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ABSTRACT. - The Hamiltonian for a Yang-Mills quantum field theory
in Feynman gauge on a periodic lattice is shown to be essentially self-
adjoint in the sense of Krein. The Hamiltonian also satisfies a Kato inequa-
lity. 

-

RESUME. - On demontre que, dans Ie cadre de la theorie quantique
des champs l’hamiltonien de Yang-Mills sur un reseau periodique est

essentiellement auto-adjoint au sens de Krein. L’hamiltonien satisfait aussi
une inegalite de Kato.

1 INTRODUCTION

There are several proposals for starting a mathematically rigorous
construction of a continuum non-abelian quantum gauge theory. The
lattice version of the Euclidean (imaginary time) framework put forward

by Wilson [7~] has received most attention as it maintains exact gauge
invariance throughout the regularization and may be studied by the
methods of statistical mechanics. Ultra-violet stability, established by
Balaban [2] ] in three (space-time) dimensions for this regularization,
indicates how Wilson’s form for the counter-terms in the Yang-Mills
theory [11] ] leads to boundedness below of the Hamiltonian in the physical
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2 J. L. CHALLIFOUR

sector. The proposal in [3] employs a fixed gauge and thus requires cons-
truction of non-gauge invariant sectors of the theory as well as the physical
one. In this way, one can learn how physical observables depend upon
the non-physical local fields used in the framing of dynamical quantum
field theories. For a fixed gauge, however, the Hamiltonian is no longer
bounded below as an operator in the entire Hilbert space so the issue of
boundedness below must be examined. This is undertaken in this paper
for a fixed lattice cut-off and requires studying self-adjointness with respect
to an indefinite (Krein) metric for an unbounded linear operator. This is
of independent mathematical interest even though the context is somewhat
special.
Throughout this paper we shall use the formalism of quantum field

theory in which s indicates the number of space dimensions and V a finite
s-dimensional periodic lattice with volume Points x E V have the form

x = 5 &#x3E; 0 ; n an integer s-tuple. The cyclic group dual to V is denoted
by r in the Fourier transform

with = E;=i = 0, 1, ... , s ; while

The time-zero lattice gauge fields ~==1,2,...,JN; satisty the

conventions in [3] with minor modification. The fields are realized on a
Fock space (infinite symmetric tensor product space over Lo(V)) denoted
by ~f appropriate for an irreducible cyclic representation of the canonical
commutation relations

in the Feynman gauge (Gupta-Bleuler). The Hilbert space ~f is a Krein
space [7 with respect to the Gupta-Bleuler indefinite metric 11:

For this lattice regularization, the Yang-Mills Hamiltonian [3, 77] ] is

a densely defined, closable Krein ( + ) symmetric operator:

The free Hamiltonian Ho defines a positive self-adjoint operator on Jf
given by
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3SELF-ADJOINTNESS OF LATTICE YANG-MILLS HAMILTONIANS

where = 03A3sj=1403B4-2 sin2 (kj03B4/2) and 03B1+  are the Fock annihila-
tion and creation operators (see appendix). For the interaction terms :

The summation convention is used for repeated indices k, l = 1, 2, ... , s
and for color index summations which are suppressed with the conven-
tions (Ao x = Al = etc., with completely antisym-
metric structure constants cabc for the Lie gauge group of the Yang-Mills
theory. The coupling constant ~, is real and 
indicates the « forward » lattice derivative in the kth direction. The « back-
ward » and « midpoint » derivative would serve equally well.
For a closable, densely defined operator T on ~f, the Krein adjoint T+

and the Hilbert adjoint T* are related by T+ = while for the minimal
closure T = T* * = T + + . Let DF denote vectors in ~f containing finitely
many particles then H is densely defined on Dp. We prove in section two that

This answers a long standing question of Jaffe, Lanford and Wightman [7 ].
H is not symmetric in the Hilbert sense and fails to be bounded below due
to the singular nature of Veiectnc and due to the indefinite metric used to
quantize « covariantly ». Our proof relates H by a Krein unitary trans-
formation to an operator H’ which has a (quasi) maximal accretive closure.
In section three, we make use of the functional integral derived in [3] to
obtain a Feynman-Kac representation for the semigroup generated by H’
in terms of Brownian motion. It then follows immediately that H’ satisfies
a Kato inequality by dominating an operator formed by setting all « magne-
tic » terms equal to zero in H’. It would appear that while the structure of
indefinite metric Yang-Mills quantum fields is more complicated than for
theories of massive scalar fields, it is still natural and mathematically
accessible.

2. KREIN SELF-ADJOINTNESS

A Krein unitary operator U is a densely defined, closed linear operator
in Jf such that

Vol. 42, n° 1-1985.



4 J. L. CHALLIFOUR

It is not required that U be bounded. Define

for which S rDF is skew-symmetric and + -symmetric. A short calculation
shows vectors in DF are analytic vectors for S and there exist constants Co,
C1 depending upon C such that

LEMMA 2.1. - The operator ç is skew-adjoint and + self-adjoint.
Moreover, exp is self-adjoint and +-unitary for real z, while for

complex z satisfies

It follows that H is + -unitary to a (quasi) accretive operator.

Proof 2014 Notice = 2014 S on DF, so by closure this relation extends
to S. By Nelson’s theorem on analytic vectors, = on the appro-

priate domain. This proves the first part.
Suppose C E DF and put

By (2 . 2), ~ and H is closable ; so if we write

then B}IN ~ for I z  Z2(I». Now using the commutation rela-
tions (1.1) with (2.1), [ [H, S]S] commutes with S. Consequently,

This means

. 

and, in particular, HeizSDF c Applying the spectral theorem
for S shows (exp [iz S ]) -1 - exp [ - iZS] whereupon (2 . 3) is valid for

! ~ ! I ~ The right hand side of this relation is an entire function of ~
and defines an analytic continuation of the left hand side to all complex z.
The canonical transformation using S enables us to control the highly

singular second term in Velectric. If we denote U = exp [fS ] and H’ = 
then H’ is given by the right hand side of (2.3) and is (quasi) accretive.

Annales de l’Institut Poincaré - Physique theorique
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To see this use (2 . 3) and properties of our lattice regularization, particularly
the identity

which is a consequence of periodicity, to obtain an expression

The operator R is essentially self-adjoint on DF and bounded below by
- Eo = - (s + It is given by

in which = + 03BBAk x The operator K is
skew-symmetric and involves momentum dependent interactions between
the fields’ .

REMARK 2.1. - The complete « magnetic » portion of the Yang-Mills
interaction appears in the expression for the operator R ; while the « elec-

. 

tric » portion resides in the essentially skew-adjoint operator K and permits
recovery of part of the positivity inherent in the heuristic Lagrangean

density 2014 - from physics. .

For Krein symmetric operators which are also accretive, Krein self-
adjointness is equivalent to being maximal accretive. For completeness
we give the simple proof.

LEMMA 2.2. - Let T be a densely defined, closed linear accretive ope-
rator with T c T +. Then T = T + if and only if T is maximal accretive.

Proof 2014 If T is maximal accretive and v E D(T+) there exists MeD(T)
for which (T + + ~= (T + for some comp_lex ~, with Re ~,  0. As
T c T + then (T + + ~ - u) = 0 ; but, N(T + +:x) 0 }
hence v = u and D(T + ) = D(T).

Suppose T = T+ and let T1 be a maximal accretive extension of T [8 ],
then Ti c T+ = T c Ti. Tt is maximal accretive and u E D(T i ) requires
r~u E D(Tf), where Re (u, u) = Re (~M, 0 and T i is accretive.
Consider v E ~f with 0 = (v, + I)u) _ (~, + for all u E 

Clearly v = 0 and T i is maximal accretive so by the first part of the proof
T1 = Ti - T.

Vol. 42, n° 1-1985.
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COROLLARY. - i) T and T* accretive if and only if T and T+ are accre-
tive, whence T is maximal accretive.

ii) T is maximal accretive if and only if T+ is maximal accretive.
One of the most useful criteria for maximal accretivity is due to M. Krein

and is just the proof given for Lemma 2.2.

PROPOSITION 2.3 (Krein). 2014 Let T be a densely defined, closed linear
accretive operator. Then T* accretive implies T is maximal accretive.

In order to show HDF is +-self-adjoint, we see from Lemmas 2.1, 2 . 2
and Proposition 2. 3 it is enough to prove that H’* is accretive. To do this
we exploit a method from the theory of elliptic partial differential ope-
rators centered around the study of Kato’s inequality carried out by A. Devi-
natz [4 ]. For quantum fields on a finite lattice obeying Bose-Einstein
statistics, J. von Neumann’s theorem on equivalence of the Heisenberg
and Schrodinger versions of quantum mechanics relates H and H’ to
second order elliptic operators. Conventions for these « harmonic oscilla-
tor » coordinates are listed briefly in an appendix. If q = (q’, q") E [R",

where 1 are position coordinates associated with

{ E V; k = 1, ..., s; a = 1, ..., N } and q" E ~V2 those similarly
associated with the fields we find from (2. 6) and (2 . 7)

Here 1B is the v-dimensional Laplace operator and V is a quartic poly-
nomial in q’ which is bounded below. The vector fields a = b + c + d
in which .

with the individual components satisfying

These relations are readily checked using the q-coordinates in the appendix.

THEOREM 2 . 4. - Set H’ = U -1 HU. H’ is a + -symmetric and (quasi)
maximal accretive operator and hence H’ is +-self-adjoint. Thus H is
+-self-adjoint.

Proof - Under the change to q-coordinates leading to (2.8), the
domain DF is mapped into the Hermite functions on L 2(~v). As 
is a core for H’~DF it is enough to show is accretive. In fact,
H’* _ ( - A/2 2014 ~ ’V + the maximal differential operator defined

on D(H’) = {u E L2(Rv) ( - 0/2 - + V) distribution u E L2 }. In the

following we assume ~ &#x3E;: 0.

Annales de Henri Poincaré - Physique theorique
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Let X be a positive C~-function of compact support on [R+ which is

one for 0 ~ ~ 1 and zero 2. Set =/(!? I2/K2), K &#x3E; 0. Further
denote ~i(?) = z(! q I2/4N2), ~2(q) = P/25N") for N &#x3E; K and define

Hí * = = 03C82u. Notice for = H’*u

on supp 8. H i * is a degenerate elliptic second order operator with
bounded C~-coefficients. For such an operator, Devinatz [41 has shown

so that is maximal (quasi) accretive with a core
Cy. There is then a sequence {un} c Co such that un -+ u(2) and

for 
Consider now the expression

Integrating by parts and discarding surface terms leads to

First let n  oo and then let N -~ oo using dominated convergence for u,
H’*u in L2 to arrive at

Without loss of generality we may require /~ x" uniformly bounded
and 0-~1 boundedly as K -~ oo . The bounds in (2.10) imply the right
hand side of (2.11) tends to zero as K -~ oo again by dominated conver-
gence. The left hand side converges to 2 Re (u, H’*M) &#x3E; 0 and hence H’*
is (quasi) accretive. II -

The dynamics for the Yang-Mills Hamiltonian H may be given in terms
of the exponentially bounded, strongly continuous semigroup

by a Krein unitary transformation

T(t) has been defined as an (unbounded) semigroup on D(U -1 ) and satisfies
the functional integral representation given in [3] which exhibits the gauge
invariance present in (1.1), (1.2) and (1.3).

REMARK 2 . 2. - The additional cut-off (M cut-off) used in [3] ] to

give an easy proof of convergence of the Dyson series for T(t ) by reducing
the growth of the number of particles in Velectric is readily removed by using
(2.12), (2.13) and Theorem 3.1 of the next section.

Vol. 42, n° 1-1985.
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3. A FEYNMAN-KAC FORMULA

The semigroup T(t) may be represented as a Euclidean path integral
with respect to the Feynman gauge Euclidean process associated with A,~.
In this context, Velectric required the use of a stochastic integral to represent
the momentum term which we now show how to transform into a simple
Feynman-Kac formula for the bounded semigroup S(t ). This second repre-
sentation depends entirely upon a martingale decomposition which we
used in [3] ] and extend further here.

Consider a Gaussian random process x) on IR x V with mean zero
and covariance

Choose a continuous separable version of this process in terms of a pro-
bability space (Q, F, ,uo). For example, Q could be a set of paths and F
the 6-algebra generated x)}. The 6-algebras ~ generated by

jc) ~ 0  s  t ~ form a filtration of ~ . By a « Brownian motion »
with respect to and Ft we mean an Ft measurable stochastic pro-
cess /3~a~(t, x) satisfying

in which expectations ~ . ~ are taken with respect to /10. The process
x) is a quasimartingale [3, ~] ] given as

In (3.1), (3.3) and throughout this section As denotes the finite difference
Laplacean on V. In [3, Proposition 2 . 3 ], we proved the existence of a
linear embedding

with

such that It is isometric for the Feynman gauge in both the Krein and ’ Hil-

Annales de Henri Poincare - Physique ’ theorique ’
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bert metrics. When It is applied to vectors in DF the Dyson series for T(t)
converges strongly by means of the correspondence :

REMARK 3.1. - This correspondence is valid also for I* replaced
by the Krein adjoint IS as proved in [3 ]. The same calculation leads to (3 . 4).
The Feynman-Kac formula for S(t) will be stated in terms of a system

of diffusion measures { on (Q, ff) indexed by the initial condi-
tion for the stochastic differential equation

The process BJl for t &#x3E; 0 is defined as the unique strong solution to (3. 5)
with respect to a Brownian process 03B2  for a second probability measure 
on (Q, The relation between ,uo and  is given explicitly in the proof
of Theorem 3.1 below. A transition probability for the diffusion in (3. 5)
is defined by

and

Expectations taken with respect to the diffusion measures in (3.6) are
denoted by E(’). The Fock space Jf may be identified with

and vectors 03A8 E Jf, regarded as functions of AJl’ map into functions IoT
of x).

THEOREM 3.1. - Consider as a function of the time-zero
quantum field. Then, if Qo is the Fock vacuum for (1.1),

Vol. 42, n° 1-1985.
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The measures ,uo and  are absolutely continuous when restricted to 
in fact, an exponential L’-martingale.

Proof: Suppose 1&#x3E;, ’P are polynomials in the time-zero fields A,~ applied
to the Fock vacuum Qo. Using Theorem 5.1 of [3] ] together with the corres-
pondences in (3.4),

The integrand is

in which

The last term in the exponential for r 3 results from periodicity in B~ in ~-;
see for example (2.4). The desired formula for is obtained by a series
of drift transformations on (3.8).
The relation (3.3) may be written as = + ~(~ ~-) with

~(~)=~(~)+ Jo in which ~P is a Brownian

motion with respect to (~, The derivative = is deter-
mined by an exponential martingale

Applying Ito’s theorem for stochastic differentials to the process

Annales de l’Institut Henri Poincaré - Physique theorique
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M(t) may be rewritten as

Summations over color indices continue to be suppressed. Noticing

one learns the measure is a representation in terms of B~ of a Wiener
measure in the q-coordinates with an initial distribution for x) given
by (3.1).
Remove the factor exp (Eot) and combine r2, r3 with (3.9) in the first

term in M(t) to produce two exponential martingales

where upon (3. 8) becomes

Each of the martingales r(2), r(3) gives rise to a drift transformation of

and a measure for which /3~2~ is a Brownian motion.
Finally the martingale r l(t) may be absorbed by one more drift trans-
formation

into a measure = r 1 is certainly a local martingale but
due to the quadratic growth of the coefficient a further test is needed
to show = 1. In terms of the q-coordinates, r 1 corresponds to a

Vol. 42, n° 1-1985.
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diffusion with generator 2014A/2 + .. Relation (2 .10 a) used in Hashi-
minsky’s test, [6, p. 375 ], shows this diffusion is non-explosive. The Feyn-
man-Kac formula (3.10) now reduces to

and it remains to observe that is the density for the initial distri-
bution of ;c). Hence removing this distribution leads to the diffusion
measures (3.6) parametrized by the initial condition in (3.5).
The semigroup formula extends to general Bf E Jf by a limiting argument

using the density of polynomials in Jf, the martingale property for F(~)
and 

_ _

The expression in Theorem 3.1 shows to be positivity preserving
as an operator on L 2(Q, ~o) for those Jf with ¿ O. There

are many such vectors; for example, Bf = P(A)Qo where the polynomial
P(?)&#x3E;0 for all Given 03A8~H we may define by 
as = E { ~o }. Let ¿ 0, be the contraction semigroup

generated by with H" = I Theo-

rem 3.1 then has an immediate consequence.

COROLLARY (Kato Inequality). - Choose ’P E D(H’), I&#x3E; E H such that

I I&#x3E; I E D(H") with (I&#x3E;, ’P) = ( I I&#x3E; I, I ’P I). Then

Proof 2014 From Theorem 3.1

REMARK 3 . 2. - The necessity of the relation between 03A6 and 03A8 has been
pointed out by H. Hess et al. [5 ]. A weak form of Kato’s inequality follows
by taking C and 03A8 to be positive polynomials applied to Qo’

. 
de l’Institut Poincaré - Physique theorique
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REMARK 3 . 3. - The spectrum of H appears to be complicated. Consi-
der the self-adjoint operator - /1’/2 + ~(q’) - Eo in (2.8). This operator
has discrete spectrum with a ground state corresponding to an eigenvalue
Emin. To see this notice that V(q’) + Eo is a homogeneous quartic poly-
nomial in the ~-coordinates, thus ~+Eo)/~=2(f+Eo)/~0.
Then ~ restricted to the surface r= is an analytic function of the sphe-
rical angles. From this it is easy to see 1/ + Eo vanishes on the sphere
only on a set of spherical measure zero. Consequently ~ + Eo increases
almost everywhere in ~Vl 1 and Rellich’s criterion applies [9, p. 247-249 ].
The effect of /1" is to add continuous spectrum beginning with each eigen-
value while . contributes continuous spectrum in imaginary directions
and thus in the half-space Re z &#x3E;- Emin - Eo. It would be very interesting
to know how the spectrum of H’ is related to the physical spectrum of H
taken on states with zero color charge?

REMARK 3.4. - Do the results of Theorems 2.4 and 3 .1 extend to the

Yang-Mills part of the Hamiltonian when A~ is in one of the Rideau gauges,
see [3 ] ?

Vol. 42, nO 1-1985.
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APPENDIX

In terms of Fock annihilation and creation forms c~(/c) for which

see [3, Remark 2 . 2 ], a representation of (1.1) is provided by

The q-coordinates are defined by

where ro indicates those momenta remaining after using the relations

For these momenta (1.1) requires = Each and are

symmetric but in the Feynman gauge qj,0 and are skew-symmetric. J. von Neumann’s
theorem on irreducible representations of the Heisenberg commutation relations for

finitely many degrees of freedom provides with a multiplication
operator by the appropriate coordinate with = Similarly - is a multi-

plication operator and pj,0 = - Substitution of the Fourier series for 
into (2. 6) and (2. 7) leads to (2. 8), (2. 9) and (2.10).
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