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ABSTRACT. - It is shown that Bell’s Inequality does not characterize
all local hidden variable explanations of the polarization correlation expe-
riments. If one considers theories in which a single polarization measure-
ment is not independent of previous particle-polarizer interactions then it is
possible to manufacture local hidden variable theories which agree with
quantum mechanics for any of the experiments performed to date.
A relevant property here is ergodicity, and we can say that Bell’s Inequality

characterizes all ergodic local hidden variable theories (i. e. all local theories
that give the same time and ensemble average) but not all non-ergodic local
hidden variable theories. It is further shown that the most physically reaso-
nable class of non-ergodic local hidden variable theories must also satisfy
Bell’s Inequality.

It might be concluded from this article that if one insists on believing
in both local hidden variable theories and the polarization correlation
experiments supporting quantum mechanics then one must also believe in
the existence of a field, medium or ether that permeates space and has rela-
tively stable states (memory).

I. INTRODUCTION

A. In 1964 J. S. Bell [7], building on some work of Einstein, Podolsky
and Rosen [2] and Bohm and Aharonov [3], proposed to show that any
local hidden variable theory must necessarily be inconsistent with the
quantum mechanical predictions for certain types of experiments that
measure the polarization correlations of two separated particles which are
originally together in some state. Several experiments [4-8] have since been
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380 V. BUONOMANO

performed and the overall results support quantum mechanics [9] (accepting
Bell’s Inequality). A review of the hidden variable question and most of
the references can be found in Reference [72].

In this article it is shown that Bell’s Inequality does not characterize all
local hidden variable explanations of the polarizarion correlation experi-
ments (1). The existing demonstrations of Bell’s Inequality assume that the
experimental average is an ensemble average. That is, each measurement is
absolutely independent of all other measurements. However for pratical
reasons the experimental averages obtained in the laboratory are obtained
by taking a number of experimental runs with a number of measurements
in each run. It is implicitly assumed in the experiments that as long as there
is a reasonable time interval between the measurements in any run it is a

re-preparation of state and consequently the time average can be considered
equivalent to an ensemble average.
The logical possibility that once a measuring system enters some state in

the act of measurement it remains in that state indefinitely (i. e. is stable) is
ignored as being physically unlikely. This indeed may be the case but it

should be emphasized especially in view of the not entirely consistent
experimental results that this is an assumption and is to the best of our
knowledge not based on any experimental evidence.

Thus if one wants to characterize all local hidden variable explanations
of the polarization correlation experiments as they are actually performed
in the laboratory, one must consider possible interactions in time. That is,
one must consider local hidden variable theories which are non-ergodic,
i. e. do not give the same time and ensemble average. For example, the
most simple type of non-ergodic theory that we can imagine is one in which
the state of a measuring apparatus after a measurement is a function of its
state before the measurement and the state of the particle it measured,
with the crucial condition that the measuring apparatus remains in this
state until the next measurement. A simple example of such a theory is
given in the appendix. In such theories the states of two distant measuring
apparatus can become correlated over time in a strictly local manner if
they are measuring particles which are themselves in correlated states.

In this article it will be seen that i) any ergodic local hidden variable
theory must satisfy Bell’s Inquality (and consequently disagree with quantum
mechanics), ii) the simple class of non-ergodic theories discussed above
must also satisfy Bell’s Inequality and iii) there exist non-ergodic theories

(1) It is well-known that Bell’s Inequality does not characterize certain local hidden
variable theories. Those are theories in which the distant measuring apparatus « commu-
nicate » with each other directly and consequently know each others states. Since such
theories are experimentally testable by randonly changing the apparatus parameters
between measurements (See end of Section IV.B), they are frequently excluded from
discussion. They will be excluded here as well.
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381A LIMITATION ON BELL’S INEQUALITY

which agree with quantum mechanics and consequently do not satisfy
Bell’s Inequality but they involve controversal properties of space (Sec-
tion I. C).

In the remainder of this section some terminology is developed (I.B) and
the claims of the article are then expressed more precisely (I.C). In Section II
a review of the relevant experiments is given along with a discussion of the
mathematical representation of a hidden variable theory as iniciated by
J. S. Bell. Section III contains the demonstration. The experimental evidence
is discussed in Section IV, where an experimental proposal is also made.
In Section V an observation on the Copenhagen and the Statistical Inter-
pretations of quantum mechanics is presented.

B. In order to make the claim of this paper more precise it is necessary
to review some more or less standard terminology to clearly distinguish
between the various ways of obtaining an experimental average of some
measurable quantity.

First, there is the ensemble average which ideally one would obtain by
using a large number of identical apparatus, taking exactly one measurement
with each apparatus. In practice one would make a series of measurements
(with one apparatus) following each other in time with the condition that
the states of the apparatus were somehow randomized (re-prepared) prior to
each measurement. We call this type of experiment an ensemble experiment.

Secondly, we call a single time average an average which is obtained by
making a series of measurements (with one apparatus) following each other
in time, taking no action to randomize the states (re-prepare) prior to each
measurement. In all the polarization correlation experiments it is implicitly
assumed that the states of the measuring apparatus automatically revert to
random states (i. e. are re-prepared) if there is at least some small interval
of time between each measurement, and therefore these experiments are
implicitly assumed to give an ensemble average.

Third, we call an time average an average obtained by using a
large number of single time averages. That is, an average obtained over a
large number of distinct experimental runs, with each of these runs having
a large number of measurements. We call the experiment necessary to obtain
a single time average or an overall time average a time series experiment.

In the case of the polarization correlation experiments quantum mechanics
predicts that these three averages must agree, but because of experimental
error and drift effects, an overall time average was used in all the previously
performed experiments. In general one can imagine theories in which these
three averages may or may not agree. When they all agree then we call the
theory ergodic [l3, 14].

C. It will be shown that Bell’s Inequality applies only to ergodic local
hidden variable theories in general and therefore in general only to ensemble
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experiments where ergodic and non-ergodic theories must agree. In addition,
the type of simple non-ergodic theory discussed in Section I.A can disagree
with Bell’s Inequality for single time averages but must agree for overall
time averages. That is, this type of theory cannot agree with quantum mecha-
nics for an overall time average. One can find more complicated non-ergodic
local theories which agree with quantum mechanics for either a single time
average or an overall time average.

Physically speaking these previously mentioned theories assign contro-
versal properties to space. These theories assume that the states of the
apparatus can affect the states of the particle-pairs over time, which in turn
affect the states of the other apparatus and vice To accept the pro-
ceeding and preserve locality (1) it must be imagined that a field, medium or
ether with relatively stable states or memory exists. The example given in
Section III.C should clarify this conclusion. Therefore it could be concluded
from this article that the insistence on the belief in both local hidden variable
theories and the correlation experiments supporting quantum mechanics
necessitates a belief in the existence of a field, medium or ether with relatively
stable states.

References [15] and [16] contain some work related to ergodicity.

II

A. We first review the relevant experiment and terminology. We follow
Clauser and Horne [17] and refer to figure 1. « A source of coincident two
particle emissions is viewed by two analyzer-detector essemblies 1 and 2.

FIG. 1. - (Following Clauser and Horne [17]). Scheme considered for a discussion of
local hidden variable theories. A source emitting particle pairs is viewed by two appa-
ratus. Each apparatus consists of an analyzer and an associated detector. The analyzers
have parameters, a and b respectively, which are externally adjustable. In the figure,
a and b represent the angles between the analyzer axes and a fixed reference axes.

0 Voir note p. 380.
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383A LIMITATION ON BELL’S INEQUALITY

Each apparatus has an adjustable parameter; let a denote the value of the
parameter at apparatus 1 and b that at apparatus 2. In figure 1, a and bare
taken to be angles specifying the orientation of analyzers, e. g. the axes of
linear polarizers, or the directions of the field gradients of Stern-Gerlach
magnets for spin 1/2 particles o.

Let An(a) (resp. Bn(b)) be the measured quantities which by definition
assume the value 1 or - 1 depending on whether or not one of the particles
of the nth particle-pair was detected at detector 1 (resp. detector 2). Here
n could denote the time tn of a measurement in a time series experiment or
the name of a particular apparatus in an ensemble experiment. Define

M by

which represents the correlation of the measurements. It has the value 1 if
both or neither of the particles of the nth particle-pair pass the polarizers.
And it has the value - 1 if only one particle passes a polarizer.
From these measured quantities one calculates the experimental averages

N

where N is the total number of particle pairs and is assumed to be large.
Depending on the type of particle-pair and analyzer, quantum mechanics

gives a certain value of P(a, &#x26;). For spin 1 /2 particles this value is (with the
two particle system in a sinslet state)

with a and b angles. Bell proposed to show that no local hidden variable
theory could agree with this value for all values of a and b. This result is
expressible as an inequality having the form

This form is the result of several workers [18].
There are a number of variations of this inequality [l9-23] and they are

all referred to as Bell’s Inequality. Judiciously choosing the angles a, b, a’
and b’ and using the appropriate quantum mechanical expression b)
for P(a, b), etc., the inequality can be violated [19].
Vol. XXIX, n° 4 - 1978.
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B. We can now discuss Bell’s characterization of a hidden variable theory.
It is instructive to make explicit several things which are implicity assumed.

Classically speaking, in a measurement process there is an interaction
between the measuring apparatus and the thing (i. e. particle) being measured,
which gives as a result a certain number (a meter reading). We can characte-
rize the state of the apparatus by the variable s (in general a set of variables)
and the state of the object by the variable (in general a set of variables)
with domains Sand r respectively. In the completely ideal classical appa-
ratus s would be considered to be a constant. Then the result (the numerical
value) of some measurement An should be expressible as some function of s
and ~,. That is

for some s E S, ~, E r. In our ~,) e { - 1, 1 } but this is not relevant
to the discussion. Then we can express the experimental average P for many
measurements as

where 03BB) is the density function for s and 03BB which intuitively expresses
the relative or normalized frequency of occurrence of the pair (s, ~,). By its
meaning p must be assumed to satisfy

Almost by definition in any good experiment s and 03BB are considered to be
independent variables since we are thinking of the apparatus as distinct
from the object being measured. This being the case we can write

So Eq. 2 becomes

Here we have dropped the subscripts on p and will continue to do so. It

will be clear from the variable that, for example, p(s) and p(~.) refer to diffe-
rent functions.
The previous, which is implicit in Bell’s Inequality, certainly expresses

a good part of what we intuitively mean by « theories and measurements

following deterministic or causal laws o. We accept this as the mathematical
definition of a deterministic or causal process and consequently as a valid

way of expressing any hidden variable theory. Any questions of the existence
and behavior of integrals are ignored (2).

(2) In particular, we assume the relevant integrals necessary to express any hidden

variable theory always exist and that they satisfy the conditions of Fubini’s theorem.
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The expression (2) is quite general and can be used in the case where s
and À may not, for some reason, be independent. In general s and 03BB could be
directly related (this would be a bad experiment) or statistically related
(this may be unavoidable for certain experiments) because of some under-
lying causal process which effects both  and À. p(s, À) is this case would

represent an average relative or normalized frequency of occurrence of the
pair (s, À) so to speak.
When this is the case À) is not factorable, that is

as is easy to see.
Also it can happen that  and A may be independent for ensemble experi-

ments but not in time series experiments (see example in appendix), which is
the possibility that is of interest to us. For instance, if we think of a time
series experiment with measurements made at times tn then we can write

where we let sn represent the state of the apparatus at time tn and 03BBn be the
state of the nth particle. It is possible in general that the state sn is not sta-
tistically independent of the states 03BBn-1, 03BBn-2, etc. and vice versa as was

discussed in the introduction.
When one considers such theories one cannot factor ~,~ as above.

This unfactorability of p is the mathematical reason why Bell’s Inequality
fails to characterize all local theories as will be seen.

A. If the polarization correlation measurements in the experiment of
figure 1 are to be described by some hidden variables, then by the previous
section there exist functions f and g such that

N

with

where sand s’ represent the states of the analyzers 1 and 2 respectively and
a and b the parameter values of the apparatus.
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Then the average of the product of the measurements is

with the condition

Also the various density functions must be taken to satisfy the following
because of their significance.

If we assume ~, is independent of both s and s’, i. e. the states of the appa-
ratus are completely unrelated to the states of the particles, then

Further if we assume the states of the measuring apparatus are independent
of each other, then

This is the mathematical expression of the famous locality conditions which
says that there is no coupling between the two measuring apparatus. Thus
given

~~~~~ , ’71 - .~l.,. ,.1 ~l ~ n ~1 ..l 71

we can write Equations (3) and (5) as

where

Equations (8) are Bell’s expressions in the form [l8]
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From these expressions one derives Bell’s Inequality in the usual man-

Equations (8) are not valid in general when À) is not factorable.
In particular, in the case of a time series experiment what the states s, s’
and À are not in general independent, Equation (5) must be used. Observe
that mathematically this (the unfactorability of s’, ~)) can be equi-
valent to a situation in which the states of the measuring apparatus were
physically coupled.
When we use Equation (5) the demonstration of Bell’s Inequality fails.

This is easier to see if we write Equation (5) in the special for (and keeping
in mind the usual proof ).

where A(d, ~) and B(b, ~,) are either 1 or - 1. )" in this form must then

include the states of the apparatus. Therefore the density function depends
on both parameters a and b in an unfactorable way, in general, for time
series experiments.
One shows in general that the form (5) can give any quantum mechanical

prediction, b), by manufacturing an appropriate example like the one
given in Section (III. C) below.

B. In Section (LB) we commented on the physical reasonableness of a
certain type of non-ergodic theory, i. e. theories in which sn = ~")
(in the below notation) and the states of the measuring apparatus are stable.
We now show that such theories must satisfy Bell’s Inequality for an overall
time average but can agree with quantum mechanics for single time averages.
For any given experimental run we can write ~,, si, si, i = 1, 2, ..., N to

represent the states of the particle-pair, and the two measuring apparatus
respectively for the measurements made at the times Observe that for
such theories we can write

where so represents the initial state of the apparatus. It is more convenient
to write sn as

and similarly

Vol. XXIX, nO 4 - 1978.
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Then for an overall time average we have

where dn is the counting measure, = 1 /N’ and X = S x S’ x [0,N] x r.
It is clear that here p is factorable since the initial states so and so of the
apparatus for an experimental run and 03BB the sequence of states of the par-
ticle-pairs for an experimental run are all independent of each other. So we
can write

and therefore Bell’s Inequality follows in the usual manner.
It is not difficult to modify the example given in the appendix to construct

a non-ergodic theory in which one can violate Bell’s Inequality for single
time averages. That is, for an experiment in which one makes exactly four
experimental runs at each of the four possible parameter combinations. To
construct the example it is crucial to choose different initial states for the
apparatus at each of the parameter settings. Such an example must agree
with Bell’s Inequality when one takes an average over many experimental
runs by the above proof.

C. We now give a manufactured example of a non-ergodic local hidden
variable theory which agrees with quantum mechanics for an overall time
average. Assume that there are a sufficient number, N, of measurements in
each run so that the first M measurements affect the average in no significant
way (i. e. N » M). Imagine a theory which can be simulated by assigning
a lattice structure to space with each lattice element having stable states.
Also assume that when a particle passes a lattice element the state of that
element after the particle passes is a function of its prior state, the state of
the particle, and the states of the bordering lattice elements. In addition
assume that the state of the particle can be affected by the state of the lattice
element and that the state of the measuring apparatus affects the states of

bordering lattice elements in the process of a measurement.
Therefore after the first measurement of a run the state of the lattice

element (called the first element) closest to the left-hand measuring appa-
ratus is a function of its prior state, the state of the particle, and the state
of the left-hand measuring apparatus and vice versa. After the second

measurement the state of the second lattice element is a function of the

states of the first lattice element (which in turn is a function of the states
of the left-hand measuring apparatus and the first particle) and the second

particle and vice After the ith measurement the ith + 1 lattice element

« knows )) the state of (and consequently the parameter value) of the left-
hand measuring apparatus as well as the states of all i particles and vice 
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Now if we take the distance between the two measuring apparatus to be M
lattice elements, then after M measurements the state of the right-hand
measuring apparatus is not independent of some prior states of the left
hand measuring apparatus and vice Consequently after sufficient
time the result of a measurement at each measuring apparatus depends on,
among other things, the parameter values of both measuring apparatus.
That is, after a sufficient number of measurements a non-ergodic local
theory can behave like a non-local theory. Now since it is assumed that the
first M measurements do not affect the average it is not necessary to expli-
citly give this development in time for the first M measurements. Therefore
after M measurements it is justifiable to give the relationships below. It
should be emphasized that these relationships taken by themselves define a
non-local theory. They give a valid example of a non-ergodic local theory
which agrees with quantum mechanics for a time series experiment only
with the above conditions (3). It would, of course, be better to explicitly
show the evolution in time but this has not been done here. No difficulty
is anticipated in modifying the example in the appendix with a lattice struc-
ture to construct an example which violates Bell’s Inequality for a time series
experiment (but does not agree with quantum mechanics) while explicitly
showing the evolution in time.
With the previously established notation, let Sand S’ both be singleton

and { s’ ~ respectively. That is each of the apparatus has only one
state. For arbitrary and g: S’ x F -~ { - 1, 1 }
define

where jc is the set product. Also define

Since S and S’ are singleton sets S = S+ = S- and S’ - S~ == S~. Define
b, s, s’, 2) as follows

(3) One would expect that, as with this example, the greater the distance between the
two measuring apparatus the less the agreement with quantum mechanics (all other
experimental conditions kept constant) to be a general property of those non-ergodic theories
which agree with quantum mechanics for an overall time average. A distance relationship
was reported in reference (5), one of the experiments which disagreed with quantum
mechanics.
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