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I. INTRODUCTION

Ideas and methods from statistical mechanics have had a considerable

impact on constructive field theory in the last few years. In particular,
Boson models can be realized as ferromagnetic spin systems and are thus
subject to the analysis available from the study of the Ising model. In this
paper we continue our program [29] of applying statistical mechanical
methods to the P(~2 Euclidean field theory by examining one of the
basic questions arising in statistical mechanics, namely, the role of boundary
conditions. For the most part we concentrate our attention on the « classical
B. C. » : free (F), Dirichlet (D), Neumann (N), and periodic (P) boundary
conditions.

Just as in statistical mechanics, we expect that the use of boundary
conditions in field theory will play fundamental role in the definition of
equilibrium states and in establishing the existence or nonexistence of
phase transitions. Such an analysis should involve more general B. C.
(i. e., analogues of « + B. C. ») than the classical ones studied here, and we
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233BOUNDARY CONDITIONS FOR THE EUCLIDEAN FIELD THEORY

shall have only a few naive remarks to make about these important ques-
tions (III.3). With statistical mechanics as a guide, we know, however,
that control of the classical B. C. will provide great flexibility in the study
of the thermodynamic limit. Certain operations and assertions are trivial
with one choice of B. C. and impossible or very difficult with other choices
of B. C. It then becomes important to decide which objects in the theory
are independent of the choice of B. C. in the thermodynamic limit. For
example, the pressure should depend on B. C. only through a surface
effect in finite volume and should be independent of the choice of B. C.
in the infinite volume limit. This independence (properly formulated
for P(~)2 in Theorem 1.2 below) is the main result of this paper.
Our approach to this specific problem has been largely influenced by

Robinson’s work in quantum statistical mechanics [51]. In his treatment
of (point) Bosons interacting via a repulsive potential the use of Neu-
mann B. C. is critical ; the technical tools he deploys are quadratic forms,
positive definiteness, sub-and superadditivity; his main application of the
result that the pressure is independent of B. C. is to the Gibbs Variational
Principle. All of these features are reflected in our work that follows.

Related results have also been obtained by Novikov [46] and Ginibre [15]
who consider the statistical mechanics of Bose hard core particles inter-
acting via an attractive potential. In their approach which employs the
Feynman-Kac formula, the use of Dirichlet B. C. is critical. We mention
also the results of Fisher and Ruelle on the existence of the thermodynamic
limit (with Dirichlet B. C.) for particles interacting via a stable, tempered
potential [54, § 3 . 5] ; and the results of Fisher and Lebowitz on the inde-
pendence of classical gas pressures on B. C. [10].
As in [29], we base our analysis of the theory on Nelson’s model

of the free Euclidean boson field in 2 dimensions [44] [29]. Let N = 
be the real Hilbert space with inner product

where Go is the Green’s function

and mo &#x3E; 0 is the bare mass. The free Euclidean field ~(~’) is the real
Gaussian random field indexed by f EN with mean zero and covariance (1.1).
We denote the underlying probability space by (Q, ~, so that, regard-
ing ~{~’) as a function on Q, we have

The Gaussian measure dpo is called the non-interacting measure with
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234 F. GUERRA, L. ROSEN AND B. SIMON

free (F) B. C., or for short, the « free measure ». To each closed (or open)
region A c 1R.2 we associate the sub-6-algebra 03A3 of 03A3 generated by
fields with supp f c A (see § II . .1).
Suppose for definiteness that A is a rectangle. According to a well-

established tradition, one tries to construct an interacting field theory
on A and then to pass to the thermodynamic limit A - 1R.2. In restricting
the non-interacting measure to E~ there is already a choice. In addition
to the measure 

with free B. C., one could choose the Gaussian measure whose con-
variance is given by (supp g g c A)

where G~ = ( - ~~ + mo) -1 is the Green’s function corresponding to
any self-adjoint B. C. « X » for A on aA. The classical choices mentioned
above would be X = D, N or P (for a more complete-discussion, see § III .1),
but in fact one could accept much more general B. C. than these (see § II. 1
and § II . 2).

In support of the basic philosophy of this paper that flexibility in the
choice of B. C. affords technical advantages, let us mention the key advan-
tages of each of the classical B. C.:

Free (F) B. C. This is the simplest B. C. with which to calculate since
one has a simple diagonal momentum space formula (1.2) for the covariance.
One disadvantage of F B. C. is that while the covariance operator is simple,
the inverse differential operator is not; in particular, the corresponding B. C.
on al1 is non-local (see [29, § V] and § II. 2 below).

Dirichlet (D) B. C. D B. C. give the technically simplest way of introducing
barriers between regions (see, in particular, the cluster expansion of [23 J ) :
G~ is dominated by Go, leading to simple estimates. A key advantage
of D B. C. may be seen from the lattice approximation where D B. C.
play the role of « free boundaries » in ferromagnetic spin systems. This
observation leads to monotonicity properties of the (half-) Dirichlet

Schwinger functions (e. g. Nelson’s Theorem [44] and relations with
other B. C. explained in § IX.2 below).

Periodic (P) B. C. The theory with P B. C. is « closest » to the infinite
volume theory in the sense that  is a constant, as is

It is easiest to implement transformations of the measure such as m2 ~ m’2
or -~ ~(x) + c with P B. C. (see Spencer [66] and § VII).
Neumann (N) B. C. The key advantage of N B. C. is that the partition

Annales de l’Institut Henri Poincaré - Section A



235BOUNDARY CONDITIONS FOR THE P(!»2 EUCLIDEAN FIELD THEORY

function is submultiplicative in A, rather than supermultiplicative (as
with D B. C.). This property (of a « repulsion » between regions) leads
immediately to infinite volume estimates given a finite volume estimate
(see § III.2).

Central to this paper is the lattice

where a B. C. at the right end-point of a line dominates the B. C. at the
left endpoint. In terms of Green’s functions (considered as operators
on L~(A)) we have (see § III.1)

. (We prefer the notation Go to G~ and we usually omit superscripts F.)
By the theory of conditioning (see [29] and the review in § III .2) we imme-
diately obtain the corresponding inequalities for the pressures

Here the pressure x~ with X B. C. is defined in terms of the interaction
polynominal P by -

where with the subscripts X, A indicating that

the Wick subtractions are made with respect to the measure We
also consider the half-X pressures defined as in (1.4) except that the
interaction U~ is replaced by U~. Our main result is :

THEOREM 1.1. - For any semibounded polynomial P, the limits
= lim 03B1X and lim 03B1HX (X = D, N, or P) all exist and equal

lim an .

Remarks. 1. Using (1 . 3 b) we prove the equality of the 03B1X~ by « bra-
cketing » : first we show that oc~ = (;(00 (§ IV) and then that x~ = a (§ V).

2. It is easy to extend the statement that the pressure is independent
of B. C. to include ± B. C. (see § II. 3).

3. Existence of a~ is a result of Guerra [25].

Vol. XXV, n° 3 - 1976.



236 F. GUERRA, L. ROSEN AND B. SIMON

We also study the Schwinger functions, defined to be the moments of
the interacting measures : 

,..

and similarly for the half-X Schwinger functions S~ where U~ in (I. 5)
is replaced by U~. We are not able to draw the conclusions about the
Schwinger functions suggested by the lattice of Fig. I.1, but are able only
to relate D B. C. to the other B. C. For example if P is even except for a
linear term, n~ ____

and similarly without the H if in addition deg P - 4 (see § IX. 2). In view
of Nelson’s result that S~D is monotone increasing in A it is natural to
conjecture from Fig. I.1 that is monotone decreasing. We have not
been able to prove this, and, indeed, such a result cannot be true for all
values of the coupling constant if P(~)2 possesses a phase transition.
Our results on the independence (and existence) of SX = lim S~ on B. C.
fall far short of the corresponding results for the Ising model [36];
we have succeeded in showing only that SD = SP under certain circums-
tances (see § IX. 3).
Here is a brief guide to the organization of the paper : in § II we describe

a general class of Gaussian measures associated with the operator
which are suitable non-interacting measures for

Boson field theories. An essential regularity condition on the covariance
operator G of such a measure is that G  cGo as operators on L2(A).
In § III we explain how the theory of conditioning leads to the inequalities
of (1.3) and to sub- and superadditivity properties, and we give a new proof
of the « linear lower bound » using N B. C. In § 111.3 we show that the
method of images yields most of the bounds we require on the classical
Green’s functions. In § IV. 1 we formulate a general statement of the
vanishing influence of D B. C. as the boundary recedes to infinity and
thereby show in § IV . 2 that x~ = Among the applications we give
is a proof of the Gibbs Variational Equality for the entropy. § V contains
a proof that oc~ = a . In § VI we give an independent proof of the conver-
gence of a5 and we develop the machinery of periodic states. In § VII we
establish covariance properties of the pressure (under translations, scaling
and mass shifts) using the fact that the pressure is independent of B. C.
Then we determine the dependence of the pressure on the coefficients
of P (« dominant and subdominant coupling constants »). For instance we
establish that if deg P = 2n ’then as the dominant coupling constant
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237BOUNDARY CONDITIONS FOR THE P~(~~2 EUCLIDEAN FIELD THEORY

verifying our conjecture in [28]. In § VIII we complete the proof of Theo-
rem I.1 by showing that = 03B1X~. § IX.1 is devoted to a discussion of the
lattice theory and its convergence for classical B. C. The resulting correlation
inequalities and some consequences are outlined in § IX. 2 and § IX. 3.
Finally in the Appendix we extend the Checkerboard Theorem of [29]
to X B. C. and we explain its significance for the question of spatial
decoupling.
One interesting application of the ideas of this paper has been made

in [30] where we study the + field theory. By combin-
ing (i) Spencer’s [66] mass gap result for large with periodic B. C.,
(ii) the convergence of the Schwinger functions with Dirichlet B. C. for
all /1, (iii) the equality x~ = a) (Theorem 1.1), (iv) the inequality SD  SP,
and (v) the Lee-Yang Theorem [63], we show the Dirichlet 
theory has a mass gap if  ~ 0. The method of proof is based on a super-
harmonic continuation argument of Lebowitz and Penrose [37].
We close this section by discussing two possible sources of confusion

that may arise in reading this paper. Firstly, there is a discrepancy between
the B. C. terminology of field theory and statistical mechanics. What we
call free (F) B. C. does not correspond to « free boundaries » for the Ising
model (Actually, F B. C. might be called « free at 00 » since the covariance
operator is Go). Rather it is Dirichlet (D) B. C., often called « repulsive »
B. C., which corresponds to « free boundaries » for the Ising model. The
easiest way of understanding the meaning of D and N (« perfectly elastic »)
B. C. is to turn to the lattice approximation. As we explain in § IX. 1,
the formal expression (~, - A~) goes over in the lattice theory to a sum
over nearest neighbor spins

Dirichlet data are imposed on a line L by dropping the ferromagnetic
couplings qnqn’ across L and Neumann data by dropping the coupling
terms ( qn - qn,)2 across L.

Secondly, in this paper we shift freely between the passive and the active
pictures for the free Euclidean field, and so it might be useful to review the
distinction between these two pictures (see also [62] ). In the active (or
measure) picture we realize the free field theories corresponding to diffe-
rent B. C. X on 9A by choosing different Gaussian measures on E~ but
keeping the field fixed as a coordinate function, i. e., for each f E 

for q E Q, where it is standard to realize Q as the dual This has
been the point of view adopted throughout this section. Equivalently,
we may use the passive (or field) picture in which we hold the measure dpo
Vol. XXV, n° 3-1976.
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(and the space Q) fixed but « change coordinates » by realizing the field as

where the field on the right is the coordinate function (1.6) and p~ is a
suitable operator on L2(A).

These realizations of the free theory with X B. C. or as

{03C6X, d 0} are equivalent ; in particular, the covariances are equal,

so that G~ = as operators on L2(A). We use the passive picture
mainly in sections II and IV.
The passive picture lends itself to the theory of conditioning whereas

the active picture is most convenient for the formulation of half-X B. C.
Although we have made frequent reference to HX B. C. above, it might
be helpful to make a few elementary remarks here. In the passive picture
there is no ambiguity about what is meant by Wick subtractions, e. g.,

However in the active picture we may define the subtractions with respect
to either or We denote Wick products in the former case with
subscripts A, X and in the latter case (« free Wick ordering ») with no
subscripts; e. g., 

--

and

The HX-theories are defined, in the active picture, with Gaussian

measure and with free Wick ordering. There is a simple relation between
the different Wick powers; explicitly [29]
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239BOUNDARY CONDITIONS FOR THE P(~)2 EUCLIDEAN FIELD THEORY

Finally we mention that we have developed a HD transfer matrix that
is based on realizing D B. C. in the « time » direction by placing Q-space
6-functions on the t = const. boundaries. We omit a discussion of this
topic from the present paper, but details may be found in [62]. This approach
can be used to prove the convergence of the HD Wightman functions.
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II. GAUSSIAN BOUNDARY CONDITIONS

The cutoff states we consider in this paper are of the special form
~’~~/Norm where the function U~ in the Gibbs factor differs
from the free B. C. interaction only in the Wick subtractions used. Our
goal in this section is to describe in detail the « unperturbed » measures ~
we will use. They will have no interaction in the sense that the Euclidean
field dJl) is still a Gaussian random field and, in a sense we make precise
below, they differ from d 0 only by a factor concentrated on the boundary
of A.

In § II.1, we describe the allowed covariances for dp and in § II.2 we
relate these convariances to the « classical theory » of boundary conditions
by showing the allowed convariances are precisely the Green’s functions
for a family of self-adjoint extensions of - A This section is then
the link with the further specialization of d  we shall make in the remainder
of the paper when we restrict to the four types of classical Green’s function.
In § II.3 we make some remarks about a class of B. C. which we expect
will play a major role in the discussion of broken symmetry [8].
We use freely the language of Gaussian stochastic processes which are

extensively discussed in Gelfand-Vilenkin [13] ] and Hida [31 ] ; see also
Segal [58], Dimock-Glimm [7] and Simon [62]. Throughout this section,
we fix a bare mass mo.

Warning. - With regard to a factor of 1 2 in defining Gaussian p ro-
cesses, [29] and [62] have different conventions. We follow [29].

Vol. XXV, n° 3 - 1976.



240 F. GUERRA, L. ROSEN AND B. SIMON

11.1. Covariances.

We begin by recalling some notation from [29]. N denotes the Hilbert
space obtained by completing in the norm, Go( f, f)1/2 where

and ( . , . ) is the L2 inner product. Since is continuously imbedded
in N, each element of N* = N can be viewed as a tempered distribution
and, in particular, each element has a support. Given a closed set C c p~2,
Ne is the (closed) subspace of N consisting of those elements of N with
support in denotes projection (in Go-inner product) onto Ne. If
A ci (~2 is open, we let ___ _ ,

The Markov property on the one particle space (the « pre-Markov »
property) implies that for f E 

Remark. If A is open; then one can show that e~ = e x where e~ is
the projection onto the closure of in N..

Finally, we recall that if - A~ is the Dirichlet Laplacian (Friedrichs
extension of - A Co as an operator on L2(A)) and

then (Corollary 11.25 of [29]) :

This extends to all f, g E N~.
Our first theorem will motivate our choice of definition of general

convariances :

THEOREM II.1. - Let

where F e for some p &#x3E; 1, F &#x3E; 0 and where Fd 0 = 1.
Suppose moreover, that F is Gaussian on the boundary in the sense that

where in is some orthonormal set in and for some A, A -1 _ 1 +  A

(all n). For g g E let 
-
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Then:

(a) there is a constant c with

for all f E 

where Q is a bounded, positive definite quadratic form on N~.
Proof - (a) Follows easily from Holder’s inequality and the fact that

random variables. To prove (b), we remark that (a) implies that G( . , . )
extends to Nx x Nx so that, by (II.3)

Now according to the breakup N = Nan 0 NA’ the measure d,uo factors
into d 0,~ ø and F is by hypothesis only a function of the
qan variables. 
Thus

by (II. 4). Similarly = = 0. Since Q(h, k) = G(h, k)
for h, k E Na~ defines a bounded quadratic form by (a), (II. 7) is proven. jjjj

In the above, Q is not an arbitrary bounded quadratic form since the
general theory of symplectic transformations [57] [60] assures us that the
operator A defined by Q(h g) = Ag) has A - 1 Hilbert-Schmidt
on Since this additional property does not hold e. g. for the Dirichlet
B. C. theory (Q = 0), we supress it in our general definition :

DEFINITION. - Let Q be a bounded positive-definite quadratic form
on Na~ and let 1 be a bounded linear functional on Then, the
{Q, 1 }-B. C. Gaussian field, 4J, is the Gaussian random process indexed
by with mean and covariance

that is (see Remark 2),

Vol. XXV, n° 3 - 1976.



242 F. GUERRA, L. ROSEN AND B. SIMON

Remarks. - 1. The Gaussian process 03C6 can always be extended to a
process on N. -

2. The process indexed by can be realized in a standard way by
a measure dp on Cû(A)’ [13].
We shall generally realize the process in the active picture, thereby

emphasizing the measure d,u. In § IV, however, we shall employ the passive
picture (see the Introduction and [62] for the distinction between the active
and passive pictures) where the field 4&#x3E; corresponding to the covariance G
can be realized as:

In (II. 8), denotes the Dirichlet field, (p indicates direct sum (i. is
realized on a product space with a product measure; see Proposition 1.7
of [62]), and is the Gaussian process on Nan with mean t and
covariance Q.

EXAMPLE 1. - If 1 = 0, Q = Go Nan x Nan, then we obtain the free
B. C. field of [43].

EXAMPLE 2. - If 1 = 0, Q = 0, then we obtain the Dirichlet B. C. field
of [29].

Remark. It is no coincidence (see § II . 2) that in both cases above G
is a Green’s function for - A + mo on A x A.

Since we have not demanded that Q - 1 be Hilbert-Schmidt, we cannot
hope that Theorem II.1 have a strict converse but one does have the
following partial converse which makes precise the sense in which d/1
« differs from d 0 only on the boundary of A » :

THEOREM II.2. - Let A be a fixed open set in [R2 and let d/1 be a
{ Q, }-B. C. field. Let A’ be an open set with A’ a compact subset of A
(so, in particular, d(àA, A’) &#x3E; 0). Then :

(a) LA’ is absolutely continuous with respect to En,,
(b) LA’ = En,

where F is a Gaussian measurable w. r. t. 
This result generalizes Theorem II. 34 of [29] (the case = Q = 0)

and as in that case depends on the fact that is Hilbert-Schmidt

(Lemma 111.5 b of [29] given that en. - en-pn = We begin with
a lemma that is essentially equivalent to the combined Markov property
and (no interaction) DLR equations for 

LEMMA II. 3. - Let e# denote the orthogonal projection onto Nc in the
inner product G. Then for f E 
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