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Inverse scattering 
for the one-dimensional Stark effect

and application to the cylindrical KdV equation

S. GRAFFI (*) and E. HARRELL (**)
Department of Mathematics, The Johns Hopkins University,

Baltimore, MD 21218, USA

Ann. Inst. Henri Poincaré,

Vol. XXXVI, n° 1, 1982, ]

Section A :

Physique théorique.

ABSTRACT. - We develop the inverse spectral and scattering theory
for one-dimensional Stark operators, i. e.

The potential u is determined in a special case; this allows existence and
approximate solitary-wave behavior to be proved for solutions of a non-
linear evolution equation corresponding to the Stark Hamiltonian. Connec-
fion is made to the solitary solution discovered by Calogero and Degasperis.
This behavior is associated with resonances in much the same way as
solitons are associated with bound states in the theory without the linear
term fx..

RESUME. - Nous developpons la theorie inverse du spectre et de la
diffusion pour les operateurs de Stark en une dimension, c’est-à-dire

agissants sur L 2(1R). Le potentiel u est determine dans un cas special, ce
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42 S. GRAFFI AND E. HARRELL

qui permet la demonstration de l’existence et du comportement quasi
solitaire de solutions ondoyantes d’une equation d’evolution non-linéaire
correspondante a l’hamiltonien de Stark. On fait connexion a la solution
solitaire decouverte par Calogero et Degasperis. L’association entre ces
solutions et les resonances ressemble a celle entre les solitons et les etats
lies dans la theorie ordinaire sans terme lineaire f x.

INTRODUCTION

The spectral and scattering theory of Stark operators

has been studied intensively in recent years [1 ] [2] ] and is now on a very
satisfactory footing. The adjustable, conventionally positive parameter f
is proportional to the electric field, and u represents an atomic potential
in the physical situation for which (0.1) provides a simple model; f will
be fixed but not set to 1, because the limit f - 0 is of independent interest
in the Stark effect. The model dates from Titchmarsh [3 ], and if

then (0.1) is realistic for the Stark effect in hydrogen after separation of
variables.

In this paper we address three questions that deserve analysis now that
the direct spectral and scattering theory of (0.1) is well understood :

1. What kind of inverse spectral theory for (0.1) can be rigorously
founded ? More specifically :

2. Since (0.1) has resonances rather than eigenvalues with reasonable
assumptions on u-for instance with a certain bound

on u’ [4] ] [5]-how are resonances reflected in the inverse spectral and
scattering theory ? Since complex scaling establishes a connection between
self-adjoint Hamiltonians with continuous spectrum and non-self-adjoint
operators with discrete eigenvalues corresponding to resonances, this is

an important question in the development of non-self-adjoint inverse

scattering theory.

3. Granting a reasonable answer to question 2, are resonances associated
with nonlinear wave equations and their solitary-wave solutions ?

Annales de l’Institut Henri Poincaré-Section A



43INVERSE SCATTERING FOR THE ONE-DIMENSIONAL STARK EFFECT

Our attention was brought to this problem by a series of articles [6] ]
by Calogero and Degasperis on inverse scattering for (0.1). They transcribe
the ordinary inverse-scattering formalism to the case of (0.1), allowing
Airy functions, which solve

to play the role of the usual exp ( ± ikx) or sines and cosines. Then they
assume the existence of a single bound state and solve the Gel’fand-Levitan
equation, finding a potential that can be turned into a solution of a non-
linear wave equation, the « cylindrical KdV equation » for q(x, t),

Their solution preserves its shape, though it gets scaled as a function of
the introduced parameter t. Since the solution is an explicit expression
involving Airy functions, it is a matter of straight-forward though tedious
computation to verify that it is a solution of (0.2) in the classical sense.
However, it fails-marginally-to be L2, and its derivatives do not fall
off as y -~ 0, owing to the wild oscillations of the Airy functions.

Consequently, as pointed out by Calogero and Degasperis, the assumptions
they make to derive inverse scattering are actually violated. Indeed, since
their u’ is bounded and u" increases as x ~ - oo at worst as x 11/2, the
Liouville transformation of (0.1) shows that its solutions have the same
asymptotics as the Airy functions [7] ] [8 ]. It follows that there are no
bound states in the spectrum of(0.1); the spectrum is absolutely continuous
from - oo to co (cf. [5 ]). Therefore, the violations of the assumptions for
inverse scattering are not merely technical-the spectral function for
their u is not the one hypothesized (except perhaps with some peculiar,
non-self-adjoint boundary conditions at oo).

In the light of this and the recent progress in direct scattering and spectral
theory, it is possible and timely to put the inverse scattering theory of (0. 1)
on a rigorous basis. This is consequently our first task. (Some general work
on inverse scattering for potentials not vanishing at infinity has been done
by Kulish [9 ].) Then, in order to clarify the nature and significance of the
solitary solution discovered by Calogero and Degasperis, we examine
the analogous resonance problem. It has a unique solution within the
class of potentials for which the Gel’fand-Levitan equations are justified.
Its transformation into a solution of (0.2) is continuously differentiable
and square-integrable, but it is not quite form-preserving. The form-
preserving solution turns out to be very special, for not only is it the limit
of the solutions we find as the imaginary part of the resonance goes to zero,
but it is also the asymptotic form of our solutions as t - 00.

Vol. XXXVI, n° 1-1982.



44 S. GRAFFI AND E. HARRELL

I. INVERSE SCATTERING AND SPECTRAL THEORY
FOR STARK OPERATORS

This section discusses the inverse scattering theory for (o .1) using as a
comparison the operator

~2

Our method, in a word, is to translate the relevant parts of the article

by Faddeev [70] from the language of sines to that of Airy functions. We
shall not reiterate all the details of [10 ], of course, but to facilitate compa-
rison we refer to equations of that article by their numbers, preceded by F.
Faddeev’s notation will also be followed as far as possible.

All that is required of u is that it be continuous and either bounded

by a constant times ( 1 + x ~ ) -1 or absolutely integrable on R. This clearly
implies that the eigenfunctions of (0 . 1) are twice differentiable in x. More-
over, the solution of

can then be asymptotically integrated with the methods of [7] ] [8]-in
fact this only requires that u/# be absolutely integrable for x &#x3E; some
constant. One discovers

a) the asymptotics of the eigenfunctions and their first derivatives are
the same as those of the Airy functions and their derivatives as x  d: oo ;

b) the subdominants (~ and defined below depend analytically
on z.

The restriction of boundedness for finite x could easily be relaxed.

In terms of the Airy function Ai(x), the standard solutions of

are

The important properties of these functions [11] ] are that is

Annales de l’Institut Henri Poincaré-Section A



45INVERSE SCATTERING FOR THE ONE-DIMENSIONAL STARK EFFECT

uniformly bounded and - 0 as ( x ~ -1 ~4 as I x I - oo in the lower (resp.
upper) half plane, and :

(Note that Faddeev uses the notation [ f ; g] * - W { g g ~ , the only
point at which we shall not attempt to make our notation conform to his.)
The Airy functions divide the complex plane into three sectors : the func-
tion a(z) is subdominant for arg z ~  7~/3, eI(z) for - x  arg z  - x/3,
and eIi(z) for 03C0/3  arg z (all assuming as usual f &#x3E; 0). More precisely,
the asymptotic formulae for the Airy functions [8 ] [77 ] imply the following
estimates for fixed f (and they remain valid when differentiated by x term
hy term) : as j - oo,

where 1 as z - oo and has an explicit asymptotic power series in
I/(2~’ l 12z3~2/3). We shall not be excessively concerned with these expressions,
but need only the qualitative exponential and power law fall-off in the
complex plane. We do note, however, that ei and en fall off exponentially
in I z as z ~ - 00 with fixed negative and respectively positive imaginary
part and so do their derivatives. (This is not obvious, but is straightforward
to show with the methods of [7] [8].)
Let y solve

and define particular solutions y = ~ f’+, such that

These are well-defined according to a theorem of [7] ; moreover, variation

Vol. XXXVI, n° 1-1982.



46 S. GRAFFI AND E. HARRELL

of parameters yields something analogous to the Lippmann-Schwinger
equation (F 1.5-1.6),

and

The first of these, ( 1. 8), represents two distinct equations for the func-
tion while (1. 9) represents two equations, one for each of the functions f
and fn. We next prove some technical facts about the solution ~ and its
related Airy function :

Then

Remark. The function a is the positive envelope of a, which is oscilla-
tory for x  0. The lemma implies that for large [ z ) , the ratio of ljJ to a
goes to 1 uniformly outside small intervals containing the zeroes of a.

Proof Fix z temporarily and regard

as an element of the continuous functions with the supremum norm.
From (1.8),
where

the operator norm of T. It is at most :

Annales de l’Institut Henri Poincaré-Section A



47INVERSE SCATTERING FOR THE ONE-DIMENSIONAL STARK EFFECT

For x real the functions ! and are bounded pointwise
by constant times ( 1 -t- x ( ) -1 ~2, so

and

by the Lebesgue dominated convergence theorem. (If u is bounded by
( 1 + ( x ~ ) -1 but is not absolutely integrable, a partition of the interval
of integration into x 2014 z ~ I c ~ z l l2 and I x - z &#x3E; ~ I Z 11/2 is the easiest

way to show that (1 + I y - z!) ~(1 0.) This shows

that the first integral of ( 1.10) approaches 0, and, since

that sup B(x, z) - 0 as z -~ oo for any fixed c. We take c large enough
that if x &#x3E; increases and a(x) decreases monotonically in x. Then

as before. D

COROLLARY 1.2. - For any fixed x,

Proof 2014 ~ - ~ is bounded, so we consider its behavior for large z - ;c!. .
By (1. 8) and Lemma 1.1, 

_

The first term is 0(!~ - z 1- ~4) times a convolution of u E L 1 (or L 1 + E;)
with a eI E L 2 + E, for arbitrarily small ~, so it is 0(~ - z ( - l l4) times a
function E L2 + E( f~, dz) by Young’s inequality [13 ]. The Holder inequality
then makes the product in L2 (in fact, L4~3 +f;). A similar estimate takes
care of the second term for z » x. For z « x, the second term is instead

Vol. XXXVI, n° 1-1982.



48 S. GRAFFI AND E. HARRELL

bounded by (sup z) which goes rapidly to 0

because a(x) falls off exponentially fast for large, positive x. D

LEMMA I . 3. As ( z ~ I - arg z fixed different from 0 or x, if u E L1((~),
then

where now

Proof - We argue as in Lemma I.1 (only use eII in place of ei in case
z - oo in the lower half-plane), and need to bound ( 1.10). In this case,
since z is complex but x and y are real, it is not difficult to see that (1.10)
is essentially bounded by

If we now define

then substitution from ( 1. 8) and ( 1. 9) yields (F 1.18)

The functions are entire, and M1 has zeroes only in the upper half
plane. Accordingly, Mn has zeroes in the lower half plane, and we take
them as our definition of resonances; this agrees with the definition by
complex scaling. 

d2 
,

The kernel y) of the inverse of the operator - dx2 + f (x - z) + u(x)
has a different functional form in the two half planes. The analytic structure
of R in the variable z is that it has simple poles at the zeroes of MI,II and
a cut on the whole real axis. Specifically (F 2 .1 ),

Annales de l’lnstitut Henri Poincaré-Section A



49INVERSE SCATTERING FOR THE ONE-DIMENSIONAL STARK EFFECT

The appropriate Green function for Im z &#x3E; 0 is R~ and that for Im z  0
is R". From Stone’s Theorem, if Pi is the spectral projection for

onto a real interval i, and if we denote integral operators with the same
symbols as their kernels, then (with (1.4)), .

Thus the spectral function is

and the continuum eigenfunctions are ~(x, z)/MI(z).
Since asymptotic integration of the Schrodinger equation shows that

there are no square-integrable solutions as x - - oo, we conclude from
the discussion above that the spectrum of (0.1) is purely absolutely
continuous. (Non-one-dimensional versions of this fact have been proved
in [4 ] [ 5 ]. )
As a final part of the preparation for the equations of inverse Stark

scattering, we collect some facts about the unitary transformation that

performs the spectral resolution of - d2 2 + fx, which has been dubbeddx
the Airy transform by Widder [13 ]. It is defined by

where ~ -1 denotes the inverse Fourier transform to a variable k, and
exp ( - ik3/3f) is a multiplication operator. It is equivalent to convolu-
tion by a :

The properties of A follow readily from those of ~ . For instance, with
Sobolev’s Theorem, if f E D( - = W2, then Af E W2 c C1(1R).
These facts can now be used to derive a Gel’fand-Levitan equation.

Define K(x, y) so that (F 4. 3) 
-

The existence and functional properties of K(x, y), y &#x3E;_ x, follow from the
observation that the integral in (1.15) is the Airy transform in y of K(x, y),
interpreted as 0 for y  x.

Vol. XXXVI, n° 1-1982.
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Proof - This is just the inverse Airy transform of ( 1.15). By Corollary 1.2,
E L2(~, dz), so for fixed x, K E L 2(, dy), since it is the result of

three unitary operations on the function § - a. 0
By substitution into the defining equations for § and K, one finds in

the standard way that u and K are related by

and that K(x, y) satisfies the differential equation

Define the operator U by

Observe that U converts the generalized eigenfunctions a into From

( 1.14) we obtain the operator equations (F 8 . 2)

Of course, U* is the operator

from which it is easy to see that G(x, y) = 6(x - y) when y &#x3E; x. D
The Gel’fand-Levitan equation (F 8 . 5) follows from writing ( 1.18)

out explicitly, using Lemma 1.5. For y &#x3E; x,

where

To summarize : given a spectral function w(z), corresponding to a potential

Annales de l’Institut Henri Poincaré-Section A



51 INVERSE SCATTERING FOR THE ONE-DIMENSIONAL STARK EFFECT

with our assumptions (guaranteeing that w(z) is absolutely continuous),
the prescription for recovering u is to solve (1.19) and (1.20) for K, then to
differentiate according to ( 1.17).
We next discuss the asymptotics of the spectral function for z complex.

For simplicity suppose that u is absolutely integrable and falls off faster
than 1/x as x - + oo. In the example, where this fails, we have explicit
control on w(z). From (1.11) and Lemma 1.3, if Im z &#x3E; 0, then

Moreover, for Re z - ::t 00,

The net result is that MI(z) - 1 = 0(! z ~ -1 ~2) throughout the upper half
plane. From Young’s inequality, since u E L 1 and aeI E L 2 +E, it follows
that Mj(z) - 1 E L 2 +E;. It is not hard to see from this fact, the fall-off of
Mi-1, and (1.14) that also w(z)-l=0(!zr~) and w(z) -1 E L2+ E. 0
Nothing prevents w(z) - 1 from falling off faster than z -1J2, and

our experience seems to indicate that ordinarily it does. This is the case
in the example to be discussed in section 2.

This section will conclude with a discussion of the properties of the
kernel Q(x, y) and the existence of a solution to the Gel’fand-Levitan
equation (1.19). By (1.20), Q is an Airy transform of alternatively

so Q(x, y) E L 2(~, dx) for each fixed y and E dy) for each fixed x.
As the kernel of the operator w - 1, Q represents a bounded linear trans-
formation of L 2(~) to itself provided only that the function w(z) is bounded.
(This is automatic, of course, since the spectrum is absolutely continuous
and w falls off at + oo.) If for real z, w(z)  2, then ~ w - 1  1, and
the Gel’fand-Levitan equation can be solved uniquely for K(x, y) by the
Neumann series; (1.19) should be thought of as an integral equation for a
square-integrable function of y with x as a parameter. Alternatively, if

w(z) - 1 falls off as J z J - 3~2 -E, £ &#x3E; 0, then y) becomes a Hilbert-Schmidt
kernel on [x, oo) for each x, and the nonexistence of a homogeneous solu-
tion can be shown as in Faddeev [10 section 9, with minor modifications.
The analytic Fredholm theorem then guarantees the existence of

K(x, y) E L2(~, dy) for each x. We shall not attempt to find optimal condi-
tions for the existence and uniqueness of K(x, y).
Vol. XXXVI, n° 1-1982.
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Some additional technical conditions on w(z) are necessary to ensure
that K be differentiable. For instance, suppose that

for all x-owing to the rapid oscillations of a this means essentially that
w(z) - 1 falls off faster than z- 5~4 as z - + CfJ and that the derivatives
fall off by additional powers of z. Then with Sobolev’s lemma and the fact
that A -1 transforms W2 into itself, one finds that

a) Q(x, y) E C1 n L2 in either variable with the other fixed, and
b) y) c C’ n L 2(1R, dy).

Then from the Gel’fand-Levitan equation (1.19) and its differentiated

versions, we find that KEel in both x and y, so u(x) is well-defined.
In the following section we discuss an example where we have fairly

explicit control on Q, and will thus not have to check such general conditions.

II. AN EXAMPLE WITH

AN APPROXIMATE SOLITARY-WAVE SOLUTION

OF CYLINDRICAL KdV

We now make an ansatz : suppose that w(z) - 1 is an analytic function
the only singularities of which are a pair of complex-conjugate simple
poles. For definiteness, for Im zo &#x3E; 0, 

’

which is positive for I (X small enough and z real. We can then solve for Q
with the aid of contour integration, and for consistency must verify that
everything falls off properly at oo. We also set f = 1 from now on.
From ( 1. 20) with y &#x3E; x,

The contour of the integral containing eI can be closed in the upper half

plane of z, and the contour containing en in the lower half-plane. By the
residue theorem,

Annales de l’Institut Henri Poincaré-Section A



53INVERSE SCATTERING FOR THE ONE-DIMENSIONAL STARK EFFECT

since x and y are real. If y  x, then similarly

so in all

Observe that Q(x, y) is exponentially decreasing in each variable at oc ,
bounded by a constant, and smooth except at x = y. It is just the real
part of something like a Green function, and is in fact Hilbert-Schmidt :

Proof - This integral is bounded essentially by a constant times

COROLLARY II.2. - For any x &#x3E; - oo, the function K(x, y) exists
and is unique.

Proof - This follows automatically from II .1 as in Faddeev’s article [70 ].
D

Now consider what happens if the imaginary part of zo is decreased
to zero with a imaginary. We shall see that the kernel Q approaches the
one of Calogero and Degasperis [6 pointwise, i. e., a constant times

which, however, is no longer exponentially decreasing or even square-
integrable in y for fixed x; it falls off as y - Zo 1- 1/4 times an oscillatory
factor, and the corresponding u(x) fails to satisfy the assumptions guarantee-
ing the validity of the inverse scattering formalism.
If ~ ! is taken small enough and zo is kept nonreal, then, since

are each bounded by a constant times independently of y, the operator
norm of Q acting in the variable y on C ~ [x, oo) (with + ~ ~ ~ f’ ~ ~ ~)
Vol. XXXVI, n° 1-1982.
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is less than 1. Therefore K(x, y) is continuously differentiable in the variable
y &#x3E;_ x, uniformly in x, and equals the convergent Neumann series

The series on the right when differentiated by x also converges to

, and thus u(x) = - 2014 K(x, x) is well-defined as an element of
lx 2dx

LEMMA II. 3. - With Q as above and I rx I small enough,

Proof - The asymptotic formulae ( 1. 5) proved a bound of this form
for S2(x, x)!, and when y = x the other terms of (2. 3) are bounded by
terms such as -

Thus the sum of the terms other than x) is bounded pointwise by a
constant times

PROPOSITION 11.4. - The potential u(x) belongs to the class of potentials
for which the inverse-scattering formalism has been justified; in particular,
it is continuously differentiable, and

by (1.19). The first two terms are 0(! x - 3/2) and 0( ( x ( -1) respectively
because of Lemma II. 3 and the Airy-function estimates (1. 5). From (2.3)
the integrated terms are bounded by sums of terms such as
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and

From (1.5) we glean the estimate

with which the integrated terms can be bounded by

The fact that follows from insertion of the differentiated

Neumann series for K into the formula for u ; the gravest effect of differen-
tiation is to produce additional factors of x - Zo 1 ~2 from the exponential
factors in the Airy functions. As a consequence of the x - Zo 1- 1 fall-off
just demonstrated, the series for u’ and even u" remain convergent to
bounded functions. D

At this point we can take over the computations of Calogero and Degas-
peris [6] ] wholesale. They have shown that if the validity of the inverse
scattering method is granted, then some of the solutions of the cylin-
drical KdV equation (0.2) are given by the form-preserving expression

where u(x ; t) is the solution to the inverse-scattering problem for a para-
metrized spectral function w(z ; t) = w(z(tlto)1/3). For convenience we set
the arbitrary constant to to 1. If w(z) has the specific form (2.1), then

In other words, w(z ; t) has the same functional form as w(z; 1 ) = w(z),
but with ex -~ at -1 ~3 and zo - 
The kernel function at time t is thus

Suppose a is imaginary, a = i p, p E R. Then for each x,

Vol. XXXVI, n° 1-1982.


