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Ann. Inst. Poincaré,
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Section A :

Physique ’ théorique. ’

ABSTRACT. 2014 The problem of the lattice structure of a quantum logic
is solved by embedding the logic into the so-called phase geometry of
the physical system, being an atomistic complete lattice. The latter is
constructed using pure states of the physical system.

1. INTRODUCTION

The important problem of the lattice structure of a quantum logic was
considered in many papers, however, in the author’s opinion, only the
paper by Bugajska and Bugajski [2] may be considered as giving the
satisfactory solution to this question. In our paper, following to the

Bugajska and Bugajski’s idea, we propose to solve this problem by
embedding the logic into an atomistic complete lattice, however the latter
is now the so-called phase geometry of the physical system under study
(see [4]) and is constructed using pure states of the system.
There should be emphasized the following advantages of the approach

presented here. Firstly, the « projection postulate » of Bugajska and
Bugajski [2] becomes now superfluous and can therefore be omitted. As
this postulate is neither obvious nor generally unquestionable, our axiom
system seems to be more plausible. Secondly, we do not need here the
structure of an orthomodular 03C3-orthoposet for the logic L. Our assumptions
are much more modest: L is assumed to be a poset with an involution and
with the least and greatest elements in it.
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2 W . GUZ

2. DEFINITIONS AND NOTATION

With each physical system two important sets are always associated :
the set 0, whose elements will be called observables, and the set S of states
of the system, whose members are mappings from 0 to the set of all proba-
bility measures on B(R), B(R) being the 6-algebra of all Borel subsets of
the real line R. Every state m E S assigns to each observable A E 0 its
« probability distribution in the state m » denoted by m(A). According to
the usual interpretation (see, e. g. [3]), the number [m(A) ] (E), where m~ S,
A EO and E E B(R), is meant as the probability that a measurement of an
observable A for the system in a state m gives a value lying in a Borel set E.

Within every physical theory we are interested in the possibility of the
verification of propositions of the following form : « a measurement of an
observable A gives a value in a Borel set E ». Denote such propositions
by ( A, E ). They may be identified, according to the usual convention
(see [5], [7]), with the equivalence classes of the equivalence relation ~ defined
in the set 0 x B(R) as follows :

Namely, we identify the proposition ( A, E) with the equivalence class
(A,E)j.
The set L = (0 x B(R))/~ of all equivalence classes of the relation ~

admits a natural partial ordering defined by [7] :

moreover, (A, ~)/~ and (A, R)/~ are the least and the greatest elements
in L, respectively, and the mapping (A, E)/ ~ ~ ( A, R - E )/ ~ is a well-

defined involution in L. (By an involution of a partially ordered set L we
mean a map ’ : L ~ L with the following properties : for any pair a, bEL
with a  b one has b’  a’, for every a E L.)

DEFINITION. -- The partially ordered set (L, ~) endowed with the
involution ’ : (A, E)/~ -~ (A, R - E)/~ is called the logic of a physical
system (briefly, a logic, see [7], compare also [5] ) and its elements will be
denoted by small letters a, b, c, ... , etc.

DEFINITION. - We say that two propositions a, bEL are orthogonat
and write a  b, if a  b’.

Observe ( [7], [5] ) that each state m may be identified with the mapping
(A, E)/~ -~ [m(A)](E), which maps the logic L into the closed interval [0,1].
This mapping will be denoted by the same letter m, that is, we put by the
definition m(a) _ [m(A)] (E), whenever a = (A, E)j.

DEFINITION. shall say that two states m1 and m2 are mutuatty
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3ON THE LATTICE STRUCTURE OF QUANTUM LOGICS

exclusive or orthogonal [3], and write m1 1- m2, if for some proposition
a E L one has = 1 and m2(a) = 0.

This orthogonality relation is, of course, symmetric, i. e. m JL m2 implies

DEFINITION. A state m is said to be pure, if it cannot be written as a

non-trivial convex combination of other states.
Pure states will be denoted by small letters p, q, r, ..., etc., and the

whole set of all pure states we shall denote by P. It could happen, of course,
that P is empty. Suppose at the moment that pure states exist, i. e. that

P ~ 0, and let 8 f; P. Define S1 to be the set of all pure states p such
that p 1- S (read : p 1 q for all q E S) and write 8 - instead of 81-1-. Obviously,
8 f; S’. If S = S’, we call the set S closed.

DEFINITION. 2014 The set P of pure states endowed with the orthogonality
relation .1 will be called the phase space of the physical system. The family
C(P) of all closed subsets of P we shall call the phase geometry associated
with the system (see [4] ).

It is not difficult to check (see [4], also [1]) that, under set inclusion,
C(P) becomes a complete lattice whose joins and meets are given by

({ being an arbitrary family of closed subsets of P).
Moreover, it can also easily be shown that the correspondence S -~ S1

defines an orthocomplementation in C(P). (For the empty set 0 we put,
by the definition, 01- = P. This leads immediately to 0, P E C(P).)

Let now L, S and j = 0 or 1. The following abbreviations
will be used throughout this paper :

If the set K consists of one point only, say, K = {~}, then we write a’
instead ~’. Analogously, we write m’ instead ~’.

3 . AXIOMS

AXIOM 1. - (i) For every non-zero proposition a E L there exists a
pure state p such that p(a) = 1 ; moreover :

(ii) If ? ~ ~ then the state p can be chosen in such a way that p(b) &#x3E; 0.

Formally, the Axiom 1 can be written as follows :
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4 W. GUZ

The first part of the Axiom 1 assumes that P, the set of pure states, is
not only non-empty, but sufficiently large. Such a postulate was assumed,
for instance, by Mac Laren [6]. The second part of this axiom we easily find
to be equivalent to the following statement (taken as a postulate, for

example, by Gudder [3] ) :

(*) If for each pure state p E P with p(a) = 1 we have also p(b) = 1
then a  b.

In fact, suppose that a  b. b’, and by Axiom 1 there exists a
pure state pEP with p(a) = 1 and p(b’) &#x3E; 0, hence p(b)  1, which proves
the implication : Axiom 1 ~ (*). Conversely, assume the validity of the
first part of the Axiom 1. Then (*) implies (ii). Indeed, let a, a ~ 0,

and therefore, by (*), there exists p E P such that = 1
and p(b’)  1, the latter being equivalent to p(b) &#x3E; 0. (The existence of at
least one pure state p with = 1 is guaranteed by (i).)

Therefore our Axiom 1 may be formulated in the following equivalent
form :

Axiolvt 1’. - (i ) For every non-zero proposition a E L there exists a
pure state p E P with p(a) = 1; moreover

(ii) If for each pure state p E P for which = 1 we have also p(b) = 1
for some bEL, then a  b.
Our second (and last) axiom is :

AXIOM 2. 2014 For every pure state p E P there exists a proposition a E L
such that = 1 and  1 for all pure states q distinct from p.
The Axiom 2 (which was assumed as a postulate e. g. by Mac Laren [6])

asserts that pure states may be realized in the laboratory : there exists a
measuring device answering the experimental question « Is the physical
system in the pure state p ? ~.

4. THE EMBEDDING THEOREM

DEFINITION. 2014 The proposition a E L is said to be a carrier of a state
m E S (see [9], also [8]), if

(i ) m(a) = 1,
(ii) implies m(b) &#x3E; 0.

Notice that the carrier of a state m, whenever it exists, is uniquely deter-
mined by m, since it is the smallest element of the set The carrier of m,
if exists, will be denoted by carr m.

LEMMA 1. - Each pure state p has the carrier, and q(carr p)  1 for

every pure state q ~ p.
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5ON THE LATTICE STRUCTURE OF QUANTUM LOGICS

Proof 2014 Let pEP. By the Axiom 2 there exists a E L (0  a  1) such
that p(a) = 1 and q(a)  1 for all pure states ~ 5~ p. Let a. By
the Axiom 1 there is r E P such that r(a) = 1 and r(b) &#x3E; 0, but, owing to
Axiom 2, r = p. Therefore we have proved the following :

that is, a = carr p.
At the same time we proved (see above) that q(carr p)  1 for every

pure state q ~ p.

LEMMA 2. - The logic L is atomic and the correspondence
carr: p  carr p, p E P, is a one-to-one mapping of the set P of pure
states onto the set of all atoms of the logic L.

Proof 2014 Let p be an arbitrary pure state, and let 0  b  carr p. By
the Axiom 1 there exists a pure state q with q(b) = 1, hence q(carr p) = 1,
hence q = p by Lemma 1, and therefore p(b) = 1. Hence carr p ~ ~ which
shows that carr p is an atom indeed.

Let now a E L, a ~ 0, and let p(a) = 1, p E P (such a pure state p there
exists owing to the Axiom 1). Then a  carr p, hence, as carr p is an atom,
we find the logic L to be atomic. If, in particular, a is an atom itself, then
a = carr p which shows that the mapping carr is a surjection. Finally, if
carr p = carr q ( p, q E P), then q(carr p) = q(carr q) = 1, hence q = p by
Lemma 1, which proves that carr is one-one.

Furthermore, the logic L is atomistic, that is every non-zero proposition
a E L is the least upper bound of atoms contained in it. This is a consequence
of the following statement :

LEMMA 3. 2014 For every non-zero proposition a E L one has

Proof 2014 As p~a1~P implies carr p  a, we find a to be an upper
bound for the set { carr It remains to be shown that a
is the least upper bound for this set. Suppose b ~ carr p for all p E al n P,
then obviously p(b) = 1 for every n P. Thus we have proved that
a1 n P ~ b n P, hence a ~ b by ( *). This completes the proof of the
lemma.

LEMMA 4. 2014 Let T be an arbitrary non-empty subset of P. Then T1- = ø
if and only if T1 = { 1} (1 denotes the greatest element of L).

Proo~ f 2014 Assume T1- = ø and suppose that there exists 1.

0, there exists, by the Axiom 1, a pure state p with p(a’) = 1,
hence p(a) = 0. Thus p E T1-, which contradicts the assumption.

Conversely, suppose that T 1 = {1} and that T1 ~ ø. Let p E T1- ;
then, of course, carr p 1- carr q for all q E T, hence q((carr p)’) = 1 for
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all q E T, that is (carr p/ = T 1. Hence, by the assumption, (carr p)’ = 1,
i. e. carr p = 0, which is impossible, as carr p is an atom.

LEMMA 5. 2014 For every non-empty subset T of the set P of pure states
one has.

CASE I : T1 - 0.
Then T1={1} by Lemma 4, and therefore {p~P : T1 f; p1} = P = ø1- = T - .

Suppose that p1 for some p E P. We shall show that p E T -. Indeed,
let q E T1-, then carr q 1 carr r for all r E T, hence hence

(carr q)’ E pl by the assumption, hence carr p 1- carr q, which implies
p -L q. This shows that p 1 T1-, or that p e T11 = T -, and therefore we have
shown the inclusion {p~P : T1 f; p1} f; T - .
To prove the inverse inclusion suppose p E T-, and let a E Tl, a E L. We

shall show that One can assume without any loss of generality
that ~ 7~ 1. (Since T-~ ~ 0, such a proposition there exists by Lemma 4.)
Then, as it easily follows from Lemma 3, a’ - n P },
hence a  carr p, which implies a~ pl, as claimed. In fact, q n P

implies q E T1-, hence q -L p, as p E (T1-)1-. This implies carr p 1- carr q
for all q n P, hence also carr p -L a’ or, equivalently, carr p ~ a.

Let now q be an arbitrary pure state. Applying the Lemma 5 we find
== { p E P : p } , - ~ q ~ by the Axiom 2.

Hence, as a direct corollary we obtain :

LEMMA 6. 2014 The phase geometry C(P) is atomistic.

THEOREM. - For every a E L the set a 1 n P belongs to C(P), and the
mapping ~ : ~ -~ al n P is an orthoinjection of the logic L into the phase
geometry C(P).

Proo, f : Let a E L, a ~ 0. If p E (a 1 n P) -, then n P) 1 ~ pl by the
Lemma 5, hence p(a) = 1, i. e. p~a1 n P. This shows that n P) - = al n P,
i. e. al n P E C(P). Since also O 1 n P = 0 E C(P), we have a n P E C(P)
for each a E L.
The implication a  b ~ j(a)~ j(b) is obvious, and the converse one

follows directly from the Axiom 1 (see (*)). To prove that j preserves the
orthocomplementation, let p Ej(a’), 0  a  1. Then p(a) = 0, which

implies p 1. q for all q E al n P, that is p Ej(a)1-. Conversely, since (see
Lemma 3) a = V { carr p E j(a)1 - (al n P)1 implies
carr p -L a, hence p E n P = j(a’). Since also j(o‘) = = j(o)1 and
j(1’) ==~’(0) =7(1)~ we have j(a’) = j(a)1 for all a E L. This completes the
proof of the theorem.
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