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On the quasi-classical limit
of the total scattering cross-section
in nonrelativistic quantum mechanics

A. V. SOBOLEV and D. R. YAFAEV (*)
Leningrad Branch of Mathematical Institute (LOMI),

Fontanka 27, Leningrad, 191011 USSR

Inst. Henri Poincaré,

Vol. 44, n° 2, 1986, Physique theorique

ABSTRACT. - The total scattering cross-section for the operator
- A + gV is studied for large coupling constants g and high energies K2.

RESUME. - La section efficace totale de diffusion pour l’opérateur
- 0 + gV est etudiee pour les grandes constantes de couplage g et les
hautes energies K2.

1. INTRODUCTION. A GENERAL SURVEY

The total scattering cross-section for the Schrodinger equation

where XE ~83, K &#x3E; 0, g &#x3E; 0 and (1)

(*) Currently visiting the Laboratoire de Physique Theorique et Hautes Energies,
Batiment 211, Universite de Paris-Sud, F-91405 Orsay cedex (Laboratoire associe au
CNRS).

(1) By C and c we denote different positive constants. If necessary, its dependence on
some parameters is specified in the notation, i. e. C = C(K).
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196 A. V. SOBOLEV AND D. R. YAFAEV

can be defined in the following way. Denote by S(K, g) the scattering
matrix for the equation (1.1) (for the precise definition see below). Then
S(K, g) - I is an integral operator in the space L2(~2) with a kernel

The function f is called the amplitude of
scattering in the direction ~p for the direction cv of the incoming plane
wave. In terms of f the total scattering cross-section for the incoming
direction 03C9 is defined by

When averaged over 03C9

where ~.~2 is the Hilbert-Schmidt norm.
The aim of this paper is to discuss the asymptotic behavior of K, g)

as the energy K2 of the particle and the coupling constant g both tend to
infinity. Note that the equation, formally more general than (1.1),

+ gV(x)u = K2u is obviously reducible to (1.1). In particular, the
quasi-classical limit as h --+ 0, g and K fixed, is the same as that for (1.1)
as g = cK2 --+ oo, c = const. However, we do not restrict ourselves to
this particular case and permit different relations between g and K as
g --+ oo, K --+ oo . Though the total cross-section is one of the basic

objects in a quantum scattering problem, there was little study of it until
recently. Even at a heuristic level some quite general properties of

K, g) seem not to be commonly known. We emphasize that the
asymptotics of K, g) as K --+ oo, g -&#x3E; oo depends crucially on the
relation between K and g and on the rate of the fall-off of V(x) at infinity.
We begin our discussion with the simple case when g/K --+ 0. As is

well-known (see e. g. [7]) as K --+ oo, g fixed, or g --i 0, K fixed, the
asymptotics of different scattering characteristics for the equation (1.1)
may be obtained by perturbation theory (Born approximation in physical
terms). These formulae can be rigorously justified [2]-[~] and, moreover,
if g/K --+ 0 they are valid also in case K -i&#x3E; oo, g --+ oo . In particular,
for the total cross-section the Born approximation shows that under
suitable assumptions on V :

where b E f~2, ~ b, cc~ ~ == 0, x = b + Thus in case g/K -~ 0 the asymp-
totics of depends on the values of V(x) for all 
The case g/K -~ oo (or the intermediate case g/K = const) cannot be

studied by perturbation theory and the asymptotics of as

~/K -~ oo is very sensitive to the behavior of V(x) as x ~ I ~ oo. Let

de Henri Poincaré - Physique théorique



197TOTAL SCATTERING CROSS-SECTION

firstly V have a compact support. If g = cK2 -+ oo, c = const, it is shown

in [5] ] that under certain assumptions (including assumptions on the
corresponding classical system)

where is a total classical cross-section for the direction co of the

incident beam of particles. More precisely, in [5 it is proven that (1. 6)
holds if its left-hand side is averaged over some small energy interval.
Note that generically does not depend on the energy and 
equals the square of the projection of supp V on the plane orthogonal
to M. The simpler case g --+ oo, K --+ oo, g  y &#x3E; 0, was discussed
in [6] ] where the asymptotics ( 1. 6) (without averaging over energy) was
justified with the help of the so-called eikonal approximation. In this
region one can evaluate also the (logarithmically growing) asymptotics
of K, g) for exponentially decaying potentials. Outside of the region
g  cK2 only upper bounds on K, g) are known. Namely, in [7 ], [~] ]
it is shown that :

where C depends only on the size of the support of V but not on K and g.
In [8] the problem was posed to obtain the bound ( 1. 7) without averaging
over energy. However, as found in [9] ] such sharp-energy bound fails in

general to be true. Namely, for spherically-symmetric (radial) V(x) = V(r),
with a non-trivial negative part and fixed K, a sequence

gl = oo was constructed in [9] ] such that

The growth of u(K, g) for some sequence ~ has a resonant nature, which
is discussed more thoroughly in section 2. On the contrary, for repulsive

av .

(not necessary radial) potentials V, ~|x|~ 0, the total cross-section

is bounded [9] uniformly in the coupling constant:

This result is improved in section 4 where (1.9) is established for all non
negative potentials.
Now we turn to the case of potentials with a power-like behavior at

infinity. Under the assumption (1.2) the upper bound

Vol. 44, n° 2-1986.
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is proven in [7 ~, [8 ]. In [1 D it was conjectured that asg/K  oo the asymp-
totics of K, g) is determined only by the asymptotics of V(x) as

I -~ oo. Namely, assume that

The hypothesis of [7~] is that

where

and ~w is a unit circle in the plane Aw. For radial potentials the validity
of (1.12), (1.13) was asserted in the book [1] on the basis of the asympto-
tics of phase shifts 03B4l(K, g) for large l, K and g. By analogy with the radial
case the formulae ( 1.12), ( 1.13) were formally derived in [70] ] from the
asymptotics of the eigenvalues = 1, :t &#x3E; 0 of the
scattering matrix S(K, g). However in [70] ] the asymptotics of 1;(K,g)
as n  oo was established for fixed K and g so that the calculations
of [70] may be regarded only as heuristic. At present the asymptotics (1.12)
for V(x) obeying (1.11) is rigorously proven in case ~/K -~ cK2,
where c = c(V) is sufficiently small number (and in particular cK2-y,
y &#x3E; 0). This result was reported in [6] and its detailed proof based on the
eikonal approximation will be published elsewhere.

In section 3 we give the precise formulation and a sketch of the proof
(the details may be found in [77]) of (1.12) for radial potentials. It turns
out that for non negative V the conditions of validity of ( 1.12) are much
broader than in general case but the quasi-classical limit is always permitted.
We emphasize that our proof of (1.12) does not require any assumptions
on the classical system corresponding to (1.1). The proof of (1.12) is based
on the analysis of phase shifts ~~(K, g) in the region where 1°‘-1 is of the same
order as The technique developped here permits also to find the
asymptotics of g) for potentials with a strong positive singularity
V(r) ~ i~o &#x3E; 0, /~ &#x3E; 2, as r ~ 0 in the region ~/K -~ 0, 00

(and in particular in the high-energy limit K -~ oo, g fixed). Note that for
such potentials the right-hand side of (1. 5) is infinite so that the formula (1. 5)
fails certainly to be true. We show that in contrast to regular potentials
the asymptotics of 6(K, g) is determined only by the singularity of V(r)
at r = 0 and as g/K ~ 0 the total cross-section is vanishing slower than
in a regular case.

In a final section 4 we prove some sharp-energy upper bounds on cr(K, g).
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199TOTAL SCATTERING CROSS-SECTION

This work is in progress now and we report two results here. Firstly, we
show that under assumption (1.2)

Secondly, for positive potentials with compact support we establish the
above-mentioned bound ( 1. 9).

In conclusion of this introduction note that the condition x E [R3 is
in essential and all results can be easily carried over to m &#x3E;_ 2.

2. ON THE RESONANT SCATTERING
BY A NEGATIVE POTENTIAL

Let us firstly give a precise definition of the total scattering cross-section
for a radial potential V(x) = V(r), r = Consider a set of equations

describing particles with orbital quantum numbers l = 0,1, 2, ... Assume
that V(r) is bounded away from the point r = 0, V(r) = O(r-P), ~8  2, as
r -~ 0 and

The equation (2.1) has a real regular solution _ K, g) satisfying
= O(r 1 + 1 ), r -+ 0. As r -+ o0

where phase shifts ~l = ~1(K, g) are determined by (2 . 3) up to a summand 7~
n integer. In terms of phase shifts

which is consistent with (1.3), (1.4) for a general case. The total cross-
section is finite if a &#x3E; 2 but even for potentials with compact supports
it is not uniformly bounded as g  oo .

THEOREM 1. 2014 Let Vex) = V(r) have a compact support and V(r)  0

on a set of a positive Lebesgue measure in Then for each K &#x3E; 0 there
exists a sequence gj =~/(K) -~ oo as -~ oo such that the lower bound (1. 8)
holds. The constant C = C(K) in (1.8) can be chosen common for all

Ke(0,KoLKo oo .

Vol. 44, n° 2-1986.
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The proof of this theorem relies on the following :

LEMMA 1. 2014 Under the assumptions of Th. 1 for all sufficiently large l

there exists a coupling constant gl = gl(K) such that 03B4l(K, gl) _ Tc/2 and
C 1 l _ g~  C212, Cj &#x3E; 0. Constants Cj = C/K) may be chosen common
for all Ke(0,KoL Ko  oo .

Once Lemma 1 is proven, the total cross-section r(K, gl) can be bounded
below by

which proves Th. 1. The detailed proof of Lemma 1 is given in [9 ]. Here
we note only that the number gl(K) may be chosen in the following way.
Let V(r) = 0 for r &#x3E; p, and let N be the Neumann function. Consider
the boundary-value problem

with g as a spectral parameter. Under assumptions of Th. 1 this problem
has a discrete spectrum with + oo (and possibly - oo also) as an accumu-
lation point. Let now gj(K) be the first positive eigenvalue of (2.5), (2.6).
Then satisfies all the requirements of Lemma 1. Note that Th. 1 can
be easily generalized to potentials with non-compact supports.
Here we discuss the phenomena of the growth of the total cross-section

from the physics point of view. To make things transparent assume that
V(r)  0. For orbital momentum l, l(l + 1) 2 K2 p2, the effective potential

does not allow a classical particle with an energy K2 to penetrate into
the region r ~ ro where ro = [1(l + 1) ]1/2K -1 is a turning
point. Thus for large a classical particle does not « feel » the potential
well gV(r) supported in r  p. The centrifugal term 1(1 + 1)r-2 separates
this well from the classicaly allowed region by the potential barrier with
the height of an order l2 and the width of an Order 1. In contrast to a classical,
a quantum particle can penetrate through such a barrier on account of
tunneling. Thus the potential gV(r) perturbates all phase shifts ~l. but
with the growth of the barrier the influence of gV(r) is generically quickly
vanishing so that 5/ are small for large l. However, our analysis shows that
for the constructed g(K) the behavior of a quantum particle in a field
Veff(r) is very different from that in a « free » field + 1)r-2 if the energy K’2
is close to K2. The jump of the phase shift up to Tc/2 can be naturally explained

Annales de l’Institut Henri Poincaré - Physique theorique
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by the existence of the quasistationary state in the field Veff. When such a
state exists a quantum particle, tunneling through a barrier, is detained in
a potential well for a large time (in corresponding quantum units). Since
an energy of a particle is positive, a proper bound state does not exist so
that a particle tunnels again to infinity contributing to the total cross-
section. This ensures the sharp (resonant) peak of 6(K’, as K’ -~ K.

Thereby this peak gets sharper as l ~ oo.

In a different situation the described phenomena of the resonant growth
of the total cross-section is well-known (Gamow’s theory) and is discussed
e. g. in the book [72]. In this theory one considers a quantum particle in
a deep potential well (due to nuclear forces) which for large r is screened
by a repulsive Coulomb potential. In contrast to this problem our potential
gV(r) is negative and a positive barrier arises only on account of a centri-
fugal term by a separation of variables. For negative potentials the existence
of resonant peaks of the total cross-section was not, as far as we know,
discussed earlier.

3. THE ASYMPTOTICS OF THE TOTAL CROSS-SECTION
FOR RADIAL POTENTIALS

The aim of this section is to find the conditions of the validity of the
asymptotics ( 1.12), ( 1.13) and its rigorous proof for radial potentials
V(x) = V(r). The detailed exposition of the results below can be found
in [11 ]. Set again x = 2(a - 1)-1 and

THEOREM 2. 2014 Assume that V(r) = ~3  2, as r ~ 0 and

Then

as ~/K -~ oo, g3 -aK2(a- 2) ~ oo. Under the additional assumption
V(r)&#x3E;0 the relation (3 . 3) holds in a broader region ~/K -~ ~ oo.

Let us discuss the assumptions of Th. 2. Though not assumed explicitly,
the condition ~ -~ oo is a consequence oo, oo . On
the contrary, for oc  3 and for V ~ 0 we permit bounded K and even the
case K ~ 0. Thus for nonnegative potentials the asymptotics (3. 3) holds
true in a large coupling limit ~ -~ oo, K fixed. In a general case we can
assert its validity only for a E (2, 3). This is connected with the existence
of the lower bound ( 1. 8) which shows that (3 . 3) is certainly destroyed
for a &#x3E; 5, when xa  1/2. For 03B1 ~ [3, 5] the validity of (3 . 3) as g ~ oo,

Vol. 44, n° 2-1986.
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K fixed, is an open question. What a quasi-classical limit g = cK2 ~ oo
is concerned, it is always permitted by the conditions of Th. 2. We emphasize
that no assumptions on the corresponding classical system are thereby
necessary. Note also that the value (3.1) of the asymptotic coefficient x«
is consistent with the general formula (1.13).
Our proof of Th. 2 is based on the study in its conditions of the asymp-

totics of for l°‘ -1 &#x3E;_ &#x3E; 0 fixed. We remind that by (2 . 3)
the phase shift b(K, g) is determined only up to a summand integer.
This ambiguity is standardly eliminated. Namely, g) for fixed g and l
may be chosen continuous in K and ~l(K, g) ~ ~cn as K -~ oo. Taking
n = 0 we get the unique phase shift ~1(K, g) which is considered below. Set

THEOREM 3. 2014 Let V satisfy condition of Th. 2 and let d be any fixed
positive number. Then

as g/K -~ oo, g~ ~K.~~ 2) ~ ~ Under the additional assumption
V &#x3E; 0 (3 . 4) holds in the region ~/K -~ oo, ~ oo.

Once Th. 3 is proven the asymptotics (3.3) can be derived from the
definition (2.4). Namely, according to (3.4) one can replace asymptoti-

in (2 . 4) by - + 1/2) - °‘ + 1 and the sum over l by
the corresponding integral. Evaluating this integral we arrive at (3 . 3), (3 .1).
We do not dwell here upon the details, which can be found in [77].
At the heuristic level the asymptotics (3.4) can be deduced from the

well-known quasi-classical relation

where rl(K, g) is the largest of roots of two equations l(l + 1)r - 2 +gV(r) = K2
and 1(1 + 1)r- 2 = K2. In particular, (3 . 5) ensures that the asymptotics
of ~(K,g) is determined only by a classically allowed region 
The last assertion is easily justified for nonnegative potentials but in the
general case it is precisely at this place where the additional restriction
~3-~2(~-2) _~ ~ ~ required. Formulae (3.5) and hence (3.4) can be
most probably justified with the help of the WKB-approximation, what
however demands assumptions on the behavior of V’(r) and V"(r) at

infinity. To avoid these unnatural assumptions we use the so-called variable
phase approach (see e. g. [13 ] ; note that the variable phase approach
was already used in [8] to obtain the two-side bounds on g) for V &#x3E; 0

Annales de l’lnstitut Henri Poincaré - Physique theorique
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and g -~ oo, K fixed) which replaces the Schrodinger equation by the
first-order nonlinear equation. Namely, let v = vl := l + 1/2 and

e,,( p) = K, g) be the phase shift for the cut-off potential gVp(r), where
Vp(r) = V(r) for r ~ p and Vp(r) = 0 for r &#x3E; p. Then = as

r ~ 0 and

Define now = + 

where ’ (2 -1 ~cx) 1 ~2~,,(x), and 0 ’ Nv stand 0

for Bessel and o Neumann functions. It can be easily derived 0 from the Schro-
dinger equation (1.1) that satisfies the variable phase ’ equation

It follows from (3.7) that

and 03B8v ~ 0 for V 2 o.
Our proof of the asymptotics (3.4) relies on the phase equation (3.7).

We describe here only its essential steps. According to (3.6), (3.7)

with

and

By (3 . 9) the proof of (3.4) is split up into two steps. Firstly we must prove
that what the asymptotics of ðv-l/2(K, g) is concerned the summand

Bv(v/K, K, g) is insignificant, i. e.

under the assumptions of Th. 3. Essentially, (3.11) means that the classi-
cally forbidden region does not contribute to the asymptotics of the phase
shifts. The proof of (3.11) is based on the appropriate two-side bounds
on 0y(r, K, g). The lower bound (3 . 8) is valid irrespective of the sign of V.
Combined with ~  0 its permits easily to prove (3.11) for the case V ~ 0.

Vol. 44, n° 2-1986.



204 A. V. SOBOLEV AND D. R. YAFAEV

In the general case the proper upper bound for 9v is obtained with the
help of the following :

LEMMA 2. 2014 Set

Assume that for some ro &#x3E; 0 and all r E (0, ro)

Then for r E (0, ~o)

To deduce (3.11) from (3 . 8), (3.13) we use well-known [7~] ] uniform
asymptotic formulae for fv(r), J~(r), N,(r), N(r) as r --+ oo, v --+ oo,
r  v. We emphasize that it is just by verifying (3.12) that we need an
extra assumption g3 -aK2(a-2) ~ oo.

The second part of the proof of (3 . 4) is the evaluation of the asymptotics
of the integral (3.10). This can be performed under the assumptions
g/K --+ --+ oo irrespective of the sign of V. Due to the condition
g/K --+ oo we can replace here V(r) by its asymptotics For bv(vs) we
use the relation

which is valid uniformly in s for every compact subinterval of ( 1, 00).
The relation (3.14) is a consequence of the asymptotics of J ir), N) as
r -+ oo, v -+ oo,. r &#x3E; v (see [7~]). Thus

as ~/K -~ oo, oo and Finally we replace here
sin2 ~pv by 2 -1 - 2 -1 cos Integration by parts shows that on account
of the phase equation (3 . 7) the summand with cos does not contribute
to the asymptotics (3.4) and therefore

Combining this with (3 . 9), (3 .11) we conclude the proof of Th. 3.
The analysis of phase shifts turns out to be useful also for the study of

the high-energy asymptotics of 6(K, g) for potentials V(r) with a strong
positive singularity at r = 0. Assume that V(r) is bounded away from the
point r = 0 and as r -~ 0

Henri Poincaré - Physique theorique
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The numbers 03BA03B2 = 2( (3 - 1 ) -1 and ~03B2 (see (3 .1 )) are determined now by
the singularity of V(r).

THEOREM 4. 2014 Let V satisfy (3.15) as r -~ 0 and V(r) = a &#x3E; 2,
as r ~ oo. Then

as g/K ~ 0, oo .

Note that under the assumptions of Th. 4 necessarily K ~ oo . On
the contrary, if K ~ oo the conditions of Th. 4 are fulfilled if g = const

oo, g = 0(K). The fall-off g  0 is also permitted though it
cannot be too fast because of the condition 00. This is qualita-
tively different from the conditions of the validity of the Born formula (1. 5)
in a non-singular case where g -~ 0 only helps.
For a purely power potential V(r) vo &#x3E; 0, a &#x3E; 2, the asympto-

tics (3 . 3) (or (3 .16), what is the same) is true under the unique assumption
oo. The conditions g/K -~ 00 or g/K --~ 0 were used only to

replace a potential V(r) by its asymptotics as r ~ 00 or r ~ 0. In conclu-
sion of this section we note that the analysis of phase shifts permits also
to find the asymptotics of the forward scattering amplitude under assump-
tions similar to those of Theorems 2 and 4.

4. UPPER BOUNDS
ON THE TOTAL SCATTERING CROSS-SECTION

Let us define firstly the scattering matrix S(K, g) for the Schrodinger
equation (1.1) in a non-radial case. We assume here (1. 2). Set X = V 11/2,
U = sgn V, Ho = - 0 and Ro(z) = (Ho - in the space ~ = L2(1R3).
Then. as is well-known, the operator function

is analytic in a Hilbert-Schmidt norm ~ ~ . ~ ~ 2 and is continuous in this
norm as z approaches the cut over ~ + . Moreover, the point - 1 does
not belong to the spectrum of the operator gA(K2 ± iO)U, K &#x3E; 0. Define
now on L2(M~) n the operator ZK:

Then the operator ZKX is extended to a compact operator from ~f to
= L2(~2) and

Vol. 44, n° 2-1986.
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which is a usual relation between a spectral measure and boundary values
of a resolvent.
Now the scattering matrix S(K, g) can be correctly defined by the equality

Note that the right-hand side of (4.2) is a product of bounded operators
and hence S(K, g) is a bounded operator in the space A. Moreover, as is
well-known (and can be easily seen from (4.1)) the operator S(K,g) is

unitary in In terms of S(K, g) the averaged total cross-section is defined
by (1.4), where the right hand side is finite under the assumption (1.2).
We need also the concept of s-numbers, or singular numbers (see e. g. [15 ])

of a bounded operator A in a Hilbert space Jf. Let %n be a set of all n-dimen-
sional operators. Then by definition

Note the inequality

For a compact A the singular number s,l(A) is the eigenvalue (multi-
plicities taken into account) of a positive compact operator (A * A)1/2. Since
we consider here not only compact A but also operators with compact
difference A - I, it is convenient to use the more general definition (4.3).
Moreover, we need the following lemma which we were unable to find in
the literature.

LEMMA 3. 2014 Let A be compact, - 1 does not belong to its spectrum
and sn + 1  Y  1. Then sn + 1 ((I + A) -1 )  ( 1 - y) -1.

Proof 2014 The operator A can be decomposed as A = Kn + Bm where
Kn~ %n and ~Bn~  y. It follows that I + A = (I + Bn)(I + Ln) with

Operators I + A and are invertible

simultaneously and (I + I + Mn with Mn = - LI + 
Thus ( 1 + A) -1 - (I + Mn)(I + B,)’’ and by (4 . 4)

since + Mn) = 1 according to (4.3). ~
Now we can prove the bound ( 1.14). Note that

with A belonging to the Hilbert-Schmidt class iff the right-hand side is
finite.
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