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ABSTRACT. 2014 It is shown that Schrodinger Quantum Mechanics can be
derived from a classical two fluid variational principle.

INTRODUCTION

There is a widely held view that quantum mechanics cannot be satis-
factorily derived from a classical basis and indeed there is a second and
possibly equivalent contention that it cannot be derived from a classical
variational principle. Elsewhere, this author (Gilson, 1978) has given details
of a classical two fluid structure that leads via a thermodynamical route
directly to the Schrodinger equation. In this paper, the second contention
mentioned above concerning the variational basis of quantum mechanics
will be shown to be false. The work in this paper does not depend on the
first reference above.
A classical variational principle will be given and shown to lead to the

correct equations for Schrodinger quantum theory. Equations and varia-
tional techniques related to super Quids (Zilsel, 1953 ; London, 1954;
Landau, 1966; Tisza, 1947; Yourgrau, 1968) have been studied that are
close to the line to be pursued here. However, these authors were not
motivated towards finding a classical basis for quantum mechanics but
rather towards solving the super fluid problem. There also seems to have
been the tacitly held view that the two fluid classical like equations that they
were using could only be approximate and temporary and would have to be
replaced by a more fundamental and a more accurate quantum theory
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version. In fact, the classical like two fluid schemes that were used in super
fluid investigations could not have led to quantum mechanics even if those
workers had been motivated towards pursuing such a programme. This
is because the classical basis on which the two fluid structure that does
lead to quantum mechanics has to be built is wider than was employed
in the super fluid theories and it has some unexpected and unusual charac-
teristics. This author has shown (Gilson, 1978) that the classical basis for
the one dimensional Schrodinger equation needs to contain negative mass
and an extra degree of freedom. The success of the scheme to be demonstrated
here would seem to vindicate Bohm’s ( 1957) suggestion that below conven-
tional quantum mechanics there are more fundamental classical like strata.
An early one fluid interpretation of quantum mechanics was given by
Madelung (1926) and the history of this area can be found in the book
by Max Jammer ( 1974) which contains many references.

THE VAMATIONAL PRINCIPLE

We aim at deriving Schrodinger’s one dimensional equation,

for a general external potential and from a classical variational principle.
The two dimensional Lagrangian density will be taken to be

where

and V1(x, y~ is the real part of the usual one dimensional quantum external
potential Vex) analytically continued. The term,

is the classical kinetic energy density assuming also that the second velocity
component v2 carries a negative mass density p2 = - p. The term,

is a « thermal » enregy density which is of great importance. It relates
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321A CLASSICAL BASIS FOR QUANTUM MECHANICS

the two dimensional vorticity’ = I o A~ t to an energy E where Kth = pe.
The factor (v/2) is a fundamental constant. Thus in this scheme the energy B
and vorticity are essentially the same thing. The term (4),

is a combined internal energy density for both positive and negative mass
Bows.
We shall use the method of Lagrange multipliers with the following

supplementary condition,

When the minimal condition applicable in the case of quantum mechanical
flow holds, the continuity equation (7) reduces to the usual one dimensional
quantum continuity equation,

Thus the variational principle takes the form,

The independent variations will be taken in and p. W e obtain the

following three equations :

and

From (10) and (11), we deduce that

and

We are seeking a situation where it is possible for 03BD1 and v2 to be the real
and imaginary parts of a complex function. Thus fitting the form that the
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complex local quantum momentum has after analytic continuation into an
imaginary y direction. That form is

where ~F(~ + iy, t~ is the analytically continued wave function at time t.
Of course, the variable y in (15) is identically zero in the usual analysis of the
one dimensional Schrodinger wave equation. There only 0) + 0)
appears. If then vl and v2 are to fit this special category of function pairs,
then the Cauchy Riemann equations must hold for vl and v2. That is

and

Comparing (16) and (17) with ( 13) and (14), we see that the structure with
which we are working appears to contain solutions of a more general nature
than the restrictions ( 16) and (17) would seem to imply. However, let us
see what consequences would result from restricting solutions of the varia-
tional principle by (16) and ( 17). Using ( 16) and ( 17) with ( 13) and ( 14),
w e get,

and

and forming the complex combination vl + iv2 from (10) and (11), we can
express that combination in the form,

where

Thus it appears that co is a natural combination of a and In p to give a
complex potential for the flow field of a form which is compatible with
quantum mechanics. Thus pursuing this line, we can rewrite (20) in the form

It should o be noted that the complex potential (J) here refers to the - v2)
Annales de Henri Section A



323A CLASSICAL BASIS FOR QUANTUM MECHANICS

flow field in contrast with the usual complex potential used in 2 dimensional
hydrodynamics which refers to the v2) flow field. Thus comparisons
with 2 dimensional hydrodynamics should be made with great care. For
example, here we can have 03B63 ~ 0 and yet ~203C9 = 0. That the function OJ
can be regarded as a function of a complex variable z = x + iy is supported
by ( 18) and ( 19). This all suggests that ( 10) and ( 11 ) form a partly redundant
description of the two dimensional flow field and that therefore they can
equally well be replaced by

on using (22). By now substituting (17), (23) and (22) into (12), the whole
matter is rapidly clarified because we obtain the result,

which the reader will recognise as the local quantum energy E, where
v = ( 15) holds in the form (22) and

when y = 0. (23) and (24) can be seen to be consistent with (17). Thus the
classical fluid variational principle (9) leads to Schrodinger quantum mecha-
nics. It is interesting to re-express the equations of fluid flow (23) and (24)
by making use of (25). Upon differentiating (23) and (24) with respect to t
and using (25), we obtain

(27) and (28) can be rewritten, using ( 16) and ( 17) in the form

Thus if we denote p 2014 by P, we have
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and by ( 17)

Then using (6), (29) and (30) assume the form

and

These are the standard Eulerian equations for two dimensional motion with
vorticity. However, clearly one of the dimensions refers to the positive
mass movement (+ p) and the other dimension refers to the negative
mass movement ( - p), both under an appropriately signed external poten-
tial ± Vi. From (6) and (31 ), we have,

where k is Boltzmann’s constant and T is a temperature.
Thus in this scheme all the internal energy E = kT is pure vorticity.

CONCLUSIONS

The demonstration that quantum mechanics can be based on a classical
fluid structure is of considerable philosophical importance as it turns

upside down some very extensively and firmly held views about the nature
of quantum mechanics. In particular, the view that supernuid theory can
only logically be deduced from a quantum mechanical basis is clearly
unsound. In fact, it appears from this work that fluids are the basis of quan-
tum mechanics and possibly, these basic fluids are types of « supernuid o.
No doubt, as fluid theory with it’s potentially rich substructure is further
explored in relation to quantum processes, technical developments will arise
which go beyond the now orthodox Schrodinger wave function analysis
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