl (2n, IR, E) U E1 Spl (2n, IR, E) is

Let 3K denote the vector space of all V E spl (2n, R, E) subject to

where Vv = 0 only for V = 0, and lR the manifold of all

with

where ðo = 1 only for G = Then we have

(35) LEMMA. - The set of elements V e spl (2n, R, E) with

is just the matrix Lie algebra zent (R) (B 3~.
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The set of elements G E Spl(2n, R, E) u Ei Spl(2n, R, E) with

is just the matrix group Zent(R) x lR.
In this Lie algebra (resp. Lie group) zent(R) (resp. Zent(R)) ;s an ideal

(resp. normal subgroup).

Proof. Every element V with (36) can be decomposed uniquely into
V = Vo + V~ where now Vo E zent (R) and V E 3R. By definition from
V E zent(R) n 3R follows V = 0, i. e. the vector space sum of zent(R)
and 3R is direct. From the Jacobi identity follows that zent (R) is an ideal.
The proof for the group theoretical statement is similar..
For the physical interesting R the vector space 3R is one-dimensional

or zero. Then the matrix Lie algebra of the V E spl(2n, E) with (36)
is zent(R) O 3R or only zent(R). The corresponding facts hold for the

groups.

(38) THEOREM. - Given 0 # R E spl(2n, R, E), R 2 #= 0, an element of
Gl (2n + 2, I~, R 3 E 0 R) is in Aut (RR x E x R) iff it has the form

where we have GRG-1 = 5R, i. e. GeZent(R) x lR’ and

S E Spl (2n, R, E).
/~ dT y

Proof. - We insert the matrix c G a into the automorphism condi-

iion (19) of the Lie algebra relations (16). This gives for 03BER ~ 0, y ~ 0,
rest zero
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for x # 0, y ~ 0, rest zero

and 0, 110 # 0, rest zero

From (f) we have det (G) = an; since every automorphism must be inver-
tible from (g) it follows that a = 0 iff G invertible. Let G be not invertible :
i. 0 and a = 0. From (e) we have for x = Rz and y = Rv with the
help of (a) for all v, z E E : 0 = Rv)a = - R2v)a, i. e. 0,
which is not true. So G must be invertible. From (b) we get with the
help of (a) for y = Rz and all z E E : 0 # GR2z = 03B4RGRz, i. e. 03B4 ~ 0
and RGR ~ 0. For x = Rz we get therefore from (e) for all y, z E E,

y)RGR = 0, i. e. d = 0. The result for the vector c follows from (c)
and (f), and the rest of the theorem from lemma 35) and (21) ff. 1

(40) THEOREM. - Given 0 # R E spl(2n, R, E), R2 1= 0, an element of
gl (2n + 2, R, R 3 E (B R) is in E 0 R) iff it has the form

where [V, R] - = vR, i. e. V E zent (R) ? 3R c: spl (2n, IR, E).
The proof is similar to the proof above. For the special case R = 3

(the harmonic oscillator) we get

(41) COROLLARY. - Aut(osz(2n)) is given by all matrices of the form

where G is subject to (39) and S E Zent (3) = U(n, R, E).
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der(osz(2n)) is given by all matrices of the form

Proof. - From [V, J] _ = v3 and yTJ + 3V = 0 follows V + VT = v id2n.
Since spl(2n, I~, E) we have v = 0. For the group we have

(sign oc) id2n, from which we have 5 = sign a, since STS E Spl (2n, E)
is positive definite. The rest follows from (5)..

§ 1-6: « Self »-representations and adjoint representations.

The invertible matrices (~ being the column vector corresponding to x)

are the elements of the group Spl (2n, IR, E) 3 Heis (2n) with the composi-
tion law

iff S, U E Spl (2n, R, E). For S = e°‘R and U = we get a 2n + 2-dimen-

sional faithful representation of eRR x E x R, for R = 0 of Heis (2n).
The lie algebra of this matrix group is given by the matrices

which have the commutation relations

iff V, Z E spl (2n, IR, E). For V = çRR and Z = we have the commuta-
tion relations of proposition 13). So (44) gives faithful representations
of the Lie algebras RR 0 E 3 R, for R = 3 of osz (2n), and for R = 0
of heis (2n).
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The adjoint representation ad : RR EÐ E ~ R ~ inder(RR EÐ E EÐ R)
onto the inner derivations ad (RR EÐ E EÐ the kernel of which is the

center (0, 0, is given by

These matrices form a faithful 2n + 2-dimensional representation of the
Lie algebra (18); they are an ideal in der(RR 0153 E EE&#x3E; R). The exact

sequence from theorem 12), read in the Lie algebraic form, is thus nothing
else than the well known exact sequence of the adjoint algebra of a Lie
algebra.
The adjoint representation Ad: exp (RR) x E x R - Int 3 E (B R)

onto the inner automorphisms of RR ED E 0153 R, the kernel of which is the
center (0, 0, is given by

These matrices form a faithful 2n + 2-dimensional representation of
the Lie group (11); they are a normal subgroup in (B E 3 

Thus theorem 12) gives the exact sequence of the adjoint group e~R Q9 E
of exp x E x R [4 ; p. 116]. The restriction to heis (2n) of the above
matrices gives for rx = 0 the adjoint representation of heis (2n) and Heis (2n),
which correspond to A(2n) in (32) and to .~ (2n) in (30). Since

the determinant of the matrices (47) equals 1; therefore the groups
x E x R are unimodular [4; p. 366].

PART II

THE WEYL ALGEBRA

§ II-7: Definition of the Weyl Algebra.

Let ten(heis(2n)) be the tensor algebra of the vector space E E9 ~c
of heis(2n), 0 the tensor multiplication, and ([a, b]- - a))
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the two-sided ideal of ten(heis(2n)), which is generated by all elements
of the form [~]- 2014 (a 0 b - b 0 a) with a, b E heis (2n) c ten (heis (2n)).
Then the infinite dimensional associative algebra

is called universal enveloping algebra of heis (2n). For the notion of uni-

versal enveloping algebras and the following statements see [4 ; p. 90],
[9 ; p. 151 ], [l o ; p. 26] and [11 ; expose no 1] :

(49) LEMMA. - heis(2n) is imbedded injectively in u (heis (2n)).

(50) LEMMA. 2014 We have inj (heis (2n)) n R1 = { 0); here 1 is the identity
element of u (heis (2n)), and inj (heis (2n)) is the isomorphic image of heis (2n)
in u (heis (2n)).

(51) LEMMA. - A basis of u (heis (2n)) is given by the identity element
and the standard monomials of the basis elements of inj (heis (2n)).

Because of lemma (49) we identify heis (2n) and inj (heis (2n)). Because

of lemma (50) we cannot identify the element inj (c) of inj (heis (2n)) with
the identity element of u (heis (2n)). But actually this always is done in
physical applications, for instance in the Poisson bracket Lie algebra of
position and momentum variables in classical mechanics, and the commuta-
tor Lie algebra of position and momentum operators in quantum mechanics.
Therefore we consider instead of u (heis (2n)) a different noncommutative
associative infinite dimensional algebra which identifies c and the identity
element. Let (c - 1) be the two-sided ideal of u (heis (2n)) which is gene-
rated by the elements c - 1 E u (heis (2n)). Then the algebra

is identical with the algebra

where ten (E) is the tensor algebra over the vector space E, 1 the identity
element of ten(E), and x, y E E  ten(E). We call this algebra Weyl
algebra [l2; p. 148). heis (2n) is embedded injectively in (1).
A basis of weyl(E, ~) is given by the standard monomials of the basis
elements of weyl(E, a) and 1. One should compare (53) with the
definition of the Clifford algebra over an orthogonal vector space [12 ; p 148],
[13, p. 367].
For the following we need two other universal algebras. Let


