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Institute for theoretical and experimental physics, Moscow USSR

ABSTRACT. — We discuss topological properties of instantons of the
theories with compact non-abelian gauge group. An example of the solution
with the group SU(3) is considered. It is shown that the solutions with
high topological charges defined by the Pontrjagin classes p;, i > 1, have
a non-finite action.

INTRODUCTION

The finite action solutions, i. e. instantons or pseudoparticles, of Jang-
Mills theories have been extensively used in the field theory, especially
for the 4-dimensional space and the compact gauge group SU(2), i. €. in
the situation where they were first found in [I] [2]. The instantons for the
SU(2)-group are described by only one topological invariant or topological
charge, i. e. the Pontrjagin number p,. The solution with p, = 1 were
studied in [2]. Then Witten [3] and ’t Hooft [4] found a large class of instanton
solutions with the topological charge p; = g, where q is an integer and
Belavin and Zaharov [26] found a method to construct a general solution
depending on 8g — 3 parameters. As we gathered M. Atiayh [27] reduced
the study of SU(2)-instantons to a problem of algebraic geometry.

The SU(2)-instantons do not exhaust all the pseudoparticles interesting
for the field theory. Recently Polyakov has proved the confinement hypo-
thesis for the 3-dimensional QED with an abelian compact gauge group
(cf. [] and more detailed paper [/0]) by the method which relies heavily
on the computation of the contribution of the pseudoparticles to the func-
tional integral representation of correlation functions. There is an opinion,
that the pseudoparticles and some related things like fluctuations play the
crucial role for the confinement problem, though for the group SU(N)
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158 V. L. GOLO AND M. 1. MONASTYRSKY

with the large number of colours N the contribution of the instantons is
exponentially small -

here v is a number of instantons, g2 is the charge [7] [8] [9].

Among other applications of the instantons we want to point out the
alleged U(1) problem, where they permit to explain the absence of massless
meson [5] [6].

In this paper we want to discuss the possible types of the solutions of
Jang-Mills theories from the topological point of view, not restricting
ourselves to the confinement problem.

Following the ideas of paper [/1], we are studying solutions with non-
trivial topological charges. The solutions with charges different from p,
emerge in the theories with the gauge group SU(3). They turn out to be of
infinite action and so far seem to be physically uninteresting, but one ought
to keep in mind that the action can be made finite by switching on the
additional fields, e. g. the Fermy fields. Indeed, this is the situation for the
monopole solutions.

This paper is arranged as follows: § 1 contains some informations on
the « low brow » version of the theory of characteristic classes; § 2 is
concerned with the topological invariants for the SU(N)-theory; in § 3 we
compute an example for the SU(3)-theory.

§1

Let us consider a gauge field A, respectively to a gauge group G. The
components of the field A, take the values in the Lie algebra LG of G. We
shall consider the general case of the space of dimension n so the index u
may take the values 1, ..., n, n > 4. The strength tensor F,, respectively
to A, is of the usual form

F,=0A,—-0A, +ie[A,;A] (1)

uv

To make clear the relation of the characteristic classes theory and the
gauge formalism of field theory we want to compare the formulae of the
two theories. Indeed, the gauge field A, is familiar in differential geometry
as the linear connection, which is usually written as the differential form

¢ = A dx* 2)

where x*, u = 1, ..., n are the coordinates of a point of space or the local
coordinates in the sense of differential geometry (*).

(!) The reader is suggested to understand that the generalisation to more sophisticated
manifolds is strightforward. The proofs and all the rest of the theory are contained
in (/2] [13].
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Then the curvature form is defined by the formula
®=d¢—%[¢;¢] (€)
where do is the exterior differential of the linear form ¢
dop = 0,A,dx" A dx* = %(GVA,, — 0,A)dx" A dx* ()]

and dg is defined by the formula

o, 0] = [A,; AJdx" A dx* ®)
We see that

1
® = -F,dx* A dx’
2
where F,, is the strength tensor (1).
These formulae suggest the close links of the geometrical and the field
theory formalisms. To illustrate this general idea let us consider the Lagran-

gian density of the free gauge field in the Euclidean space of the dimension 4,
i. e. we perform the Wick rotation

t - it, X - X, 1=1,2,3
changing the real Minkovsky time to the complex one. We have

¢ =Tr{-F.}
L=jd4x~$=jd“x-Tr{—F,fv} ©6)

Now we want to write Eq. (6) with the exterior forms. To this end we
introduce the familiar duality operation * which acts on the exterior
forms of rank 2 by the formula

*(dx' Adx)=dx? Adx"=(=¢

i. . p, y are such that the equation holds

u" v
vpydX" A dx®)

dxt A dx” A dxP A dx? =dx' A dx? A dx® A dx*

The operation * acts trivially on the coefficients of the forms * f = f.
Then it is easy to verify that the following exterior product satisfies the
equation

1 1
(I>/\<I>=ZFjvdx1 A Adx4=ZFjvdV @)
The coefficients of these exterior forms are matrices and the products of
the coefficients are the products of matrices. Thus we have for the Lagran-

gian density
LAV =Tr {® A O*}. (®)
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160 V. L. GOLO AND M. I. MONASTYRSKY

Formula (8) is true for any gauge group, if the gauge field is defined in the
four-dimensional space.

Now we may define the topological charge with the help of exterior
differential forms. To this end let us consider the following expression

&,v0,F,

-
Fuv - uvpy™ py

N =

i e. the tensor dual to the strength tensor F,,. It is clear that
1
F,FhdV = Ed) AOD ()]

Following [2], we may put the topological charge into the form
1
Q= ‘[dV Tr (F,F¥) = 3 JTr (@ A D) (10)

Eq. (10) permits a formulation for the topological charge of the SU(2)-
gauge field, which transforms according to the adjoint representation of
the group SU(2). To obtain the formula we may use the so-called A. Weil
homomorphism (cf. for the details [/3]), which defines the characteristic
classes as the coefficients of the expansion in A of the determinant

C@) =det || 67 + A0V || =1+ ATr ® + ... + ANdet @

Here the curvature form is considered as a n x n-matrix with the entries
being exterior forms of the rank 2, i e.

, 1
Q=[] = HEF,?vdx" A dx* (11)

Let us consider the SU(2)-theory, i. €. the gauge fields A are 2 x 2 complex
matrices with the zero trace. Then the curvature form ® may be considered
as 2 x 2-matrix with the entries being exterior forms of the rank 2. Hence
eq. (11) may be written as

CO)=1+2ATr® + i2det® =1+ 42 det ®
We have used the equation
Tr® =0, Tr (A) =0
since Tr (A) is a linear combination of matrices with zero trace:
F = 0,Af — 9,AY + ie[A,; A]"=0
To compute det @ we note that the equations
F'' + F?2 =0, F12 - F21 = 0.
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are verified in the Lie algebra of SU(2). Hence we obtain
det o = (Dll(I)Z.Z _ (D21(D12
1
= Z[F,}vlF,,zf — F2IF 2 )dx" A dx® A dx? A dx?
1
=—-0AD (12)
2
Thus we have obtained Eq. (9) for the SU(2)-topological charge.

Here we want to note that there exist two types of topological charges.
The first one is pertinent to the theory of characteristic classes and is
defined by exterior differential forms. We have just described it. The second
one is defined by the homotopy class of a map of a sphere of an infinite
radius into a factor space G/H where H is a subgroup of the gauge
groupe G [2] [11] [24]

f:8"!' - G/H (13)

i. e. the topological charge of the second type is defined by an element of
the homotopy group =,_(G/H). This situation happens in the problem
of monopole solutions of Polyakov-t Hooft, where H is a stationary
subgroup of the vacuum vector. In some cases both types of the topological
charges coincide, . g. this happens when H is a subgroup consisting of
only one element and the map defines the assymptotic conditions at infinity
for the instanton problem of paper [2]. If we are interested in the gauge
group SU(N), N > 2, and the space of dimension n = 4, then the condition
at infinity provides us with the set of topological invariants, which are
elements of the homotopy group n;(SU(N)) = Z where Z is the additive
group of integers. For any integer considered as an element of 75(SU(N)),
there exists a finite-action solution of some SU(N)-Jang-Mills theory
(cf. below § 2).

§2

Recently the instanton solutions have been studied in a number of
papers, where they considered various types of compact semi-simple Lie
groups as the gauge groups for the needs of elementary particles physics
and gravitation [/4] [15] [16] [17]). The embeddings of SU(2) into SU(N)
have proved interesting for the elementary particles theory. There is a
considerable progress in the field, the necessary mathematics being provided
by the theory of simple subgroups of Lie groups [/8]. We note, that the
numbers of different vacuums for the SU(2)- and SU(N)-theories coincide
since there exists an isomorphism [/9],

13SUQR)) = n3(SUN)), N >2 (14
induced by the embedding of SU(2) into SU(N) (the so called stabilization
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162 V. L. 'GOLO AND M. I. MONASTYRSKY

theorem [/9]). Therefore some physical effects, e. g. the nonconservation
of chiral charge, the tunneling between different instanton states, are
retained in SU(N)-theories, just as it is in the SU(2)-theory.

From the embedding of SU(2) into SU(N) and isomorphism (14) follows
that for any value of the topological charge g belonging to m3(SU(N))
there exists a Jang-Mills theory, which has finite action solutions with the
topological charge equal to ¢. Indeed, we may consider a SU(2)-Jang-Mills
theory, take an imbedding of SU(2) into SU(N) and then reconsider our
theory as a SU(N)-theory. Since in both theories the charge is defined by
the map

f:8"1 - SUQ), SUN)

of the assymptotic values at infinity we have the coincidence of the charges
by the stabilization theorem, but we know that in the SU(2)-theory any
charge exists [3, 4].

In the gravitation theory there is the gauge group

SO4) ~ SO@3) x SO3); n(SO4) = Z D Z

The 3-rd homotopy group of SO(4), n5(SO(4)), is isomorph to two copies
of the additive group of integers

13(80(4)) ~ 75(SO(3)) @ n3(SOB) ~ Z D Z

Hence we have two topological charges, i. e. the Euler class and the Pontr-

jagin class
X =‘[ véRtv aﬁpa’ yé v\/7d X

Py =J‘ uvaBR aﬂyéf d4

In paper [/4] F. Wilczek asked a question, whether there is any relations
between the possible values of y and p,, e. g. is it possible that y = 0 and
p; = 1. For the gauge fields on the 4-dimensional sphere, which under
some circumstances can provide the physical space for the problem, there

exists the theorem )
D1 is always even

if x=0, then p, =4k

But the gravitation theory requires that y and p, must be the classes of
the tangent bundle of the physical space. Therefore the requirements
on y and p, put restrictions on the topological structure of the manifold
of the physical space. Indeed, if the Pontrjagin class of a 4-dimensional
manifold M* is not equal to zero then the second homology group of this
manifold is not trivial. Whether manifolds with sophisticated topological
structure are suitable for the theory of gravitation remains to be seen.
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§3

In this context it is interesting to try to find topological invariants which
stem from the topological structure of gauge groups SU(N), N > 3. The
first invariant of this type is the 3-rd Chern class, C;. Let us consider the
case of SU(3). Then C; is defined by the formula

det || @Y || = det || Fdx* A dx"||

— ol1i2i3 |ivj1 Fiziz2 Fisjs Jy#1 Vi V3
= guBRBF FRR FR dox't A dx™ A ..o A dx (15)

We see that C; is defined by an exterior differential form of rank 6. The

3-rd Chern number, [C;], is an integral of this form over tha space x', . .., x®

and equals to
[C4] =J Cs
Rn

This number to be non-zero we need the dimension of the space be equal
to 6. This follows from Eq. (15) being a symmetric polynomial of the 3-rd
degree in the components of F. Another corollary of Eq. (15) is that the
topological charge [C;] cannot provide the lower bounds for the estimate
of the energy since the energy density is a symmetric polynomial of the
2-nd degree (cf. [23]).

Now we want to consider a simple example of a SU(3)-theory with the
non-trivial topological charge. To solve the equations for the gauge fields
we need a symmetry condition on our problem. A condition of the kind
is the existence of an embedding of the gauge group into the group of the
space symmetries. This embedding couples space-like symmetries with
internal symmetries of the gauge group. Because we need the 6-dimensional
space for our problem we may take the space of the D(0, 2) = 6 represen-
tation of SU(3), i. e. symmetric matrices, and consider its real part, which
is of dimension 6, as the space of our problem. Our theory being the static
one we shall omit the time variable. Then the gauge field is a tensor

g, a=1,...,8; k=1,...,6 (16)
belonging to the space of the tensor product 8 ® 6, where 8 = D(1, 1)
is the adjoint representation of SU(3). We have the familia formula
8® 6 = D(1, 0)® D(0, 2) ® D2, 1) ® D(1, 3) a7
It will be convinient to write the space coordinates as matrix elements
of a symmetric 3 x 3 matrix

Zl'j=Zji9 i’jzla 2a3

Formulae (16) and (17) suggest the following.
Ansatz:

Aj; = 1(/1:~‘uzu,- + Mza) b r=/z, (18)
2
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where 1j, A5, are the entries of Gell-Man’s A-matrices and the double
lower indices are due to the space coordinates. The Ansatz of this type
have been made in a number of papers [20] [2]] [22]. The particular form
of our Ansatz is determined by the spherical SU(3)-symmetry of our
solution.

On substituting Eq. (18) for the gauge field into the equation for the
field tensor

) Fi = Afju — Al + efuALAL (19)
we obtain
, h
Fju = Ufjuh + Vi‘;,kl'z—r + Wiaj,kt'hz (20)
where
. zq 1., . z; 1, .
g =" E(Xiuzuj + MZu) — —rl : 5( fZu + Mz

i = (A0 + X5.000) — (M0l + 4004

Zx 1 a a Zii 1 a a
—_ [:_;_ . E;(Aiuzuj + l{juzui) - —r—J 5 (/1,‘“2,,1 + Aluzuk)il

1 1
Wi = 5 efond M2y + Azi) - 3 (AZar + AiZir)

after some computations we obtain the Lagrangian density satisfying the

Ansatz in the form
+ o0
L= J ar- &,
0

L = a5 B + a;r*hh + ayr’hh + ar*h? + asr*h® + agr®h*, - (21)
1
a, =j | U® |*(Tde) a, =~ J | V [*(T1da)
s 4 Js
a, =J Re (UV) (T1dw) as =I | W [}(I1do),
SS

a; = 2j Re (UW)(Tde)  aq =J | W |2(Td)
S5 S5
The Euler equations for functional (21) can be written as
. 5.
B+ 2h+ 2 h e 2 gk =0 22)
r r r

_2a, —a, _ Saz — 3a; _ 2ag
% = Oy = ——F o3 = —

)

a, 2a, a,
a3 >0, since a;,ag>0.

Note, that a3 > 0 since a,, ag > 0.
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The bounded solutions of Eq. (22), when r — oo can be found from

the equation . :
h—oh®*=0 (23)

(cf. the phase picture of this equation on Fig. 1). To find the solution decreas-
ing as r — oo we may search it in the form of a series in powers of r~*

LI (24)

2

h

r r

4

N\
/ N N\

Fic. 1.

!

We may restrict ourselves only to the first term which has the coefficient b,
equal to

Say — 3as F \/(5a; — 3as)® + 32a¢(3a; — 2a, + a,)

b, =
! 4a,

Thus we see that the solution decreasing as r — oo has the assymp-
totic r~*. Therefore the integral of the energy diverges as r* and the topo-
logical charge as In r.

Here we want to note that formulae like (15) are rigorously applied
only to compact manifolds. In the field theory they write them also for the
non-compact ones the solutions of the field equations decreasing sufficiently
rapidly. In the present situation a way can be suggested to get a reasonable
value for the topological charge by applying the conformal transformation
of the 6-dimensional sphere S° onto the Euclidean space R®

f:S% - R®
Then we obtain an exterior differential form on the compact manifold S°,
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which is the image of the Chern class C; by the transformation. Now the

integral
J f*Cy
s6

is taken over the compact manifold S°. The value of this integral is defined
as the topological charge of the problem.

CONCLUSIONS

Finally we want to make the following remarks:

(1) The existence of finite-action solutions of Jang-Mills theories with
the gauge group SU(N) has purely topological nature and is based on the
dimension 4 of the physical space;

(2) The asymptotic conditions at infinity play the crucial role for the
existence of such solutions. It is interesting to consider the problem of
condition at infinity directly in the Minkovsky space. To this end it is
possible to apply the following construction. Let us consider the domain

V={y-y-y-yi>0y >0}
The following domain is an analogue of the upper complex semi-plane
’ P ={Z=X+iY;XeR* YeV}

This domain can be put into the form of a bounded domain Q in C*. The
conformal group SO(4, 2) is transitive on Q ~ @ and

2 ~ S04, 2)/SO@4) x SO(2)
The Bergmann-Shilov (see of [25]) boundary of 2 is the set S. We have
S ~ SO(4) x SO(2)/SO(3) ~ S x St

This boundary can be viewed upon as the set of end points of geodesics
starting in the interior of 2.

Arguments based on the conformal invariance show that the asymptotic
conditions at infinity provide the topological charges, which are determined
by the homotopy classes of maps of the manifold S = S! x S3 into the
gauge group G. It is not hard to see, that these classes constitute the homo-
topy group n3(G) and therefore we have only one topological charge for
this problem.

(3) To obtain additional topological charges the dimension of physical
space must be taken bigger than 4. It is likely to have such situation, when
the coordinates describing interior degrees of freedom are included in
the physical space. Then a possible analogue of the space R* is a manifold
R = R* x M. Topological properties of such fields would be quite sophisti-
cated.
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