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Vol. XXVIII, n° 3, 1978,

Section A :

Physique ’ Theorique. ’

ABSTRACT. 2014 In this paper we study a class of non-semisimple gauge
models from the point of view of their invariance properties under a set
of non linear field transformations (B. R. S. or Slavnov transformations).
We first discuss how the Slavnov invariance insures the stability, under
small perturbations, of the gauge group and of its representation on the
matter field space, thereby individuating a set of stable, Slavnov invariant
classical actions. Secondly we analyze the masses of the ghost particles ;
we see that, contrary to the semisimple case, the Slavnov invariance is no
longer sufficient to yield the complete mass degeneracy between the Fad-
deev-Popov and the longitudinal photons-Goldstone bosons sectors. This
mass degeneracy, which is an essential ingredient for gauge invariance,
is restored by imposing a special constraint on the parameters of the Lagran-
gian. The resulting definition of the classical models, i. e. Slavnov invariance
plus mass degeneracy, is extendible to the quantum level as shown in a
forthcoming paper (II).

1. INTRODUCTION

The gauge models are the result of an historical effort aimed at the cons-
truction of renormalizable theories involving vector fields. The contri-

(*) Partially supported by the Universite d’Aix-Marseille II, U. E. R. Scientifique de
Luminy, Marseille, France.
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butions of Yang-Mills [1], Feynman [2], Faddeev-Popov [3], ’t Hooft [4] [5]
and many others [6] [7] [8] have provided us with a canonical procedure
for the specification of the Lagrangian. Given a gauge group and a set of
matter fields which carry a fully reducible representation of it, the model
is built by adding to the most general, renormalizable, gauge invariant
Lagrangian the well known Faddeev-Popov (D.n.) gauge fixing terms.
The straightforwardness of such a procedure is only apparent since the

real problems appear when trying to build a sensible operator theory in
a Fock space, for which a necessary prerequisite is to have a quantum
extension (renormalization) of the model.
A possible strategy toward renormalization is to use the symmetry

properties of the theory as an alternative definition to the historical
approach. This point of view is of course meaningful if the symmetry is
enough well-behaved to characterize unambiguously the classical models
and if it can be maintained to all orders of perturbation theory.

Recently the Slavnov identity (S. I.) [9], expressing the invariance of
the Lagrangian under a system of non-linear field transformations (Slav-
nov transformations [10] ) has proved to be a good definition for theories
with semi-simple gauge groups also extendible to the quantum level.

Indeed, one can first show, in this case, that the infinitesimal gauge group
is stable under small perturbations of the field transformation laws and
that its representation on the matter field space is likewise identified up
to an equivalence transformation. Secondly, the most general Slavnov
invariant Lagrangian is defined up to a field renormalization in terms of
the coefficients appearing in the historical model, thus excluding the

presence of hidden parameters in the theory ( 1 ).
The fulfillment of all these requirements will be summarized by saying

that the set of Slavnov invariant Lagrangians is stable.
Classical stability [77] [12] [l3] [14] does not imply in general the possi-

bility of extending the theory to the quantum level ; as an example (and the
only one so far known) the Slavnov symmetry can be definitely broken
by the occurrence of the Adler-Bardeen anomaly (A. B. A.) [15].
The renormalization of the S. I. can be viewed from different angles ;

a first way is to look for a Slavnov invariant regularization procedure
which directly links the renormalizability of the S. I. to the classical stability
of the Lagrangian. Indeed, if such a regularization is available and the
renormalized Lagrangian including the counter-terms is Slavnov invariant,

(1) This is essential, otherwise these parameters could show up in the form of unexpected
divergencies during the process of renormalization. This happens, for example, in the
Yukawa model or in scalar Q. E. D. if the quadrilinear couplings for the scalar field are
omitted.
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227NON SEMISIMPLE GAUGE MODELS : I. CLASSICAL THEORY

the stability properties ensure that all infinities can be compensated by a
cut-off dependent renormalization of the fields and the parameters. Among
the best known examples of renormalization programs based on this

point of view, we mention the Pauli-Villars regularization in Q. E. D. and
the dimensional regularization as applied to the gauge theories [l6] with-
out fermion fields.
A second approach which, within the B. P. H. Z. [17] framework avoids

any specific regularization, is based on the compensation, by suitable
finite counter-terms in the Lagrangian, of the breakings which can affect
the S. I. according to the renormalized Quantum Action Principle (Q. A. P.)
of Lowenstein and Lam [7~].
The compensability of the breakings can be investigated by means of

two main tools : a power counting analysis and the consistency (integra-
bility) conditions following directly from the structure of the S. I., which
can be written as a first order differential equation in terms of the suitable
variables.

This point of view has been successfully applied by Becchi-Rouet-
Stora (B. R. S.) to renormalizable theories with symmetry breaking [19]
and to the renormalization of gauge theories in the case of abelian [20]
or semi-simple [IO] [77] gauge groups. For a semi-simple gauge field model
the consistency conditions for the symmetry breaking are discussed in
a purely algebraic fashion and point uniquely to the A. B. A.
Once the S. I. has proved to be renormalizable, there is still a need for

a physical interpretation of the theory. In fact the associated Fock-space
does not have a positive definite metric, due both to the covariant quantiza-
tion of the vector fields, as in Q. E. D., and to the presence of the anti-
commuting scalar Faddeev-Popov (0.11.) fields [3]. Furthermore the

Lagrangian of the model is in general not hermitian.
It is, thus, necessary to find, within this indefinite metric Fock space,

a subs pace with a positive definite norm (physical subspace) where the
S-matrix is unitary and independent from the parameters labelling the
gauge fixing terms in the Lagrangian. There exists now a systematic
approach to the unitarity problem, based on the S. I. and on the peculiar
properties (mass degeneracy) of the unphysical states of the models.
As far as gauge invariance is concerned, it can be proved by a direct

extension of the method used in massive Q. E. D.
The problem of classifying the local observables, i. e. the local gauge

invariant operators, still awaits a global solution, although recently [21],
the general guidelines toward such a solution are beginning to clarify.

This paper contains the first part of an analysis of non-semi-simple
gauge models where, with the intent of simplifying as much as possible
the study of the renormalization process, we shall exclude the presence
of massless particles hence considering only models in which all the photons
corresponding to the semi-simple factor of the gauge group acquire mass
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through a Higgs-Kibble [22] spontaneous symmetry breaking mechanism.
We shall, however, follow a procedure which, in the light of recent develop-
ments in the field [23], can be directly extended to the massless case.
We study here the definition and the stability properties of the models ;

the renormalization problem will be fully analyzed in a forthcoming
paper.
The stability of the non-semi-simple models suffers two kinds of patho-

logies as compared to the semi-simple case.
The first of these pathologies lies in the fact that the Slavnov invariance

does not identify uniquely the matter field representation of the abelian
factor of the gauge group. As a consequence there arises the possibility
that the renormalized representation may be inequivalent to the tree-

approximation one. It will, however, be shown in the next paper that the
abelian representatives are not affected by quantum corrections, so that
this first kind of instability has in practice no relevance.
The second pathology comes from the fact that the S. I. is compatible

with the introduction of arbitrary mass terms for the abelian photon
and C.n. fields.

This phenomenon has been already discussed in the Literature. In

particular in the case of the U(l) H. K. model, B. R. S. have shown [20]
that such a mass term breaks the gauge invariance of the theory. They
eliminate it by requiring that the unphysical particles (Goldstone bosons
and longitudinal photons) be mass degenerate with the C.IY. Notice
that in the case of unbroken U(l) gauge symmetry such a mass term is
allowed, thus leading to massive Q. E. D.
We shall show that in the general case an analogous mass degeneracy

prescription must be imposed, which now turns out to be compatible
with the presence of a suitably restricted mass term for the abelian photon

fields.

In Section 2 we describe the construction of the gauge field models,
exhibit their Slavnov symmetry and introduce the necessary ingredients
to translate the S. I. into a functional form.

Section 3 is entirely devoted to the study of the stability properties
following from the S. I.

In Section 4 we analyze in detail the mass degeneracy condition in the
unphysical one-particle sector of the theory and give a heuristic discussion
of the relevance of this condition for the gauge invariance of the model.

The concluding Section contains a summary of the results so far obtained
and some remarks which provide a bridge toward the renormalization
of the gauge field models, which will be the subject of a forthcoming paper.
The more technical aspects of our analysis are treated in Appendices A,

B, C.
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229NON SEMISIMPLE GAUGE MODELS : I. CLASSICAL THEORY

2. CLASSICAL MODELS
AND SLAVNOV INVARIANCE

Let G be a compact, real Lie algebra with G = S EÐ A where S and A
are the semi-simple and abelian factors respectively.
The field ~~x) with components i = 1, ..., n, carries an anti-hermitian,

fully reducible representation of G according to

while the gauge vector fields J~~(~) transform as

with real, differentiable functions of the space-time point x and
f03B103B203B3 the real structure constant of G.
The set of Greek indices 03B1, 03B2, y = 1, ..., N will be split, when convenient

into a « semi-simple » subset as, = 1~ ... , Ns and an « abelian » subset
~A, yA == 1, ... , NA, corresponding to the semi-simple and abelian

components of G ; in particular f"sSyA == = f~Ays = 0.
A classical Lagrangian invariant under the transformations of Eqs. (1)

and (2) is built with the cpi fields, the covariant antisymmetric tensor

and the covariant derivative

as

The indices a, ~3, y, ... are raised and lowered by means if a nondege-
nerate invariant form whose reduction to irreducible components of G
defines the coupling constants, the , v = 1, ..., 4 indices by the Min-
kowsky metric tensor and the matrix Iij is a positive definite form anti-
commuting with the matter field representation. Unless explicitely speci-
fied the sum over repeated indices is always understood.
The term + q) in Eq. (4) is an invariant polynomial in the argument

~p~ + q~ which satisfies

e) For the sake of simplicity we shall here consider only scalar matter fields ; the genera-
lization to include fermion fields is straightforward.
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and exhibits the spontaneous symmetry breaking mechanism in the direc-
tion of the vector q.
The mass matrix mi~ of the fields in fact satisfies the eigenvalue

equation, obtained from Eqs. (1) and (5)

where q03B1j = t03B1jkqk.
From Eq. (6) we observe that the number of massless Goldstone fields

is given by the dimensionality of the orbit of q.
The mass matrix Ma~ of the gauge vector fields is

In the following we shall assume that the orbit of q contains at least
the the trivial representation of G is excluded, and hence
by Eq. (7) all the gauge fields acquire mass by the Higgs-Kibble
(H. K.) mechanism. We shall see later on that under this condition and for
a generic choice of the parameters in the final Lagrangian all gauge fields
can be made massive.

It is well known that the Lagrangian in Eq. (4) is not directly quantizable
since it leads to singular field equations. A way out of this difficulty, allow-
ing a correct definition of the propagators, is to introduce the Faddeev-
Popov [3] Lagrangian (3)

where

The C.n. c«(x) fields obey Fermi statistics and have canonical
dimension 1 ; the components p~ of the vector p" are the gauge parameters
introduced by t’Hooft.
The Lagrangian in Eq. (8) is no longer invariant under the gauge trans-

(3) The C. n. gauge fixing term in Eq. (8), which is often used in the literature, leads to
particularly simple form for the propagators. However we shall see in the following that

in general the matrix 1 k03B403B103B2 should be replaced with an arbitrary symmetric positive defi-

nite matrix [10]. It is also worthwhile noticing that any choice of the gauge function
linear in the fields can be reduced to the form (9 a) by a redefinition of the ca fields.
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formations (Eqs. (1) and (2)), but under the following set of Slavnov [9]
transformations :

where 5~ is an infinitesimal, space-time independent parameter which
commutes with the ~(x) fields and anticommutes with the 
e«(x) fields.

It will turn out to be useful to assign to the fields a C.IY. charge Qøn
as follows :

so that the Lagrangian in.Eq. (8) is C.IY. neutral.
The above transformations can be summarized in a functional deriva-

tive notation. Let

and

Eqs. b, c, d, e, f ) take the form

A further gain is acquired by the introduction of a set of external fields

to which the following . II. charges and dimensions are assigned
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The external fields are coupled according to the new Lagrangian

which is still O.IY. neutral and invariant under Eq. (12) due to the property

Of course the field vector y(x) is assumed to have components only in the
non-identity factors which arise from the complete reduction of the repre-
sentation t03B1ij into irreducible constituents.
With the aid of the ~ fields the invariance of the theory under the Slavnov

transformations Eq. (12) can be written in terms of the classical action
functional

in a more compact way :

It is also useful to linearize the expression of the Slavnov symmetry
of the theory by writing it for the generator of the connected Green func-
tions 11). Upon introducing the sources

for the fields ~, respectively, with

this generator is defined bv

where the subscript is a short-hand notation for

and
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In terms of the functional differential operator

the S. I. is now

Clearly these functional expressions can be given a meaning also beyond
the tree approximation, hence the renormalization program of the models
will be based upon the quantum extension of Eqs. (19) (24).

Before ending this section let us remark that Eq. (24) implies :

which translated by Eqs. (22) for the vertex functional 1]) becomes

As we shall see in the following the validity of Eq. (26) to all orders of
the perturbation expansion fixes the wave equation of the ca fields.

3. STABILITY OF THE CLASSICAL MODELS

Our task in this Section is to check whether any solution of the S. I.
in a neighborhood of any Lagrangian built according to the prescriptions
of Section 2, can be brought back to this historical form by a suitable
linear transformation of the fields, whose general expression is

To preserve the S. I., modulo a change of the gauge parameters p~‘,
we must impose on Eqs. (27) the restrictions

Vol. XXVIII, n" 3 - 1978.
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and require that they be implemented by the external fields transformations

with

The proof is carried out perturbatively to first order in a « small » quan-
tity E and is articulated in two steps. First we shall discuss the external
field dependent part of the action, thereby having informations on the struc-
ture constants of G and its representation on the matter fields space. We
shall see that the perturbed structure constants coincide, after a transfor-
mation as in Eq. (27 b), with the unperturbed ones, while the matter fields
representation gives rise to a possible instability which is analyzed in the
text. Secondly, we shall be concerned with the external field independent
part of the action and its parameters as compared to those of the historical
model. This investigation leads to the individuation of a canonical form
of the classical action, different from the historical one, which turns out
to be stable under perturbations. This last point is also amply commented
upon in the text.

According to the above illustrated procedure we write the perturbed
action as

where

Eqs. (32 a), (32 b) and (32 c) are first order perturbations of Eqs. (10 a),
( 10 b) and ( 10 c) i. e. explicitely

Annales de r lnstitut Henri Poincare - Section A
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The validity of the S. I. for the functional in Eq. (31) can be written as

where the operator J ) is the analog of the one given in Eq. (12) with the
substitution Pi -~ 

Factoring out the coefficients of the external fields in Eq. (34) gives a
set of consistency conditions which are the first order G expansions of

by which we can analyze the behaviour of the perturbed structure cons-
tants F~ and of the representatives T ~.

Indeed Eq. (35 a) explicitely reads

whose general solution is

or equivalently

From this equation it is clear that the substitution (27 b) with

performed on the classical action restores, to first order in 8, the original
structure constants thus ensuring the stability of the semi-simple factor
of G. Once this is done, Eq. (35 b) yields the system

with general solutions

which allow us to write Eqs. (33 c), (33 d) in the form

with

Vol. XXVIII, n° 3 - 1978.
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Here again we see that these perturbations can be reabsorbed by the photon
fields renormalization in Eq. (27 a) with the choice

The stability of the adjoint representation carried by these fields is thus

proved ; notice that, up to now, the abelian factor of G and its representa-
tions have played no role.
The last equations derived from Eq. (35 c) are

which are solved respectively by

where L~ is an arbitrary matrix commuting with the 
In terms of the expressions (46), Eqs. (33 a), (33 b) can be written, to first

order in G, as

and

These last equations are the necessary complement to exhibit the possible
pathologies.

Let us first remark that if

then the substitutions (27 a), (27 c) with

and

performed on the classical action compensate exactly the remaining per-
turbations in Eqs. (33). This would imply the stability of the complete
algebra G and its representation on the field space. If Eq. (49) is not satisfied
we remain with a single possible source of instability in the term T~,
related to the abelian factor of G. The analysis of this impediment now
proceeds by considering the external field independent part of the action,
which likewise must be invariant. Recalling that the instability comes
from the 03C6i fields representation, we shall only consider the global trans-
formations
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which must leave invariant an 8-perturbation of W(~p), the classical gauge
invariant action corresponding to (~, (Eq. (4)) at the point ~ = 0.
Indeed, as shown in Appendix B, the perturbed Slavnov transformations
induce automatically the appropriate . II. gauge fixing term, which is
a perturbation of the original one ; the remaining part, invariant under
these transformations, contributes (except for the abelian photons mass
term which we shall see later) only to the gauge invariant action where the
dependence on the matter fields is completely identified by their global
transformation properties.

In this way, the mentioned invariance condition puts further constraints
on the admissible Trj matrices and leads to the net result, proved in Appen-
dix A, that the general Trj is not equivalent to t03B1ij if and only if we can find
at least one linearly independent from the and commuting with
them, such that w(~p) is invariant under the transformation

Remark that this result requires quite severe specifications the matter
fields must meet for to be necessarily zero ; in particular it excludes
the presence of baryonic or leptonic components of the matter field vec-
tor c~. In fact, in such a case, the generator of the baryon or lepton charge
immediately furnishes a ia matrix which violates stability.

Before taking too seriously this source of instability let us recall that the
possible existence in the theory of « hidden » parameters, may spoil its

renormalizability if these parameters are explicitely needed to compensate
some renormalization parts. Since we shall show in the next paper that the

are not renormalized thanks to a mechanism similar to the one lead-
ing to the well known Ward identity of Q. E. D., we can from now on forget
about the 1’~ problem.

Concerning the stability of the external fields independent part of the
action in Eq. (31), it follows from Appendix B, that the most general Slavnov
invariant 03A6.03A0. neutral functional of maximum degree four is given by

where and are real, symmetric matrices and is positive definite,

Vol. XXVIII, n° 3 - 1978.


