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Semiclassical quantum mechanics, IV:

large order asymptotics and more general states
in more than one dimension

George A. HAGEDORN (*)
Department of Mathematics, Virginia Polytechnic Institute

and State University, Blacksburg, Virginia 24061-4097

Ann. Poincaré,

Vol. 42, n° 4, 1985, Physique theorique

ABSTRACT. - We solve the n-dimensional time dependent Schrodinger

equation i~03A8 ~t = - 2014 AT + V’P modulo errors which have L norms
on the order of for arbitrary large 1. The initial conditions are fairly
general states whose position and momentum uncertainties are propor-
tional to h1~2.

RESUME. - On resout 1’equation de Schrodinger dependant du temps
d ~ h2

i 
2014 

= 2014 2014 AT + VT en dimension n modulo des erreurs dont la

norme dans L2 est d’ordre pour 1’arbitrairement grand. Les conditions
initiales sont des etats relativement generaux dont les incertitudes de

position et d’impulsion sont proportionnelles a h1~2.

§ 1. INTRODUCTION

In this paper we study the high order semiclassical asymptotics of
solutions to the n-dimensional time dependent Schrodinger equation

(*) Supported in part by the National Science Foundation under grant number
MCS-8301277.
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364 G. A. HAGEDORN

~2014= -2014A~F+V~F. We show that there exist solutions 

which are concentrated near the trajectory of a classical particle up to
errors which are on the order of ~1~2 for arbitrarily large l.

These results are generalizations of some of our earlier work [3] ] [4] on I

the semiclassical limit of quantum mechanics. In [3] ] we showed that there
are approximate solutions to the n-dimensional Schrodinger equation
which are accurate up to errors on the order of ~1~2. In [4] ] we showed
that in one dimension, there are approximate solutions which are accurate
up to errors on the order of ~1~2 for arbitrary l. Thus, the present paper
generalizes [3] ] to higher dimension and [4] ] to higher order. The gene-
ralizations are not straightforward because it is far from clear just what
the n-dimensional analogs of the functions of [4] ] are.

They are not simply « products of Hermite polynomials of various arguments
multiplied by a Gaussian », as stated in [4 ]. The complication comes from
the fact that the complex unitary group U(n, C) enters in the problem
where one might expect to see the real orthogonal group 0(n, [R). This
forces one to study some generalizations of the usual Hermite polynomials.
Once one knows that these functions are, the generalization of [4] is imme-
diate.

The approximate solutions which we study have momentum and posi-
tion uncertainties on the order of ~1~2. This particular semiclassical limit
was first studied by Hepp [9 ], who computed the first term in the small ~
asymptotics of certain expectation values. In the chemistry literature,
Heller [7] ] used the approximation of the same type, without studying
the question of whether or not the approximate solutions were asymptotic
to exact solutions. He and Lee have also proposed [8 an approximation
similar to the one in [4] and the one we describe here, but he has not found
the natural orthonormal basis in which to do the expansion. Ralston [10]
has studied approximate solutions to strictly hyperbolic systems of partial
differential equations. His results are similar to the ones which we present
below, but he expands the approximate solution in terms of a non-ortho-
gonal basis for which leads to more complicated evolution equa-
tions for the coefficients in the expansion.

Other semiclassical limits are studied in the literature. In this regard,
we recommend the reader consult the work of Yajima [7~] ] [15 ]. The time
independent problem for limits similar to ours has also been studied.
The reader should consult the works of Combes, Duclos and Seiler [1] ] [2 ],
and Simon [77] ] [12 ].
For the potentials which we consider, the quantum Hamiltonian

H(h) = - 2014 A + V(x) = + V on is essentially self-adjoint on the
2m
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365SEMICLASSICAL QUANTUM MECHANICS, IV

functions of compact support. Under this Hamiltonian we will study
the evolution of states which are linear combinations of the wave functions
~k(A, B, ~, a, ~ x), which are defined below. The state ~k(A, B, ~, a, yy, x)
is concentrated near the position a and near the momentum 11. Its posi-
tion uncertainty is proportional to and is determined by the matrix

[AA * ]1/2 and the multi-index k. Its momentum uncertainty is
proportional to ~1~2, and is determined by the matrix [BB* ]1/2
and the multi-index k.
The precise definition of the states ~k(A, B, ~, a, r~, x) is quite compli-

cated, and requires the following notation :
Throughout the paper we will let n denote the space dimension. A multi-

index k = (kl, k2, ... , kn) is an ordered n-tuple of non-negative integers.
n

The order of k is defined to be |k| = ki, and the factorial of k is defined
f=i

to be k ! = (/(i !)(k2 !) ... (kn !). The symbol Dk denotes the differential
olkl

operator Dk - 
... 

symbol xk denotes the

monomial xk = xlkix2k2 ... We denote the gradient of a function f
and we denote the matrix of second partial derivatives 

With a slight abuse of notation, we view M" as a subset of Cn, and let ei
denote the ith standard basis vector in ~n or ~n. The inner product on !R"

Our generalizations of the zeroth and first order Hermite polynomials are

and

where v is an arbitrary non-zero vector in en. Our generalizations of the
higher order Hermite polynomials are defined recursively as follows :
Let vl, v2, ...,~ be m arbitrary non-zero vectors in en. Then,

One can prove inductively that these functions do not depend on the
ordering of the vectors ...,~. Furthermore, if the space dimen-
sion is n = 1 and the vectors v2, ...,~ are all equal to 1 then

Vol. 42, n° 4-1985.
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~2? ’ ... , x) is equal to the usual Hermite polynomial of order m,
Hm(x).
Now suppose A is a complex invertible n x n matrix. We define

I A I = [AA* ]1/2, where A* denotes the adjoint of A. By the polar decompo-
sition theorem, there exists a unique unitary matrix UA so that A = 
Given a multi-index k, we define the polynomial

We are now in a position to define the functions ~(A, B, ~ ~ 11, ~).

DEFINITION. - Let A and B be complex ~ x ~ matrices with the follow-
ing properties:

A and B are invertible; (1.1)
is symmetric ([real symmetric] + i [real symmetric]); (1.2)

Re BA -1 = 1 2 [(BA -1) + (BA -1)*] ] is strictly positive definite; (1.3)

=AA*. (1.4)

Let a E Rn, ~ E Rn,  &#x3E; O. Then for each multi-index k, we define

The choice of the branch of the square root of [det A ] -1 in this definition
will depend on the context, and will always be specified.

Remarks.

1. Whenever we write B, ~ ~ ~ x), we tacitly assume that the condi-
tions ( 1.1 )-( 1. 4) are fulfilled.

2. Condition ( 1. 4) can be rewriten in a more symmetrical way. It is

equivalent to the condition

where I is the n x n identity matrix.
3. We prove in § 2 that for fixed A, B, ~C, a, and r~, the functions 

a, yy, x) form an orthonormal basis of 
4. Generically, UA and UB are complex unitary matrices, and I A I

and I B are Hermitian. In the special cases in which they all happen to
be real, the functions B, ~, 0, 0, x) are simply rotated, scaled versions
of the eigenfunctions of the n-dimensional harmonic oscillator.

Annales de l’Institut Poincaré - Physique theorique



367SEMICLASSICAL QUANTUM MECHANICS, IV

5. The scaled Fourier transform which is appropriate for the semi-
classical limit is

In § 2 we prove that

6. In the definition of the functions ~k(A, B, ~, a, yy, x), the only place in
which the matrix B appears is in the exponent. Similarly, ~k(B, A, ~, ~ - a, ç)
depends on the matrix A only through the exponential factor. This property
is crucial to our proofs. It also makes the result of Remark 5 rather amazing.
The main result of this paper is the following :

THEOREM 

for some constants C1, C2, and M. Let ao E ~n, ~n, and let Ao and Bo
be n x n matrices satisfying (1.1)-(1.4). Given a positive integer J, a posi-
tive real number T, and complex numbers ck for J, there exists a
constant C3 such that

whenever T (det A(t)) is never zero, and the branch of the square
root in the definition B(~), ~ a(t ), r~(t ), x) is deter-
mined by continuity in t ). Here [A(t ), B(t ), a(t ), r~(t ), S(t ) is the unique solu-
tion of the system of ordinary differential equations :

subject to the initial conditions A(0)=Ao, B(0)=Bo, ~(0)=~o. and

Vol. 42, n° 4-1985.
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S(O) = O. The ~) are the unique solution to the system of coupled ordinary
differential equations

subject to the initial conditions ~) = ck for J and ~) == 0
for J + 1 ~ In this equation, the quantity is a numerical

quantity which is computed in the remarks below.

Remarks.

1. The quantity is a product of some quantities which are related
to the symmetric tensor representations of the matrices A  UA, and UA.
To explicitly compute these quantities, we need some notation. Given a

sequence of integers i ~ , i2, ... , iN which satisfy 1 ~ ~ ~ ~ we define

ind (i 1, i2, ... , iN) to be the multi-index k with the property that the number}
occurs in the sequence i1, i2, ... , iN, exactly times. Let A be a non-
singular complex n x n matrix, and let k and m be multi-indices with

I = ! We fix ~,72....Jj~) so that ind (/ij2....~t~j) = m, and
define

In addition, and m be any three multi-indices, and choose i 1, i2, ... , iN
with ind (i1, i2, ... , iN) = k. Then we define

where l, x’ix’2 ... denotes the matrix element of ... 

in the usual harmonic oscillator basis (i. e., the I, 1, 0, 0, ~)}).
With these definitions, the numerical quantity which appears in the

theorem is :

2. The quantities in the above remark arise from the computation of
the matrix elements

These matrix elements do not depend on a and the  dependence

Annales de l’Institut Henri Poincaré - Physique . theorique -



369SEMICLASSICAL QUANTUM MECHANICS, IV

scales out to give a factor of The UA dependence is in the quantity
It enters the computation through the formula :

The I A dependence is in the quantity

All of these formulas may be proved by using the definition of 
, ~, x), induction, and explicit computation.

3. As in [3] [4] ] [J] ] [6] ] [13 ], A(t ) and B(t) are determined by the relations

4. One can prove another theorem which allows some infinite linear
combinations of the functions B, ~, x) if one is willing to do
computations modulo errors on the order of ~1~2. We have not stated this
theorem here, since it is the obvious analog of Theorem 1. 2 of [4 ]. Given
the results of § 2 of the present paper, it is easy to generalize the proof of
Theorem 1. 2 of [4] ] to the n-dimensional case.

5. One can generalize Theorem 1.1 to include more general Hamil-
tonians. Hamiltonians which are arbitrary smooth functions 
and t can be accommodated. In particular, one can include magnetic fields,
or one can study problems with time dependent potentials which are qua-
dratic in x and p (jointly). See e. g., [5] ] [7~] and [6 for applications of these
ideas.

In the rest of the paper we give the technical details necessary for the
proof of Theorem 1.1. We do not actually give a proof of the theorem,
since many of the steps are virtually identical to the analogous steps in
the 1-dimensional case.

§ 2 . THE TECHNICALITIES

In this section we give prooTs of the crucial lemmas involving the
properties of the functions B, ~, a, ri, x). We also present a very rough
outline of the proof of Theorem 1.1. We do not give the full proof because

Vol. 42, n° 4-1985.
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(once the lemmas are proved) it is essentially identical to the proof of Theo-
rem 1.1 of [4 ].

LEMMA 2.1. - The functions ~k(A, B, ~, a, r~, x) form an orthonormal
basis of 

Proof 2014 By scaling out the dependence of the functions ~k(A, B, h,
a, 11, x), we need only prove this lemma for the case in which ! I A == I.

Furthermore, because of relation ( 1. 4), the value of B is irrelevant in the
computation of inner products of the with one another. So, we can
assume B = I, also. Similarly, it is sufficient to consider only the case
of ~ = 0 and  = 1. Let = UAej for 1  j  n. Define to be the

differential operator ~(w~) ==~~)+~,V) defined on the Schwartz
space ~(tR"), and let be its adjoint. On Schwartz space, acts

as the differential operator a(w~ )* _ ~ w, x ~ -  W j, V ~. The self-adjoint
operators N(w) = for 1 ~ ~’ =$ ~ are easily seen to commute
with one another. Suppose ...~ are chosen from the set (Wj).
Then, by explicit computation.

and

From these relations it is easy to see that

Thus, v2, ... , is an eigenfunction of N(wj) with eigen-
value equal to twice the number of occurrances of Wj in the sequence v 1,
v2, ...~. Since this is true for each j, and the are commuting
self-adjoint operators, the functions B, ~, a, ~, x) are orthogonal.
The function v2, ... , x)e - "2~2 is equal to

so using the relations given above, one can easily see that the functions
are properly normalized.

To prove the completeness of the functions B, ~, a, 11, x), one should
n

note that the operator N(w~) = 2014 11 + jc~ is simply twice the usual

j=i

Poincaré - Physique theorique
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Harmonic oscillator Hamiltonian. The states B, 1, 0, 0, x) are eigen-
functions if I A = I, and for each eigenvalue, one easily sees that there
are as many B,1, 0, 0, x)’s as the dimension of the corresponding
eigenspace. II

Proof 2014 By elementary manipulations, it is sufficient to consider the
case ~=1,~=~=0. For the cases k ~ = 0,1, we prove the lemma by explicit
calculation. For the larger values we use induction and the following
two formulas :

and

The only difficult step in the induction is the following : Assume the
lemma is correct for all multi-indices m with M, and let k be a multi-
index with |k = M + 1. Choose vectors vj = eij for 1  j  M + 1,
so that ind (fi, i2,...,iM+1) = k. Let UAvj, wj = UBvj, and

Vol. 42, n° 4-1985.
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where

and

By the induction hypothesis, this is equal to

de Poincaré - Physique theorique



373SEMICLASSICAL QUANTUM MECHANICS, IV

With one exception, all the steps are either straightforward applications
of standard facts about the Fourier transform or applications of the iden-
tities given above. That exception occurs in the second to last step, where
we have used the identity :

By using the polar decompositions of A and B, we see that this identity
is equivalent to the first equality in the identity

This identity is proved as follows : By condition ( 1. 2), we have BtA = AtB.
If we take inverses on both sides of this equation, we obtain

As in Remark 2 after the definition of the ~k’s, condition ( 1. 4) is equivalent
to A*B + B*A = 21. We multiply this identity on the right by the two
forms of the matrix C to obtain the desired identity. tt
Given the two lemmas above, the proof of Theorem 1.1 is obtained by

closely mimicking the proof of Theorem 1.1 of [4 ]. One uses the Trotter
Product Formula to separate the effects of the kinetic and potential terms
in the Hamiltonian. Then one expands the potential in its Taylor series of
order l + 1 about the point a(t ). The errors committed are of order ~~~2
due to the  dependence of the functions 03C6k(A, B, , a, 11, x). The terms of
order less than or equal to 2 in the kinetic energy and the approximate
potential give rise to the equations ( 1. 6)-( 1.10). The higher order terms
from the approximate potential give rise to the system (1.11). There is
an additional error of order ~~~2 due to the fact that we have truncated the
sums which occur in the system ( 1.11 ) in order to avoid dealing with an
infinite system.
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