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Existence and uniqueness theorems
for viscous fluids capable of heat conduction

in a relativistic theory
of non stationary thermodynamics

Franco CARDIN (*)

Istituto di Analisi e Meccanica
Universita di Padova, Via Belzoni 7, 35100 Padova, Italie

Ann. Poincaré,

Vol. 41, n° 2, 1984, Physique theorique

ABSTRACT. - A hyperbolization method for any conservative P. D. E.
system, whose solutions must satisfy a conservative inequality (e. g. a

Clausius-Duhem generalized inequality), is worked out in General Rela-
tivity, in the first part of this paper, on the basis of an early work of K. O. Frie-
drichs and P. D. Lax [13 ]. More in detail, a hyperbolization method of
T. Ruggeri and A. Strumia [17 ], very useful to study the evolution of
continuous bodies in the frame-work of I. Muller’s thermodynamics,
is generalized in such a way to be useful to the construction of relativistic
continuous theories in a thermodynamic frame-work of B. D. Coleman
and W. Noll’s type. In [77] basic theorems of existence, uniqueness, and
continuous dependence on data are proved to hold for the evolution system
of a relativistic simple fluid ff uncapable of heat conduction; and certain
bounds on the velocities of shock waves travelling in ~ are determined.
In the second part of this paper the tools worked out in the first one are

applied to A. Bressan’s relativistic thermodynamics, based on a certain
law of heat conduction see [o’]2014; and the analogues of the above results
for ff are proved here to hold, within A. Bressan’s theory, for heat conduc-
ting fluids, possibly in the presence of viscosity (with relaxation terms).

(*) Istituto di Analisi e Meccanica dell’Universita di Padova, via Belzoni n° 7, 35100
Padova. This paper has been performed in the sphere of activity of research group n. 3 of
the C. N. R. (Consiglio Nazionale delle Ricerche).
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172 F. CARDIN

RESUME. - Dans la premiere partie de cet article, une methode d’hyper-
bolisation pour un système d’EDP arbitraire dont les solutions satisfont
une inegalite de conservation (par exemple une inegalite de Clausius-
Duhem generalisee) est mise en 0153uvre en Relativite Generale, sur la base
d’un travail de K. O. Friedrichs et P. D. Lax [13 ]. Plus precisement, une
methode d’hyperbolisation recente de T. Ruggieri et A. Strumia [17 ],
tres utile pour etudier 1’evolution de corps continus dans Ie cadre de la
Thermodynamique de I. Muller, est generalisee de façon a etre utile pour
construire des theories relativistes continues dans Ie cadre thermodyna-
mique du type de B. D. Coleman et W. Noll. Dans [17 ] sont démontrés
des theoremes d’existence, d’unicite et de continuite par rapport aux donnees
pour 1’evolution d’un fluide simple relativiste ff ne conduisant pas la cha-
leur, et des bornes sont obtenues sur la vitesse des ondes de choc dans F.
Dans la seconde partie de cet article, les outils construits dans la premiere
sont appliques a la thermodynamique relativiste de A.. Bressan, basee sur
une certaine loi de conduction de la chaleur, voir [8 ], et les analogues des
resultats precedents sont demontres, dans Ie cadre de la theorie de Bressan,
pour des fluides conducteurs de la chaleur, eventuellement en presence de
viscosite (avec des termes de relaxation).

1. Introduction.

In 1971 K. O. Friedrichs and P. D. Lax [13] studied a first order quasi-
linear system of P. D. E. s in conservative form

which implies a further conservation equation

in case S is convex, i. e. is (strictly) positive definite.
In more detail, every solution xL) of ( 1.1 ) is supposed to satisfy ( 1. 2).
The above authors deduced some restriction relations among S, FL,
and their derivatives, and they proved that the convexity of S is sufficient
to state that (1.1) is equivalent to a symmetric and hyperbolic system (in
K. O. Friedrich’s sense). Nowadays it is well known that Cauchy’s problem
is well posed for these systems see [10 ], [11 ].

This approach to hyperbolicity appeared at once important for continuum
mechanics : e. g. the evolution equations for non-viscous isentropic fluids
constitute a special case of (1.1, 2).

Afterwards G. Boillat see [.?]2014 by improving a result of S. K. Godu-

l’Institut Henri Poincaré - Physique theorique



173EXISTENCE AND UNIQUENESS THEOREMS FOR VISCOUS FLUIDS

nov see [7~]2014, , showed that, substantially under the same afore-men-
tioned hypotheses on S, (1.1) is equivalent to a symmetric hyperbolic and
conservative system (in a certain new unknown functions); and together
with T. Ruggeri see [4 ], [5]-he showed that especially in connection
with shock wave propagation the last property is very useful.
A different framework for overdeterminate conservative systems was

proposed by K. O. Friedrichs in [12 ]. He considered a more general conser-
vative system (than ( 1.1 ))

where U - (U‘), i -1, , ...,N, with ( 1 ) : N  J~.
In order to remove this overdeterminacy, he assumed that there exists a
set of functions of U, Ar(U), such that the relation

holds for arbitrary functions By a suitable analogue of the convexity
hypothesis on S made in [13 ], K. O. Friedrichs obtained some hyperbolicity
results similar to those in [13 ].

In 1981 this theory of K. o. Friedrichs, together with some previous
results of G. Boillat and T. Ruggeri, was set in a relativistic covariant form
by T. Ruggeri and A. Strumia see [77]2014; in that paper an application
to non-viscous fluids, uncapable of heat conduction, was carried out.
Furthermore the authors observed that their approach is quite similar
to the analytical structure of the thermodynamics of I. Müller2014see, e. g.,
[16 ], [1 ].
Now, if one slightly generalizes K. O. Friedrichs and P. D. Lax’s theory

by replacing ( 1. 2) with

one can note by analogous arguments, that in this version, their theory
is quite similar to the analytical structure of the thermodynamics of
B. D. Coleman and W. Noll [9]. In this comparison ( 1. 5) can be iden-
tified with the well known Clausius-Duhem inequality. The thermodyna-
mics of B. D. Coleman and W. Noll’s type is a theory widely accepted in
continuum mechanics.
The aim of the first part of this paper (NN. 2, ... , 5) is to write directly

a relativistic version of K. O. Friedrichs and P. D. Lax’s theory, i. e. to
treat a general conservative system, = hi, in case it implies a conser-
vative inequality 0. This is done with the following aims :

i ) to study, in General Relativity, the behaviour of continuous bodies
whose evolutions are governed by conservative systems,

e) For semplicity, put : ~V’ = N + 1.

Vol. 41, n° 2-1984.



174 F. CARDIN

ii) to draw, in relativistic theories of thermodynamics of the kind
B. D. Coleman and W. Noll’s classical thermodynamics, some conclusions
on the possible hyperbolic character of the evolution equations of the
above bodies (NN. 2, 3), and 

.

iii) to study discontinuity waves (NN. 4, 5).

In more detail, in NN. 2, 3 the equivalence of a conservative system to
a symmetric hyperbolic one is shown by using a suitable Legendre trans-
formation of the G. Boillat’s type. In [4] G. Boillat and T. Ruggeri showed
that shock velocities have certain bounds given by characteristic velocities,
treated here in N. 4. An analogue of this result for the present relativistic
theory is proved in N. 5.

In the second part of this paper the theory developed in the first one
is applied to the relativistic non-stationary thermodynamics of A. Bressan
see [7], [~]2014, which agrees with B. D. Coleman and W. Noll’s as far
as the second principle is concerned. Among other things, within A. Bres-
san’s theory the dynamical law for heat conduction see (6.16,17)2014is treated
in a natural way; that is, unlike other authors on non stationary relativistic
thermodynamics e. g. see [7J]2014, , this law appears as a natural and

simple mathematical consequence of the friction interaction between two
sub-fluids ~’ and ~ " composing a fluid ~ ; furthermore A. Bressan states
the above law in terms of macroscopic magnitudes (used in the theory of
continuous media) (2). In N. 7 constitutive equations and relativistic Clau-
sius-Duhem inequality 0 are concerned. Furthermore, in N. 8,
I state an equivalent conservative version of the system of P. D. E.s for
the original thermodynamic theory, that is compatible with the tools
presented in the first part, i. e. of the kind : = hi.

Incidentally the way in which the afore-mentioned friction interaction,
a spatial condition, is put into a conservative form (by introducing suitable
additional unknown functions) can be applied to various other spatial
conditions.

In N. 9 a class of fluids, whose constitutive equations render symmetric
hyperbolic conservative (modulo some transformations) the system, is

considered, and in N. 10 the afore-mentioned results are extended to the
case where viscosity (with relaxation terms) is present. This result is reached
by introducing suitable additional unknown functions connected with
the relaxation terms.

(2) In [7] (and also in [8 ]) it is remarked that the (nonstationary) law of heat conduc-
tion proposed by A. Bressan slightly differs from C. Eckart’s (stationary) law also in the

stationary case; this is an advantage in that a certain discrepancy concerning the Coriolis’
force on heat flux has been noted there between the dynamic equations and the law of
heat conduction belonging to C. Eckart’s theory.

Henri Poincaré - Physique theorique
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PART ONE

A RELATIVISTIC VERSION OF FRIEDRICHS
AND LAX’S THEORY OF SYSTEMS CONSERVATIVE,

SYMMETRIC, AND HYPERBOLIC

2. A generalization of the Friedrichs and Lax’s theory, founded
in a relativistic form.

Let (!7 4’ g) be a 4-dimensional Riemannian space-time manifold of
General Relativity, where g = is the metric tensor field.

I consider the following first order quasi-linear P. D. E. system, of conser-
vative kind, in the unknown functions ..., x3), ... , ... , x3),
or briefly U(x),

where Ai03B1 = in detail (3):

I suppose that, for some function S" = S"(U), system (2.1) implies the
inequality of conservative kind

that is, every solution U(x) of (2 .1 ), x E !74’ satisfies (2 . 2).
Let 03B603B1 be a time-like unit vector field, - - 1; one can regard the

field (ex as a system of observers or a reference frame in !74. Under suitable
hypotheses which connect the functions and Sex to the field (ex (that
generalize some known hypotheses in K. O. Friedrichs and P. D. Lax [13 ]).
I shall deduce some restrictions relations on and S"; afterwards the
system (2.1) will be shown to be equivalent to a symmetric hyperbolic one.
For these systems the Cauchy’s problem is well posed-cf. [10 ] , [77]2014
in suitable Sobolev spaces.
The time and space projectors related to the field (ex and

e) After [13] I set AI} = 20142014: S" = 20142014 S". Since g03B1 ./ --_ 0 holds, for the sake of~ ~ 
aU’ ] au] Y

simplicity I don’t consider here the more general case: U), S"(g, 0;
. aAl« 

....

in fact we have e. g. : : A’B = ~g03C103C3g03C103C3/03B1 
+ 

Vol. 41, n° 2-1984.
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By the definitions

from (2.3) one obtains

where, according to definition ( 17 . 9) in [6 ],

Now let us suppose that

Then it is meaningful to compose (2.5)~ with 

By (2. 8) (2.5)2 becomes

Since (2.1) implies (2.2), (2.9) must be satisfied by arbitrary values of Ui
and U’~. Then one obtains _ the following restriction relations (related
to the field 

Now, in order to show that (2.1) is equivalent to a symmetric hyperbolic
system, let us derive (4) (2 .10) 1 with respect to urn,

Annales de l’Institut Henri Poincaré - Physique theorique .



177EXISTENCE AND UNIQUENESS THEOREMS FOR VISCOUS FLUIDS

Since the left hand side and the second term of the right hand side are
symmetric in (l, m), also the matrices

are symmetric in (l, m) : = 0 (5).
It is easy to see that also

Multiplication of (2 . 5) 1 by the matrix

yields

This symmetric system is symmetric hyperbolic if the matrix defined
in (2.13), is positive definite (for all event points and for all Ui):

This last hypothesis, together with the hypothesis (2. 7), assures us a pos-
teriori that the matrix bmi is non-singular (it is : b = a03B6A-1); hence the
conservative system (2.1), which implies the inequality (2.2), under hypo-
theses (2.7) and (2.16) is equivalent to system (2.15), symmetric hyperbolic
with respect to field (observer) ~a .

3. A relativistic version of the Boillat’s transformation.

By generalizing an argument of G. Boillat [3] ] I can show, under some
hypotheses stronger than (2 . 7) and (2 .16), that the conservative system (2.1)
is equivalent to a symmetric hyperbolic conservative system2014sec (3.7).

In the sequel I suppose that both matrices alm and are positive definite,
that is (2.16) and

hold.
I define the transformation (from a convex D ~ IRN into 

Vol. 41, n° 2-1984.
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The (symmetric part of the) Jacobian matrix of function (3.2), i. e.

bmi, is positive definite. Then see [2 ], p. 1372014(3.2) is injec-
tive. Hence, given for every event point x E !7 4 the value of the field ~a,
there exists a one to one map between the elements U and V
of V(~).

I define now (Legendre transformation) :

We have

where (3.4)2 holds by (3.2) and (2.10)1.
Furthermore

where (3.5)2 holds by (3.2) and (2.4). In addition (3.4)2 and (3.5)2 are
equivalent to

Hence the conservative system (2.1), in the new unknowns V(x), becomes
a symmetric hyperbolic conservative system (6) :

The hyperbolicity of (3. 7) is clear when one introduces the time and spa-
tial projectors with respect to ~:

(6) The term h‘ in the right hand side of (3 . 7) means :

where Û j( (, V) is the inverse function of (3.2)3’

Poincaré - Physique théorique
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From (2.14) and (3 . 2) we have that (b-1)’~; by remembering
definitions (2.12, 13) one s.ees that aml == bmiAil, aml = lastly sys-

Now (b-1aTb-1) is positive definite because a is positive definite and b
is positive definite, hence non-singular.

4. Discontinuity waves and characteristic velocities.

Let V = V(x) be a solution of (3 . 7) and let 11/’ be the support of V in //4’
W = {x ~ 4 : V(x) ~ 0}. Let 03A33 c 11/’ be a 3-dimensional surface, f(x)=0,
of discontinuity for the first derivatives of V, that is ~Vi~«~ ~ 0,
but [Vi] = 0. The unit normal vector of Eg is

and its natural decomposition with respect to 03B603B1 reads

thus ~ denotes the propagation velocity of the discontinuity with respect
to (observer) ~.
The Hugoniot-Hadamard’s conditions, become, on using ’

By 4.3 and (3.10) one obtains

There exist non-trivial solutions for ~,~ if and only if

that is o-(= f~, where the last inclusion

Vol. 41, n° 2-1984.
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holds because the product of a positive definite matrix (a-1) with a sym-
JL

metric matrix is similar to a symmetric matrix.

It is standard to call the elements N, V) of Spec charac-
teristic velocities.

5. Shock waves.

Assume that is a solution of (3 . 7) and that = 0, is a 3-dimen-
sional discontinuity surface for V, = Vi - V~°~ ~ 0; and let N be
the unit normal vector of Eg, as well in (4.1, 2).
By a well known integral balance relation for (3.7), one obtains the

Rankine-Hugoniot’s equations :

Let çø be any convex subset of f~N and set

Then (5.1) becomes

By a theorem mentioned above (see [2 ], p. 137), if is positive
[negative] ] definite then F’:~ c ~ ~ ~ is injective. By the
remark below (3.9) we have

hence

Since b is non-singular, is positive [negative] ] definite if and

only era) is such. By standard algebraic arguments one obtains
that is positive [negative] definite if

In this case Fi is injective and (5 . 3) implies Vi = hence (non-trivial)
shocks can exist only for some choices of the propagation velocities 6
such that

I conclude by remarking (as in [4] and [17]) that systems which admit
discontinuities of the first derivatives with causal propagations, i. e. with
time or light-like characteristic velocities, admit, at most, shocks with causal
propagation.

Annales de l’Institut Henri Poincare - Physique theorique
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PART TWO

APPLICATION OF THE PRECEDING RELATIVIZATION
OF FRIEDRICHS

AND LAX’S THEORY TO VISCOUS FLUIDS CAPABLE
OF HEAT CONDUCTION ACCORDING

TO BRESSAN’S RELATIVISTIC
NON STATIONARY HEAT CONDUCTION LAW

6. Summary of A. Bressan’s relativistic
non stationary thermodynamics.

In this presentation of the theory in [8 and in the following application,
for the sake of simplicity I only consider the typical fluid ~ (possibly viscous,
see N. 10 below) that is capable of heat conduction and has the energy
tensor

where p is the gravitational energy density; M" is the 4-velocity, u03B1u03B1 = -1;
is the Cauchy spatial stress tensor, = 0 = u03B1X03B103B2; and q03B1 is the

spatial energy flux, u03B1q03B1 = 0.
On the basis of the mass-energy equivalence principle, IF is regarded

as well as in [15]-as devided in two parts, IF’ where the
motion of IF’ represents the energy flux of ~ . The ~-gravitational
energy densities of IF’ and IF" are p’ and p" respectively, and the
4-velocity of IF’ is hence v03B1v03B1 = - 1. The above assumption about IF
(that is: + IF" (particles) ) implies

I use the conventional mass density x of ~ see e. g. N. 21 in [6 ] ,
which satisfies the continuity equation

and the u03B1-internal (8) energy densities w’ and w" for F’ and !F", which
are defined by

(8) After [8] the prefix expresses that the observer u03B1 [03BD03B1 is being referred to
(to evaluate e. g. the mentioned energy densities).

Vol. 41, n° 2-1984.
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Hence w = w’ + w", where w is the u03B1-internal energy density for F,
such that p = x(c2 + w).
The following two energy tensors are assumed for !#" respectively :

where = 0 = p~ is the ~-gravitational energy density of ~
and P is a heat pressure that A. Bressan (unlike other authors on non
stationary thermodynamics, see e. g. [7J]) introduces in [8 ]. Of course
the energy tensor of g; = g;’ + g;" is . _

Furthermore I set cf. [8] ] and [~]2014

By (6. 7), (6.1), and (6.6) one obtains

hence the following relations are true :

It is easy to see that v03B1 
’ 

can be expressed o by a (universal) function of po,
~, q’°, and 0 i. e.

where 1/ is given by

Let the field be assigned. The following dynamical equations (6 .15,16)
governing the fluid ~ are postulated in [8 ] : the well known consequences
of the Einstein equations

and the interaction law between the two sub-fluids fF" 

1

where is an u"-spatial, and positive definite tensor, such

Annales de l’lnstitut Henri Poincaré - Physique theorique
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that in its motion within ~ " (or ~ ) ~’ meets a resistance - per
unit of u03B1-volume, which vanishes for v03B1 = u«; the scalar J, called energy
influx from F" into F’ per unit of u03B1-volume, is defined by: 
hence only the spatial components of (6.16), i. e.

are dynamically meanigful.
By (6.12, 13) it is clear that (6.17) is to regarded as a dynamical equa-

tion for the heat flux, as a equation, as is usually done
in other theories. A detailed physical interpretation of (6.16), or (6. 17)~
(and its consequences) is made in [8] (see [7] too); there, the reader can

see that is essentially (up to scalar factor) a Fourier conductibility tensor.

7. Constitutive equations for ~
and relativistic Clausius-Duhem inequality.

Now I list a set of constitutive equations for the non-viscous fluid 
(viscosity is included in N. 10) and, in compliance with the principle of
equipresence-see [19 ], p. 703, I regard w, ... , as functions of tc, T,
and where T is the absolute temperature :

Together with equations (7 .1) I consider a constitutive equation for entropy
density

and the following relativistic Clausius-Duhem inequality as a version
of the « second principle of thermodynamics ».

DEFINITION 7 1. - A set of T (x), q p(x), u~(x) ~, x E ~4,
that-under (6 .1), (6 . 5), (6 .13), (6 .14), and (7 . .1) solve (6 . 3), (6 .15), (6 .17),
q03B1u03B1 = 0, and u"u" _ - 1, is a thermodynamically admissible process for F
if and only if the following inequality (7.3)1 is satisfzed

and ri is given by (7.2).

POST. 7. 1. 2014 Every solution f x(x), T(x), qp(x), u6(x) } solving the equa-
tions mentioned in Def. 7. 1 is thermodynamically admissible for ~ .

Vol. 41, n° 2-1984.
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Often S" is called the 4-entropy flux vector. The requirement that every (9)
solution {~(~), ..., be a thermodynamically admissible process
for ~ is equivalent to the requirement that the system of P. D. E.s for ~
implies inequality (7.3)1 in the sense of N. 2. The same requirement is

accepted in the classical thermodynamics according to e. g. [9 ]. Now,
for the full applicability of the theory developed in NN. 2, ..., 5, I must
show that the system of P. D. E. s for ~ can be posed in a conservative
form (see the next sections).
The choice (7.1) of constitutive functions is slightly different from the

one in [8 ] ; there A. Bressan uses the quantity ~1 = ( po + instead of po :
obviously the two choices are equivalent.
Some constitutive hypotheses less general than (7.1), but perhaps more

natural (~), are e. g. :

and po, in (7.1)g ~ 5.
A further restriction on the possible choices of constitutive equations

for a fluid ~ consists in A. Bressan’s Assumption 5 . 2 in [8 ] based on
certain arguments belonging to the relativistic equilibrium of the black
body radiation which asserts the relation

holds in every physical situation. Now, one has to look at (7 . 5) as at a consti-
tutive restriction on p~ and fj, and one easily sees that (7. 5) is equivalent to

8. A conservative version of the dynamical system
for the fluid ~ .

As we have seen in Def. 7.1, the dynamical equations for ~ under (6.1),
(6.5), (6.13), (6.14), and (7.1)2014are (6.3), (6.15), (6.17), and

u03B1u03B1 = - 1. While (6. 3) and (6.15) are already in a conservative form,
equations (6.17) and the conditions == 0 and u03B1u03B1 = - 1 must be

replaced with conservative equations that are equivalent to them. Thus
the results in NN. 2, ... , 5 can be applied to the fluid ~ .

(9) Suitably smooth, here I don’t enter into regularity matter.
(10) That is, more similar to the usual thermodynamic relations.

Annales de l’Institut Henri Poincaré - Physique theorique


