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Section A:

Physique ’ théorique. 4

ABSTRACT. 2014 We study a class of KMS states of the infinite free Bose
gas in the condensation region. These states fail to be translationally inva-
riant, exibit off-diagonal long range order, and give rise to a velocity field
vs(x) which is stationary and irrotational everywhere in space except on
vortex lines. Typical vortex lines are straight or circular. The circulation
around any vortex line is quantized. We show that these states are limits of
finite volume Gibbs states with appropriate boundary conditions.

1. KMS STATES OF THE FREE BOSE GAS

The generally accepted view regarding superfluid behavior, first advocated
by London [1], is that superfluidity and Bose condensation have the same
origin. Therefore, sustained effort has gone into working out the detailed
properties of the infinitely extended free Bose gas as a model system. We
start out by assuming that the equilibrium states of the infinite system satisfy
the Kubo-Martin-Schwinger boundary condition, then discuss their hydro-
dynamic behavior (Section 2), and show how these states appear as infinite
volume limits of Gibbs states (Section 3).

The general emphasis is in the appearance of a classical time-independent
field P(x) describing the condensate. This field is polynomially bounded and
satisfies Laplace’s equation ~P(x) - 0, hence is a harmonic polynomial.
Recently, Haag and Trych-Pohlmeyer [2] employed a stability condition
to discuss equilibrium states, thereby confirming the occurrence and struc-
ture of P(jc).
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22 S. HEIN ET G. ROEPSTORFF

Earlier work of Bogoliubov [3] and Gross [4] attacked the similar but
more difficult problem to determine the « condensate wave function )) for
a weakly interacting Bose gas which then played a fundamental role in the
theory of quantized vortices. However, the developed formalism was non-
rigorous in that a self-consistent field approximation was employed to
obtain a classical wave equation and incomplete in that the boundary
conditions for this wave equation have never been specified.

It would be desirable to persue this problem within the algebraic setting
of field theory. Whereas very little is known in the interacting case, the free
Bose gas has been extensively studied by various authors [5-9] using the
Weyl formalism. Especially, Rocca, Sirugue, and Testard [9] obtained the
most general KMS state at inverse temperature f3. Specializing their result
we take the Schwartz Y(1R3) with scalar product

as the underlying vector space of a Weyl algebra determined by the relations

W(/)* = W(- f ), and W(0) = 1. The Weyl relation (1.2) is a convenient
transcription of the more familiar but difficult to handle canonical commu-
tation relations. In a formal manner, the Bose field is recovered from

The ideal gas is characterized by the time evolution

where we included the chemical potential ,u  0 in the one-particle Hamil-
tonian

The choice of a particular  at this stage could be avoided by restricting 03B1t
to the gauge invariant part of the Weyl algebra. Concerning the role of the
chemical potential see [10].

Since the emphasis is on states, it is worth pointing out that any state D
on the Weyl algebra is completely specified by its characteristic functional

Given 03B2 and   0, the KMS state is unique with functional
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23VORTICES IN INFINITE FREE BOSE SYSTEMS

There are, however, many KMS states for fixed 03B2 and  = 0. The extremal
KMS states are primary and are given by

where F is an arbitrary time invariant real linear functional F : ~ 2014~ ~

Here we shall concentrate on continuous functionals F. This will allow
us to relate them to elements of the dual space ~.If~==0, time invariance
(1.9) implies that the Fourier transform of F has point support at the origin
of the momentum space, hence is a finite linear combination of the ð-func-
tional and its derivatives. This then implies that there exists a complex poly-
nomial P(x) (of three variables) in position space such that

In order that F be invariant under the time evolution, the polynomial P(x)
must solve the three-dimensional Laplace equation

interpreted as the Schroedinger equation for zero energy. However, unlike
as in Schroedinger’s theory we accept all polynomial solutions of (1.11) in
field theory. The most general polynomial solution of (1.11) is a superposi-
tion of homogeneous harmonic polynomials [77] J

with arbitrary complex coefficients 
Using polar coordinates we may write

where the functions Y lm are the spherical harmonics. Thus there are exactly
2/ + 1 harmonic polynomials of degree l.

Let us now consider an equilibrium state (1.8) with invariant functional
F given by (1.10). It follows that for any f ~ G the functional E(sf ) is C°° with
respect to the real par ameter s and hence all n-point functions of the unboun-
ded Bose field exist. In particular, we have that

Vol. XXXII, n° 1 - 1980.



24 S. HEIN ET G. ROEPSTORFF

with correlation function of the non-condensed phase,

We note that w(x) is the Fourier transform of an L 1 function. By the
Riemann-Lebesgue lemma, vanishes at infinity proving the cluster
property of the state 

This is clearly satisfied for the extremal KMS states only. Penrose and
Onsager [12] suggested that the general form ( 1.15) of the two-point func-
tion, i. e. oH-diagonal long range order, characterizes superftuidity also in
interacting Bose systems.

2. SUPERFLOW CURRENT
AND QUANTIZED VORTICES

We ascribe to the « normal )) component of the fluid the short-range
part w(x - y) of the two-point function ( 1.15) and to the superfluid the
long-range part P(x)P(y). For convenience, we continue to put h = m = 1
where m is the mass of the Bose particle. Then the current operator is

and (1.15) assigns to the current the following expectation value

which we interpret as the superflow (particle) current. From js = vsps and
ps = j | P |2 we obtain the velocity field

well-defined everywhere in space except on the manifold

where we encounter a singular behavior. In general, the singular manifold
will be one-dimensional, namely the intersection of the two surfaces
Re P(x) = 0 and 1m P(x) = 0. If this is the case, we speak of a line vortex.
However, it will be seen later that the dimensionality of the manifold V may
well be zero or two. If we exclude V from the fluid domain, we are left in
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25VORTICES IN INFINITE FREE BOSE SYSTEMS

general with a multi-connected region and equation (2.3) shows quite
incidentally that the velocity field is irrotational :

By Stokes theorem, the circulation

is zero provided the closed loop r does not wind around the vortex line.
If r winds around it, the line will contribute to the integral (2.6). To prove
that the circulation C(r) is, in any event, a multiple of 27r (« quantized ))
vortex) we introduce the image r of the path r with respect to the conti-
nous map P : R3 ~ C, z = P(x). Whereas r is a closed path in the

3-dimensional euclidean space, r is a closed path in the complex plane.
Now, r does not pass through the origin z = 0 if r does not intersect the

singular manifold V which we assume. Then dz = dxOP(x) and

n{h) being the number of times that f winds around the point 0 of the

complex plane, i. e. the index of 0 with respect to r (sometimes called the
« winding number ))). The beauty of this result is that the circulation C(r)
is entirely given by geometry and that the relation (2.7) is not restricted

to cases where dim V = 1. As regards the geometric intuition, we warn
the reader that if dim V = 1 and r winds around the vortex line once, its

image r may wind around zero times where n is any natural number’

This is readily seen from the example

It is worth observing that (2. 8) leads to what is called a two-dimensional
flow. With regard to such flows the tools of complex analysis can be applied
naturally. To illustrate, let us for a moment assume that P(x) does not
depend on x3 but is an analytic function of the complex variable z - xl

rW _ _~ 2 : .~r / _ ~ t’? 01

As a consequence, Ovs = 0 (except on V) stating that the flow is incom-
pressible. Moreover, letting u = vs2 + ivs1 we obtain

Thus the velocity field is found from the complex (possibly multi-valued)
potential w = log/(z), i. e. u = w’.
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26 S. HEIN ET G. ROEPSTORFF

For instance, let

where a, ak E C. Since/(z) is analytic it is also harmonic. The manifold V
consists of n straight lines parallel to the 3-axis meeting the (1,2)-plane in
the points z = ak. Each individual line contributes additively to the velocity
field u = vs2 + ivs1 :

The circulation is readily evaluated as

where r is some closed path in 1R3, r is its projection onpoto the (l,2)-plane
and n(r, ak) is the index of ak with respect to r. By the strength of an indi-
vidual line vortex we shall denote its contribution to the circulation each
time r winds counterclockwise (as judged from the (l,2)-plane) around the
line. Provided no two of the complex numbers ak coincide, the strength of
the individual line vortex is 27r. It will be observed that this value is positive.
Consequently, all line vortices due to our Ansatz (2.11) are oriented the
same way resulting in a counterclockwise motion of the fluid. Naturally,
the common orientation of all vortices can be reversed if one simply replaces
xl + ix2 by x1 - ix2 in (2.11). What strikes us most is that oppositely
oriented vortices do not seem to occur. Just how plausible is it, physi-
cally ?

Next, let us assume that the polynomial has a multiple zero of
order Yn, i. e. that several of the numbers ak coincide. Then the corresponding
line vortex has strengh In some sense, such a vortex is no longer
« elementary » but is made up of m identical vortices, each with

strength 27r.
It remains to observe that the density of the superfluid increases

at the rate z I2n as z 2014~ oo where n is the strength of the vortex. Accord-
ingly, each condensed particle spends most of its life near the walls of

the vessel.

Another class of vortices arises if we let P(x) depend on the two variables

p - + x2 and’ = jCg. We may speak of vortices with an axial sym-
metry.
Now, let

Annales de l’Institut Henri Poincaré - Section A



27VORTICES IN INFINITE FREE BOSE SYSTEMS

where Pn is the Legendre polynomial of order n and r2 - p2 + (2. Let
there be real constants (x, /3, R1, ..., Rn such that 0, ~3 ~ 0, Rk &#x3E; 0,
and

Then the singular manifold V is the union of N circles with radius Rk
(vortex rings):

This establishes that the vorticity of equilibrium states may be confined
to a bounded region of space. The simplest model where we deal with
exactly one vortex ring is

its strength is 2n, hence minimal.

3. LIMIT GIBBS STATES

We ask how states described in Section 1 may appear as infinite volume
limits of Gibbs states. To this end we propose and investigate suitable
limiting procedures.
One method uses attractive boundary conditions for the finite-volume

Laplacian. As was found by Robinson [7], this kind of boundary condition
tends to provoke a separation of phases. Indeed, certain one-particle states
may be interpreted as « bound to the surface )) and, in the limit, flow out
of the bulk. However, with a slight modification, this method may also
yield a finite but increasing density for the condensed states. This is
done by introducing a volume dependent operator  in place of a constant
chemical potential in conjunction with attractive boundary condi-
tions. Due to a matching condition (3.2-4) we obtain the desired states
while  tends to a constant and the Laplacian assumes the correct

spectrum.
The boundary conditions in a compact volume A  ~3, star-shaped

(with respect to zero for convenience) and enclosed in a sufficiently smooth
surface 3A, are determined by some harmonic polynomial P, homogeneous
with degree 1 and normalized in L2(A). On the surface aA, the function _ is
supposed to be real and bounded (3P indicates the outer normal derivative

Vol. XXXII, n° 1 - 1980.
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of P) (1). For every R &#x3E; 0 set AR : = { x E A }. Then the Laplacian
with boundary conditions

can be defined as a selfadjoint operator A on some dense domain in 
and with a completely discrete spectrum, bounded from above. We
write E for the projector of the subspace of spanned by P

and the positive ei g enstates of 2014 ~A. Trivially, E reduces - 2 1 ~. The
subspace thus determined is physically understood as the subspace of all
free one-particle states. The finite-dimensional orthogonal complement
N then comprises all negative ei g enstates of - 2 1 A and some, whose ei g en-
values are zero, so N may be interpreted as the space of all one-particle
states bound by an attractive surface potential. With regard to the zero-level
states one may duely ask why some of these states are termed « free )) and
some of them « bound o. However, we may be content with noting that
bound states disappear from the system when the confining walls are removed
in a specified manner.
To state our main result we need a further detailed description of the

system : For every R &#x3E; 0, A with boundary conditions (3 .1 ), E, N as indi-
cated above and  a function of E we define a positive one-particle Hamil-
tonian

For any j8 E !R+ Jet z = be the fugacity operator for  and

the characteristic functional of the grand canonical state, 6:A Suppose

with any constant C smaller than the lowest eigenvalue for R = 1

Finally let

uniformly,

weak convergence on ~(f~3) _ : ~ (clearly ~ = 1 if c &#x3E; 0).
Then we have the tollowing

(~) These conditions are trivially verified for every homogeneous harmonic polynomial

in 03BB = B3, in which case 2014 == l on ~03BB = S2.
Annales de l’Institut Henri Poincaré - Section A
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THEOREM. - Under the assumptions (3 . 2-4)
i) As R ~ oo, the functional converges simply on D and the limit

two-point function is

where

ii) The state on the Weyl algebra over ~, determined by i) extends by
continuity to a state on the Weyl algebra over ~, with respect to
the free evolution (cf. ( 1. 4)),

iii) (critical density).
Let V be any fixed compact volume of 1R3 and let Ilv be the mean total

number of particles in the state reduced to V. Then

(The last statement is not a direct consequence of i). Here we claim that the
limit and the reduction to a finite volume density may be interchanged).
From iii) it follows at once that the density of the condensate c P(jc) 12 is

not identically zero (c 5~ 0) iff in every fixed compact volume V the mean
particle density exceeds the « critical density » in the limit R -~ oo.

P~oof. We shall only sketch the proof following largely Lewis and
Pule [8] (The main idea of the proof seems to be due to Kac).
To i) : let

be the eigenvalues of - . A in L 2(AR). They satisfy

where { $k denotes the eigenvalues of - 1 2 ð. for R = 1. Chose a cor-

responding orthonormal set for R = 1 : { ek such that

The set { ek defined by
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obviously is an orthonormal set in and

Write

Then (3.2) implies

where 80 is the eigenvalue of the ground state of - :2 A for R = 1. From

this we deduce

Since

the first sum of

vanishes in the limit R 2014~ oo.

Using (3.4) and the homogeneity of P = eL the first term (k = L) of
the second sum becomes

while the rest tends to (~ *~/). This is rigorously proven in [13] and essen-
tially the content of [8], Lemma 2.
The proof of iii) is similar with

To ii) : Again we refer to [13]. The proof is made in writing the limit
functional as an integral over functionals ( 1. 8).
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31VORTICES IN INFINITE FREE BOSE SYSTEMS

Naturally, the equilibrium states thus obtained are gauge invariant. They
are KMS states but not extremal stationary states. The decomposition of
these states into extremal KMS states is easily obtained using standard
techniques leaving the two-point function uneffected. This way we would
obtain the extremal states discussed in Section 1. The extremal KMS states

appear directly as limit Gibbs states of a modified finite-volume Hamilto-
nian [13] chap. 5.
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