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Gauge groups and topological invariants
of vacuum manifolds

V. L. GOLO M. I. MONASTYRSKY

Institute for theoretical and experimental physics

Ann. Inst. Poincaré,

Vol. XXVIII, n° 1, 1978,

Section A :

Physique ’ théorique. ’

ABSTRACT. - The paper is concerned with topological properties of
the vacuum manifolds in the theories with the broken gauge symmetry
for the groups of the type SO(k) x U(n), SO(k) x SO(p) x U(r). For the
Ginsburg-Landau theory of the superfluid 3He the gauge transformations
are discussed. They provide the means to indicate all possible types of
the vacuum manifolds, which are likely to correspond to distinct phases
of the superfluid Conditions on the existence of the minimums of
the Ginsburg-Landau functional are discussed.

The study of classical solutions of equations of the field theory has made
clear, that the quantization conditions for the solutions are mostly of topo-
logical nature. The attention to the subject was particularly enhanced
by the papers by ’tHooft and Polyakov [1] [2]. The simple condition for
the existence of the non-trivial solution with compact gauge group, G,
was introduced in [3]. At present, a considerable number of papers deals
with the existence of the non-trivial solutions and their topological sense,
(cf. revs. [4] [5] ). The present paper is concerned with the study of gauge
fields and their vacuums.
The scheme is motivated by the observation of an interesting analogy

between the Ginsburg-Landau theory for the superfluid 3He and a model
of classical fields with several distinct vacuums. From the topological
point of view, in the field theory the vacuums of different models are mani-
folds ; the vacuum manifold of ’tHooft-Polyakov in the ~-theory is a
Annales de l’Institut Henri Poincaré - Section A - Vol. XXVIII, n° 1 - 1978.



76 V. L. GOLO AND M. I. MONASTYRSKY

two dimensional sphere S2 the vacuum manifolds of the A- and B-phases
of 3He are manifolds S2 x SO(3) and S1 x SO(3), where SO(3) is the rota-
tion group of the three dimensional space.

In the present paper we want to focus the attention on the existence
of different (i. e. topologically non-equivalent) vacuums within a model
of classical fields. Considering this problem within the framework of gauge
fields we obtain a variety of topological charges, which are defined by the
means of homotopy groups of the vacuum manifolds.
The coexistence of special domains of different vacuums has been

considered in a number of papers (cf. [7] [8] ). The specific problem of our
case is topological conditions on the domains, which produce new topo-
logical charges. This situation resembles very much the possible phase
transitions in 3 He (cf. [9] ).

Finally we note, that the gauge groups of the familiar weak, strong and
electromagnetic interactions (taking into account the colour, the charm,
etc.) are of the form

Hence we may expect, that the sphisticated vacuum manifolds will

eventually appear.

1 DEGENERATE VACUUMS
AND HOMOGENOUS SPACES

We shall consider a model of a field C(x) with values in a linear space
(real or complex). Here x is a point in the Minkovski space. The field 03A6
transforms according to a given representation of a compact group G.
The Lagrangian density is taken to be

where are covariant derivatives

Here T is the isospin operator, A is a gauge field, F is the curvature of the
gauge field A. The potential V(I» is invariant under the action of G.
The gauge symmetry is broken when the field 0 has a non-vanishing

vacuum expectation,  1», which must belong to a set .A of minimums
of V(0). Indeed, all vacuums of the model can be treated as the minimums
of V(~). Taking into account the invariance of V(D) we assume, that the
set .A can be decomposed into certain subsets on which the gauge group
acts transitively. Thus we decompose all vacuum states into disjoint
pieces of degenerate vacuums invariant under the action of G.
We see, that the isotopic space, J, of the field 0 is foliated by the orbits
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77GAUGE GROUPS AND TOPOLOGICAL INVARIANTS OF VACUUM MANIFOLDS

of the group G. The orbits, on which the potential takes the minimal

values, are the degenerate vacuums V2, ... We note, that in general
the V 1, V 2’ ... are not of the same dimension.
The transitivity condition implies that the degenerate vacuum is a homo-

genous set of states, i. e. for every point ~ of the degenerate vacuum V, we
have an isotropy subgroup G~ of G which leave ~ invariant and for two
points ~, r~’ the subgroups G’l’ G’l’ are isomorph. Hence the degenerate
vacuum may be identified with the manifold of the factor space G/G’l [IO].
Thus from the viewpoint of the theory of Lie groups the degenerate

vacuum is a homogenous space. There is a useful proposition (the so-called
E. Cartan theorem) which states that a compact symmetric space ~ can
be imbedded into its group Gg of isometries as a totally geodesic submani-
fold, i. e. a submanifold which contains all geodesics of the group Gg
tangent of f/ at some point (for the proof and the discussion cf. [77]).
We note that the degenerate vacuums are compact manifolds since

they are factor spaces of compact gauge groups and at least for quite a
few gauge groups the isometrics groups are identical with the universal

covering spaces of these groups [77]. E. Cartan’s theorem provides a geo-
metrical picture of the degenerate vacuums lying as totally geodesic sub-
manifolds in the gauge group.

Let us consider, for example, the gauge group SU(2) and its representa-
tion in the three dimensional real space take the potential

where cp is a 3-dimensional real vector. The degenerate vacuum is a two
dimensional sphere, which is an equator in the 3-dimensional sphere S3
which is identical to S U(2).
A more sophisticated example is the two dimensional complex projec-

tive space, CP(2), which is a totally geodesic submanifold of SU(3). It can
be adequately represented as a factor space SU(3)/U(2). The manifold CP(2)
provides some degenerate vacuums with rather unusual properties concern-
ing the topological charges (there are two of them), the instanton solutions,
etc.

2. BOUNDARY CONDITIONS
AND SOPHISTICATED VACUUMS

To determine a solution of the Euler equations of the Lagrangian den-
sity (1) we need assymptotic conditions at infinity. They are usually of two
types. The radial condition for the stationary problem is a field symmetric
under the action of the rotation group SO(3). This field is defined on the
2-dimensional sphere of an infinite radius and a center at the point (0, 0, 0)
in the 3-dimensional space. If we assume that the center is a point where
the solution equals to zero we obtain the monopole solution of ’tHooft
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and Polyakov. The radial condition for the instanton problem is a field
symmetric under the action of the rotation group SO(4) of the euclidean
theory [12] [13]. This field is defined on the 3-dimensional sphere of an
infinite radius and a center at the point (0, 0, 0, 0) in the four dimensional
euclidean space. We see that in both cases assymptotic conditions are
defined by a submanifold (were shall call it the assymptotic submanifold)
in the euclidean space and the values taken by the field at the submanifold.
We assume that these values are located in a degenerate vacuum manifold
in the isotopic space, as in the case of ’tHooft-Polyakov solution. Since the
field is defined in the whole interior Q bounded by the assymptotic sub-
manifold P we have a map of the interior Q, which is a manifold with

boundary, into the isotopic space of the field and such that the boundary
is mapped into the vacuum manifold

Still another form of the assymptotic conditions is to require that the
field takes a constant value at infinity. Then we may consider the under-
lying physical space completed at infinity with a point at which the assymp-
totic value is taken. Then the whole space is a sphere of dimension 3 for
the stationary problem and of dimension 4 for the instanton solution.
The similar situation arises for the 1-dimensional Indeed,

the familiar kink solution requires the condition ~p( + oo ) _ + 1, ~( - oc ) _ -1
i. e. we have to complete the line R 1 by two end points.
Now we may introduce a more general boundary problem, the assymp-

totic conditions at infinity being incorporated. To this end we consider
a manifold in the physical space (3-dimensional for the stationary problem
n = 3, time variable t is fixed, and 4-dimensional for the instanton solu-
tion, n = 4) with a boundary consisting of several pieces ... , Pn-1K
which are manifolds of dimension n - 1. The field defined at Qn yields a
continuous map f of Q into the isotopic space. We require that the com-
ponents of the boundary should be mapped by f into the degenerate
vacuum manifolds of J, i. e. we have a bordism

. 

We note that the topological requirements yield necessary conditions for
the existence of this map ( 1 ).

For example, let us consider the stationary problem with the manifold Q 3
of the form S2 x I a product of the 2-dimensional sphere and a segment,
the isotopic space having the degenerate vacuum sî x S2 , the product
of two 2-dimensional spheres. Then from the requirement that the boundary

e) All topological notations used in this paper may be found in [14] [15] [16].
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values produce a map of S2 x [0] into Si and S2 x [1] into S2 follows
that the maps

are homotopic, since f ~x) = F(x, i), where F is the map

defined by the field. But the maps belong to the elements of the distinct
subgroups of the homotopy group x S~) = Z EÐ Z. Therefore the
boundary problem has no solution.

In the 3- or 4-dimensional euclidean spaces, R3, R4, the submanifolds
may be associated with the domains containing the vacuums. Then the
concept of the boundary problem via bordism corresponds to the concept
of the domain structure of the space (cf. [7] [8] ). Indeed, we may consider
it as a generalisation of the 1-dimensional kink, when the solution takes
on some vacuum values (the analogues of ~p( + oo), ~(2014 oo) of the 1-dimen-
sional case) in the interior of the domains (the analogues of the infinite
regions :t 00 of the line R 1 ).

It is clear, that this generalisation introduces topological selection rules.
The topological types of the boundaries of the vacuum domains may be

different, for example, in the 3-dimensional case some of them may be
2-dimensional spheres and others 2-dimensional tori, Si x S2, i. e. products
of two circles.

It is interesting to have some means to compare different sets of boun-
daries of the vacuum domains. Suppose we have a number of parame-
ters ~,1, ~2? ...?~N of the problem. Then we may take an extension of the
physical space considering the ~,i as additional, if necessary dummy,
variables. For the sake of simplicity we shall take only the 3-dimensional
case. Let us consider a boundary problem having some set of the para-
meters

Then we have the 3-dimensional manifold Q3 of the problem lying in the
hyper surface ~~, defined by these equations. If we take the different
values of the parameters

we have to consider the different manifolds Q’3, lying in the hypersur-
face H03BB’, defined by the equations. In general, the manifolds Q3 and Q’3
are topologically different, since the choice of the values for the 03BBi influence
the possible choice of the boundaries, for which the boundary problem
has a solution.
Now let the 03BBi be smooth functions of a parameter T. Then in the space

R3 x RN we have the family of the manifolds, depending on the para-
meters T. In general for some values of T the manifolds Q; may have singu-
Vol. XXVIII, n° 1 - 1978. 6
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larities. Hence, we may only expect the set of all Qi to form a 4-dimensional
manifold W4. If this requirement is fulfilled, the one parameter set of
boundary problems corresponds to one bordism class.
We note, that here the formalism of smooth manifolds is rather restric-

tive. Indeed, some parts of the boundaries may contract and produce
singularities, when the parameters 03BBi change. Therefore some concepts
of the modem Plato problem may turn out useful here. Indeed, for the
solutions of the Plato problem one has to work with minimal compacts
rather than with smooth manifolds (cf. [17] ).
The topological invariants of bordism classes provide generalisations

of the topological charges (cf. [4] [5]). Usually topological charge is defined
as an element of a homotopy group of a sphere. In this form the topological
charge appeared in the papers by ’tHooft and Polyakov [1] [2], where the
vacuum manifold was a sphere. A natural generalisation of this situation
is to consider it as an element of homotopy group of some vacuum mani-
fold [3]. Then in general we obtain a number of topological charges for
the vacuum. For example, taking the vacuum S2 x S2, we have

and at least two charges.
Still further generalisation implied by the discussed boundary problem

and vacuum domains, is the definition of topological charges as invariants
of bordism classes. Here we may expect some connections between topo-
logical charges and characteristic classes of smooth manifolds. The most
simple vacuum manifold, which could provide some interesting examples,
is the 2-dimensional complex projective space, CP(2). It has non-trivial
Chern classes, C 1, C2 , and the Pontrj agin class pi, [l4] [16]. We note,
that the homotopy groups of CP(2) in the low dimensions are

The topological charge, corresponding to the elements of ~2(~P(2)) is

identical with the charge generated by the first Chern class. But we have
also the second charge, corresponding to the second Chern class, C2.
This charge is absent with usual interpretation with homotopy groups.
We note, that the complex projective space CP(2) is a vacuum manifold

of the gauge group SU(3). Indeed, it can be put into the form of the factor
space, SU(3)/U(2). Let us consider a situation, where the vacuum manifold
CP(2) appears [3] [2]). Take the adjoint representation of SU(3). Then
the fields variables take the values in the space of 3 x 3-hermitian matrixes
with the trace zero. The action of the gauge group is given by the formula

Consider the potential of the form

Annales de l’Institut Henri Poincare - Section A
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Then the set of all vacuums of is the sphere S7, defined by the equation

This sphere is foliated by the orbits of the gauge group. If an element 1&#x3E;0
of S7 is a hermitian matrix, having two equal eigenvalues, then the stationary
subgroup of 1&#x3E;0 is isomorph to U(2) and the orbit, containing 1&#x3E;0
is the manifold CP(2).

This construction can be easily expanded to obtain the vacuum manifolds
of the type

Hence for sufficiently big gauge groups the vacuum manifolds may turn
out to be Grassman manifolds, having considerable topological structure
with non-trivial characteristic classes (topological charges).

3. COMMENTS
ON THE GINSBURG-LANDAU THEORY FOR 3 He

To some extent the ideas of the two preceding sections can be illustrated
by the example of the Ginsburg-Landau theory for 3He [6].

It is alleged to be known, that the superfluid phases of 3He are triplet
superfluids with the condensate amplitude

where ~= 1,2,3 are components of the wave vector ; wp, p = 1, 2, 3 are the
spin wave functions, wp being an eigenfunction of the pair spin operator Sp
with eigenvalue zero, SpWp = 0. The nine complex variables Ap~ involved
in Eq. (6) define the order parameter of the system.
The analog of the Lagrangian density (1) is the free-energy density

of the form 
’

where the potential YeA) is of the form

The fields variables are the components of the order parameter. The

Vol. XXVIII, n° 1 - 1978.
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Ginsburg-Landau method of expansion of the free energy is acceptable
to because of the low temperature coherence length is much longer
than the interparticle distance.

It is immediate, that the potential V(A), is invariant under the gauge
transformations of the first kind

where the repeated indices imply the summation.
On the contrary, Lagrangian density (7) is not since the gradient terms

are not invariant under the action of (10). In the sequel we shall restrict
ourselves to the study of solutions defined only by the properties of the
potential, i. e. we shall cancel out the gradient terms of (7), (cf. the similar
approach in [22] ). Physically, this implies uniform systems of the infinite
characteristic length with respect to the coherence length. The correspond-
ing solutions may have singularities at some points lines or surfaces.
The matrixes Rpm. Rin constitute the gauge group

where the first subgroup SO(3)1 of acts on the left-hand indices of the order
parameter Api and corresponds to the representation of the total momentum
t = 1 of the spinor group SU(2), whereas the second SO(3)2 subgroup
of Jf acts on the right-hand indices of Ap~ and corresponds to the trans-
formations in the x, y, z-space.

In special cases gauge transformations ( 10) have been discussed in a
number of papers [8] [7o] [23]) (2).

Following the lines of n° 1 we shall consider the minimums (or the
vacuums) of the potential V(A). They correspond to the different phases
of It is not clear that the condition of the transitivity of the gauge
group ~f on the vacuum manifold is verified. But it is natural to chose
the minimums for which this condition is fulfilled, since we can split the
minimum into the orbits of the gauge group, each orbit being the vacuum
manifold with the transitivity condition. In that case we can easily find

(2) It is tentative to introduce a gauge field for the group Such an attempt to follow
the analogy with superconductors theory was done for 4He [20]. In the present case we
would like to substitute the covariant derivatives

for the derivatives 3~ = K = 1, 2, 3 into Eq. (7). Here S, B are the gauge fields corres-
ponding to the subgroups SO(3), If we require, that the fields S, B should be the
gauge fields, i. e. they should be transformed by the formulae (10],

we still lack the gauge equations for the gauge fields, i. e. the analogues of the Maxwell
equations for the superconductors case. "

Annales de I’Insritur Henri Poincaré - Section A
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all the possible minimums by the Cartan theorem (cf. n° 1). They turn
out to be the alleged A- and B-phases of 3He and a certain minimum
(C-phase) for which the physical meaning is not clear (cf. below).
The vacuum manifolds for the gauge group Jf are as follows

The first two of them are the A- and B-phases, the third one is the C-phase.
There are explicit formulae for the order parameter for the A-, B-, C-phases :

C-phase ; Api = const Vp0394iei03C6 ; V, 0394 are real unit vectors.

It is easy to prove by direct computation, that the A, B, C-phases verify
the necessary conditions for the extremum

The similar equation is valid for the case of 
It is not hard to note, that the sufficient condition of the positive second

variation is not true in general for these phases. Let us consider for example
the B-phase. A variation transversal to the vacuum submanifold VB may
be taken in the form

where Asi is a real symmetric non-degenerate matrix. Then we may require,
that the matrix of the second variation should be positive

where the entries of the matrix are of the form

Thus we need certain condition on the coefficients ~31, ~2 , ~3, ~4, ~s , a,
that the B-phase should be a minimum of the potential V(A). Indeed,

Vol. XXVIII, n° 1 - 1978.



84 V. L. GOLO AND M. I. MONASTYRSKY

condition (16) implies, that the coefficients of potential density (8) must
satisfy the conditions

where A p is the function of the coefficients ...,~5, a

The function 11B 12 of Eq. ( 19) is just the square of modulus of the cons-
tant A of Eq. ( 15). Indeed, it is defined by necessary condition ( 14) for the
B-phase.
Of course, Eqs. (18), (19) are not a set of sufficient conditions for the mini-

mum, since we have taken only a special variation ( 15). However, they
indicate that without certain conditions on the coefficients, the B-phase,
defined by Eq. (14) is not a minimum manifold and therefore it is not a
vacuum manifold.
A similar kind of arguments may be applied to the A- and C- phases.
Following the lines of n° 2 we shall show, how the topological concepts

may turn out useful for the treatment of coexistent phases of 3 He.
Let us consider a vessel containing the superfluid 3He near the transition

point. Then we may expect that in different regions of the vessel 3He
exists in different phases. These regions are likely to be of a rather compli-
cated nature ; they may be drops, fibres, etc. The order parameter Api
defines a map of the domain bounded by the vessel, the regions ~c
containing the various phases of 3He being mapped into the corresponding
vacuum manifolds VA, VB (and, probably, Vc). If we suggest, that the nature
of the regions should not be too intricate and they should be bounded
by the walls which can be treated as smooth surfaces, then we may apply
the speculations of n° 2. Thus we obtain the map

For a special case we can introduce the quantization condition for the
phase transition. Suppose we have a fibre of the A-phase, surrounded by
the B-phase. Let us take a surface II bounded by a closed path L, lying
in the region of the B-phase. Let II intersect the fibre of the A-phase. Suppos-
ing II to be a disk D2 we obtain the map

which defines an element X of the relative homotopy group ~2(J ; VB).
The element X may be considered as a topological index (or charge) of the
phase transition between the A- and B-phases.
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We note, that there exists an isomorphism

which permits, in the situation of this example, to define the index x by
the map of the closed path L into VB

This method was used by G. Volovik and V. Mineev [22]. In general,
the relative homotopy groups are necessary. Consider « the biological
looking object » of fig. 1. It was discussed by N. D. Mermin at the Sussex
Symposium [9]. It consists of a bulk of the B-phase containing a fibre
of the superfluid 3 He. Within the fibre there is a nuclear or a drop of the
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A-phase. Taking a closed path S1 inside the region of the B-phase around
the fibre and a sphere inside the nuclear of the A-phase, we obtain a map

where Q is the whole bulk of We may consider Q to be the whole
x, y, z-space. It is convenient to substitute map (21) by the map

where Q is a cylinder or the product surface of
the cylinder and S2 is the boundary of the ball cut out of the cylinder. This
map is determined by the maps of the boundaries S1 x R 1 and S2 of the
cylinder into VB and VA. The topological index is a pair of numbers (m, n)
corresponding to the elements of the groups n2(V A)’ which provide
the quantization conditions for the superfluid 3He.

Finally we want to make some remarks concerning the Goldstone
modes. The familiar quantization condition for 4He uses the integral of
the phase gradient along the closed path. The isotropy subgroup for that
case being zero, we infer from it that the quantization condition consists
in the integration of the Goldstone modes. Within the framework of the
Kibble formalism (cf. n° 2) the Goldstone modes correspond to the phases
of the field at the vacuum manifold.

In the London limit for 3 He the field variables (i. e. the order parameter)
may be put into the form

where g is an element of the gauge group ~f, and Ao is a fixed value of the
order parameter. Then the analog of the gradient of the phase (or the
superfluid velocity) is the element of the Lie algebra of the gauge group

It is a matrix vector

where R1, R2 are elements of the subgroups SO(3)1’ SO(3)2 and g ofU(l).
This form of the phase of the superfluid is also suggested by the gauge
transformations (10).
The quantization condition defined by the vector requires, that

the integral along the closed path 
-

should o be independent of the choice ’ of L in its homotopic class. Note,
that I takes the values in the Lie algebra of the gauge group.
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