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Section A :

Physique ’ théorique. ’

ABSTRACT. The equations governing the propagation of high-frequency
coupled gravitational and electromagnetic waves are integrated for the case
of a plane gravitational wave impinging onto a Schwarzschild space-time
equipped with a magnetic dipole field. The generated electromagnetic wave
is focused due to the gravitational lens effect. An expression is derived for
the intensity of the electromagnetic wave in the focal region. In the case of
alignment of incidence direction and magnetic axis no rotation of the pola-
rization plane occurs. The relevance of the effect for the exterior region of
neutron stars is discussed.

1. INTRODUCTION

As is well known, electromagnetic and gravitational perturbations cannot
be treated separately in regions of space-time occupied by a strong electro-
magnetic field. Rather, they lose their individuality and appear only in a
coupled manner. This coupling leads to the effect of conversion of gravita-
tional into electromagnetic waves (and vice versa). In the simplest case
Minkowski space-time is taken as background and the conversion effect is
studied by using external static or stationary electromagnetic fields [7-7C],
fields of moving charges [77, 12] and rotating magnetic dipoles [l3] or by
investigating bremsstrahlung processes (14]. Similarly, the effect of photo-
production of gravitons in static electromagnetic fields is predicted by a
quantized version of linearized general relativity [15, 16].
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164 T. ELSTER

If the background space-time is curved, the linearized Einstein-Maxwell
equations exhibit a rather complicated structure. Therefore, one either
chooses a special background metric or assumes the waves to be of small
wavelength. As far as the former possibility is concerned, several techniques
were developed to treat perturbations of the Reissner-Nordstrom solution,
among them Zerilli’s approach [17], Moncrief’s method [18] based on a
Hamiltonian formalism as well as the approach employing the Newman-
Penrose [19] formalism (see the recent review article by Bicak [20] containing
a description and comparison of all these techniques). Using these methods,
a number of authors [21-28] calculated the efficiency of the conversion effect
in the Reissner-Nordstrom background. In particular, the conversion cross
section of charged black holes can be derived [2~-2~]. On the other hand,
high-frequency waves can be treated as perturbations away from arbitrary
solutions of the Einstein-Maxwell equations by deriving propagation equa-
tions governing the change of the wave amplitudes along the rays [29-33].
The new effect which emerges is a Faraday-like rotation of the polarization
plane of linearly polarized radiation with respect to a parallely propagated
tetrad along the rays.
The present paper differs from previous research in two ways. First, we

assume a somewhat more realistic situation by using a Schwarzschild solution
equipped with a magnetic dipole field. In contrast to the commonly used
electric monopole fields, this situation may be a good model for, e. g., the
exterior region of a neutron star. Second, we take into account the focusing
of the generated electromagnetic radiation due to the gravitational lens effect.
In particular, the intensity in the focal region, which can be obtained by
means of wave optical methods [34-38], is of some interest. The main question
which arises is whether the rather pessimistic predictions of previous papers
concerning the astrophysical significance of the conversion effect (see,
e. g., [IO]} may be changed in this case.
The following section outlines the basic equations governing the propa-

gation of coupled gravitational and electromagnetic waves in the high-
frequency limit as derived in (33]. This formalism is then used in sec. 3 and
sec. 4 to investigate the scattering process described above. We use units
with c = 1 and the signature (+,+,+,2014). ~ denotes Einstein’s gravita-
tional constant.

2. PROPAGATION OF INTERACTING ELECTROMAGNETIC
AND GRAVITATIONAL PERTURBATIONS

IN THE LIMIT OF SMALL WAVELENGTHS

In the approximation of geometrical optics, electromagnetic and gravi-
tational waves are conveniently studied by means of the null tetrad formalism
introduced by Newman and Penrose [19]. Consider a solution of the Einstein-
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Maxwell equations characterized by its Weyl tensor + and its

Maxwell tensor Fa~ + The parameter G is supposed to be small in order
to ensure that the field equations can be linearized. Let ø A’ and 

the tetrad components of Fa~ and with respect to a null tetrad
defined in the background space-time. If the scale on which the perturbations
vary is much smaller than the typical curvature radius of the background
geometry, waves mainly propagate along null geodesics of the background
metric, which allows calculations to be simplified by identifying the tetrad
vector la with the ray vector and assuming the remainder of the tetrad to
undergo parallel transport along the rays. Under these assumptions the

perturbations are completely characterized by the two complex functions q 4
and ~2, which take for nearly monochromatic waves the form

with l03B1 = S ,a.. úJ is a large parameter ensuring that the wave oscillates on a
small enough scale. Its upper limit is determined by the assumption that the
leading contribution to the curvature tensor of the perturbed space-time
originates in the background metric. The amplitudes describing right-

(0) (0) (0)_ (0)_
handed (~4 , ~ 2 ) and left-handed (~4 , ~ 2 ) polarized waves are invariant
with respect to coordinate gauge transformations owing to the high-fre-
quency assumption (1). The propagation equations

which determine the rate of change of the amplitudes along the rays, are
coupled by the tetrad component ~o of the background Maxwell field. In
the following we confine ourselves to right-handed polarized waves, since
the corresponding equations describing left-handed polarized waves do not
differ essentially from those referring to the helicity labelled + . The sys-

tem (2 . 2) can be decoupled by introducing normal modes(0)~ 1/2:

(1) Rather than project both background parts and perturbations of the tensor fields
onto a background null tetrad, we can define the variables (2.1) equally well by splitting
the tetrad components (formed with a perturbed null tetrad) into unperturbed parts and
perturbations. In this case the amplitudes are also invariant with respect to tetrad gauge
transformations and, in particular, identical with the above-constructed amplitudes.
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Inserting (2. 3) into (2.2) we obtain the system

which can immediately be solved, and a system for the elements of the
(unitary) matrix T+. Introducing the new variables ’1 and y by

(y affine parameter), we can write the latter in the simple form

Although (2. 6) is in general a complicated system, it has simple solutions in
important special cases [29-33].

3. A PLANE GRAVITATIONAL WAVE IMPINGING
ONTO A SCHWARZSCHILD SPACE-TIME

In the remainder of this paper the underlying space-time is assumed to
be described by the Schwarzschild metric

Since (3.1) represents a vacuum solution of the Einstein equations, we
neglect the back reaction of both background Maxwell field and electro-
magnetic wave on the metric. As already pointed out by Zeldovich [10],
this leads to no inconsistencies if the change of the beating phase (defined
below) along a ray traversing the space-time domain considered is small
compared with unity. Otherwise one encounters instabilities indicating that
the back reaction of F~ on ~ cannot be neglected. Moreover, in order
to be compatible with the linearization of the field equations as described
above, the typical values of the background Maxwell field Fa~ are, in turn,
supposed to be large compared with the typical values of the wave 

Consider a bundle of null geodesics each of which lies in a hypersurface
~p = const of the metric (3.1). An appropriate null tetrad which undergoes
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parallel propagation along § these " rays is given by (oc = 1, 2, 3, 4 corresponds

with the abbreviations

The congruence is completely characterized if the impact parameter a is
known as a function of rand 8. Although the spin coefficients associated
with (3.2 a, b~ are rather lenthy expressions, we easily succeed in solving the
propagation equations since only p is needed :

Using (3.3) we obtain

where y is an affine parameter defined along the rays. As mentioned above,
we are interested in an incident plane gravitational wave coming from the
direction 8 = 7r. Hence the yet unspecified function f(a) has to be appro-
priately fixed : f (a) _ --~ 1/2’In a. Taking into account only waves with
positive helicity we obtain with the help of (2.1), (2. 3), (2.4) and (3.4) the
perturbations

The coupling of the two kinds of waves is determined by the appearance of
Vol. XXXIV, no 2 - 1981.
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the beating phase Sb = The constants of integration C12
should not depend on the impact parameter a, which corresponds to the
boundary condition of an incident plane wave. Moreover, once a solution
of (2.6) has been fixed, the constants must be chosen such that the

incoming wave contains no electromagnetic part.
Consider a space-time domain where the ray vector la exhibits a positive

radial component (E1 - + 1), i. e., points off the gravitating mass (this
appears to be the case in the region 0 S :)  ~c behind the mass). In this
domain the phase of the wave is given by

where YT denotes the classical turning point in the outer part of the effective
potential of a zero-rest-mass particle. Ignoring secondary rays, which

revolve the deflecting mass in the vicinity of the circle ~ = 3M before they
return to infinity, we have to consider the two main rays passing the mass at
opposite sides. The yet unspecified sign in front of the last term in (3.6)
depends on which of these two rays is considered. Therefore, the pertur-
bations (3 . 5) are in general sums of two contributions associated with these
rays.
As mentioned in the Introduction, we are interested in the amplification

of the generated electromagnetic radiation due to the gravitational lens
effect. Treatments of the gravitational focusing of high-frequency radiation
by the Schwarzschild field [34-38] suggest that the maximum intensity is to
be expected in a narrow focal region around the axis of symmetry ~ = 0.
In particular, the focal region is characterized by the condition r~2 « 2M in
the case of an incident plane wave. Unfortunately, this condition just
describes the range in which the expressions (3 . 5) fail to be applicable. This
is not surprising since all rays which lie in various ~p = const surfaces and
which have practically the same impact parameter interfere in the vicinity
of the axis 8 = 0. In order to circumvent this difficulty, we now remember
the exact waveoptical treatment of the field in the focal region involving an

expansion in terms of spherical harmonics [36-38]. For very small 8, the
contributions (3.5), (3.6) associated with the two rays differ only in a

8-dependent factor. The sum of these factors yields a cos function. As

shown in previous papers, the actual perturbations are obtained in the focal
region by making the simple substitution

where Jo denotes a Bessel function of the first kind.
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In order to calculate the energy flux associated with both electromagnetic
and gravitational perturbations, the corresponding energy-momentum
tensors are needed. Adopting Isaacson’s j39] reasonable definition of effec-
tive energy and momentum carried by a short gravitational wave we get
the expressions

which are invariant with respect to coordinate gauge transformations in this
approximation. Using (3.5)-(3.8) one finally arrives at an expression for
the intensity (magnitude of the time-averaged, three-dimensional Poynting
vector) of the electromagnetic wave in the focal region normalized to the
intensity of the incident gravitational wave :

indicates that the values of the matrix T+ have to be taken for the
incident plane wave.

4. SCATTERING BY A MAGNETIC DIPOLE FIELD

So far, nothing has been assumed about the electromagnetic background
field which enters into the beating phase Sb. For the sake of simplicity,
we restrict ourselves to the simplest non-spherically symmetric multipole,
i. e., a magnetic dipole. In this case the exact solution of the Maxwell
equations in the metric (3 .1 ) is given by

m is the magnitude of the (time-independent) dipole moment, and x denotes
the angle between the direction from which the incident gravitational wave
comes in (8 = 7r) and the magnetic axis. F is a hypergeometric function :

Vol. XXXIV, nO 2 - 1981.
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Projection of (4.1) onto the null tetrad {3 . 2 a, b) yields the tetrad component

which couples the perturbations in the shortwave approximation. The argu-
ment ~ of 4&#x3E;0 is in general a rather complicated function of the affine para-
meter y along a ray. Consequently, the polarization plane of linearly pola-
rized radiation does not undergo parallel transport, but rotates along a ray
while energy is partly transferred from gravitational to electromagnetic
waves. Unfortunately, the system (2.6) does not seem to be solvable ana-
lytically.

In order to get an estimate of the conversion effect despite this difficulty,
we now introduce two further simplifications. First, we assume alignment of
incidence direction and magnetic axis (x = 0). In this special case the argu-
ment ~ of 4&#x3E;0 takes the constant value of 7c/2, and (2 . 6) is solved by a constant
matrix :

Since the incoming plane wave was assumed to contain no electromagnetic
part, we have to put C1 - Consequently, the polarization plane of
linearly polarized waves does not rotate along the rays. Second, we assume
r » 2M in (3.9), which implies that the impact parameters of the two rays
are large compared with 2M as well. In this approximation the null geodesic
equation is solved by

Using the expansion

of the hypergeometric function one obtains the beating phase

on the axis of symmetry ~ = 0. Assuming the rate of conversion of gravita-
tional wave energy into electromagnetic wave energy to be small (i. e.,

Sb « 1 ) we get from (3 . 9)

for ~ ’ = 0. Thus the intensity of the induced  electromagnetic wave decreases
on 1 the axis of symmetry in radial direction as r - 2, since the strength of the
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magnetic dipole field falls off with increasing distance from the mass acting
both as gravitational lens and magnetic dipole.

Unfortunately, even under favourable astrophysical conditions the

expected effect is rather small. Consider a neutron star of one solar mass,
with a radius of 2’10~ m and a dipole-like magnetic field of 1012G at the

poles on the surface of the star. Due to the shadow effect of the deflector [36],
the focal region starts at a distance of 6.9’ 104m from the centre of the star.
If the intensity of the generated electromagnetic wave amounts there to one-
tenth of the intensity of the incident gravitational wave, a gravitational
wavelength of about 2’ 10’~ m is required, which is extremely small unlike
the electromagnetic case. Though situations with much smaller rates of
conversion are also important owing to the stronger coupling of electro-

magnetic radiation to matter, other phenomena influence both the conversion
effect [10] and the focusing of the radiation [40, 41 ] .

Nevertheless, it would be of some interest to treat the case of a magnetic
axis which is inclined relative to the incidence direction and the case of a

rotating magnetic dipole field [42, 43] generated by a pulsar. In these cases
the system (2.6) has to be solved numerically.
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