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and State University Blacksburg, Virginia, 24061-4097

Ann. Inst. Henri Poincaré,

Vol. 47, n° 1, 1987, p. Physique theorique

ABSTRACT. - We study the bound states of quantum mechanical
systems which consist of some particles of large mass and some particles
of small mass. We prove that if the potentials are smooth and the large
masses are proportional to 8-4, then certain eigenvalues and eigenvectors
of the Hamiltonian have asymptotic expansions to arbitrarily high order
in powers of ~, as 8 B 0. The zeroth through fourth order terms in the
expansions for the eigenvalues are those of the well-known Born-Oppen-
heimer approximation.

RESUME. - On etudie les etats lies de systemes quantiques formes de
quelques particules de masse élevée et de quelques particules de faible
masse. On montre que, si les potentiels sont reguliers et les masses elevees
proportionnelles a 8 - 4, alors certaines valeurs propres et certains vecteurs
propres du Hamiltonien admettent des developpements asymptotiques a
des ordres arbitrairement eleves en 8. Les termes d’ordre zero a quatre
dans les developpements des valeurs propres sont ceux de 1’approximation
bien connue de Born-Oppenheimer.

(*) Supported in part by the National Science Foundation under grants MCS-8301277
and DMS-8601536.

Annales de l’Institut Henri Poincaré - Physique theorique - 0246-0211
Vol. 47/87/01/1 /16/$3,60/(~) Gauthier-Villars



2 G. A. HAGEDORN

§ 1 INTRODUCTION

In 1927, Born and Oppenheimer [1] ] studied the time independent Schro-
dinger equation for molecular systems. The central idea of their work was
to exploit the fact that the ratio 84 of the electron mass to the nuclear
mass was small. They formally showed that molecular energy levels had
asymptotic expansions through the fourth order in 8, and that the non-zero
terms in the expansions had direct physical interpretations.

In the present paper we prove that these expansions can be extended
to arbitrarily high order in the çase of smooth potentials. Unfortunately,
the high order terms do not have simple physical interpretations. They
involve complicated couplings between motions of the large mass and
small mass particles.
The physical intuition behind the Born-Oppenheimer approximation

is the following : The small mass electrons move very rapidly compared
to the large mass nuclei. As a result, the adiabatic approximation fairly
accurately describes the electron motion, i. e., on a short time scale, the
electrons hardly notice the motion of the nuclei, and on a large time scale,
they rapidly adjust their motion in response to the changing positions of
the nuclei. In addition, the nuclear motion is approximately semiclassical
due to the large nuclear masses.
The disparity between the periods for the electronic and nuclear motions

leads to a separation in the energies of these motions. Roughly speaking,
as 8 tends to zero, the energy terms decompose as follows : The electronic
energy is 0( 1 ) ; the molecular vibrational energy is 0(E2) ; and the mole-
cular rotational energy is 0(~). There are additional 0(E4) terms (anhar-
monic corrections to the nuclear vibrational energies, and the lowest
order term involving the coupling of electronic and nuclear motions).
As we shall see below, the terms of orders sB E3, and ~5 all vanish. The
terms of order 86 and higher involve complicated interactions between
the electronic and nuclear motions. Although we have not computed the 87
terms in any specific examples, we believe that they are generically non-zero.
In particular, we see no reason for all the odd order terms to vanish.
From the above discussion and the discussion in most physics text

books on the subject, one would be led to believe that the disparity between
time scales is the basis for the validity of the Born-Oppenheimer approxi-
mation. This is not the proper intuition, even in the time dependent approxi-
mation [6 ]. The crucial ingredient is a disparity in spatial scales. In the
time that it takes the electrons to move a unit distance, the nuclei move
a distance of order 8. As a result, the appropriate technique for analyzing
the motion is the « method of multiple scales » applied to the appropriate
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3TIME-INDEPENDENT BORN-OPPENHEIMER APPROXIMATION. - I

spatial variables. In fact, if one looks carefully at the original work of Born
and Oppenheimer [1 ], it is clear that they were well aware of the role
of spatial scaling, but did not have a clean formalism for dealing with more
than one scale in the same variable.

Despite the importance of the Born-Oppenheimer approximation
to chemistry, there has been very little rigorous mathematical work concer-
ning its validity until recently. During the last ten years or so, Seiler [9]
has worked out a simple exactly soluble Born-Oppenheimer type model
involving coupled harmonic oscillators, and Aventini, Combes, Duclos,
Grossman, and Seiler [2] ] [3] ] [4] have rigously proved the results of [1 ].
The only other related mathematical work on this subject (of which we
are aware) is the author’s own work on the time dependent Born-Oppenhei-
mer approximation [5 ] [6 ], and his brief summary of the present paper [7].
The papers [3] ] [4] ] of Combes, Duclos, and Seiler involve some very

clever techniques for analyzing the discrete spectrum of a molecular Hamil-
tonian. In particular, by using a Feshbach projection technique, they
have developed a method for computing rigorous upper and lower bounds
for the eigenvalues. As 8 B 0, the upper and lower bounds asymptotically
agree through fourth order, and the asymptotics of the lowest finitely
many eigenvalues can be computed. Unfortunately, the estimates are not
uniform, in the sense that as one looks at higher and higher eigenvalues,
the estimates become poorer. Thus, only the bottom of the spectrum is
completely described. The estimates do guarantee the presence of eigen-
values near certain higher energies, but do not preclude the possibility
that eigenvalues with other asymptotics might be present above the first
finitely many eigenvalues.
We regard the papers [3] ] [4] as being very deep, careful analyses of the

low-lying spectrum in a very singular perturbation problem. In addition,
the techniques are capable of handling the technical problems associated
with Coulomb potentials. The crucial arguments of [3] ] [4] employ some
clever non-linear techniques to establish the lower bounds. As a result,
some rather unusual ideas must be used, and it is not clear how to proceed
to higher order.

In contrast, we will restrict attention to nice potentials and use essen-
tially linear methods to produce high order « quasimodes. » That is, we will
produce solutions to the inequality

where N is arbitrarily large and CN is appropriately chosen. The existence
of such quasimodes quarantees that either E(E) is in the spectrum of the
self-adjoint operator H(e), or the norm of the resolvent is least Thus,
H(e) must have some spectrum in the interval 
This proves the presence of spectrum near certain energies, but does
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4 G. A. HAGEDORN

not preclude the possibility that there is also other spectrum present.
In addition, we have the same uniformity problem as [3] ] [4 ]. However,
by combining our results with other results, more detailed information
can be obtained. For example :

1. By combining our results with the HVZ Theorem [8 ], we can be sure
that certain quasimodes correspond to discrete eigenvalues : The HVZ
Theorem characterizes the bottom I: of the essential spectrum. Quasimode
estimates that guarantee spectrum below E, guarantee the presence of
discrete eigenvalues.

2. By combining our results with those of [3] ] [4 ], it is easy to see that
our high order quasimodes completely describe the asymptotics of the
lowest finitely many eigenvalues to arbitrarily high order.

To simplify the exposition of the paper, we will only discuss the case
of diatomic molecules. In the next section, we will precisely state our

results in that case. In section 3, we will give a formal computation of
the quasimodes by using the method of multiple scales. In the fourth
section we will rigorously justify all the steps of the formal computation.

Remark. 2014 We are not particularly fond of our proof, but have not been
able to improve upon it. We believe there ought to be a proof similar
to the one used in [10 ] to study semiclassical asymptotics. All of our attempts
in this direction have been stymied by the presence of infinite degeneracies
at low orders. Unless one goes to at least fourth order in the approxima-
tion, there are infinitely many orthogonal quasimode states with the
same energy. By exploiting the rotational symmetry of the problem, one
can approach the problem in a way which involves much more complicated
formulas, but in which the infinite degeneracy is broken at second order
instead of fourth order. Even using that approach, we do not know how
to produce the type of proof we would like.
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§ 2. NOTATION AND RESULTS

The purpose of this section is to present a precise statement of our
main theorem. For simplicity, we will restrict attention. to the case of
diatomic molecules.
We consider an N-body quantum mechanical system of particles whose

masses are M2e-4, and mj ( j = 2, 3, ... , N). We refer to such
a system a diatomic molecule. Particles 1 and 2 are called the nuclei ;
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5TIME-INDEPENDENT BORN-OPPENHEIMER APPROXIMATION. - I

particles 2, 3, ..., N are called the electrons. The Hamiltonian for a diato-
mic molecule is

on L 2(1R3N). We choose a Jacobi coordinate system [8] in which the first
three coordinates are the vector X, from the first nucleus to the second.
Then we remove the center of mass dependence [8 from H(e) to obtain

on L2(1R3N-3). The reduced masses are analytic in ~4 and approach
non-zero values ~~ as e tends to zero. We assume that M = 1 (rescale X
if necessary), and we define r to be the vector ((1’ ~ ..., ~-2)~ !~~.
We define the electron Hamiltonian h(X) to be the operator valued function

on L 2(~3N-6, dr). By using the direct integral decomposition

we define h to be the operator on 3dXdr) which is the direct integral
of the fiber operators h(X). In addition, we define an operator D(s) by the
relation

Note that D(f;) is a second order differential operator whose coefficients
are analytic in ;4. With this notation, we have

The term plays the uninteresting role of a regular perturbation
because it is relatively bounded with respect to h. The interesting mathe-

, 

e4
matics arises from the interplay of h and - - Ax, which involves a singular
perturbation problem. 2
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6 G. A. HAGEDORN

We will henceforth use the spherical coordinates (R, 9, ~p) to represent
the vector X. Because of the isotropic nature of the problem, the spectrum
of h(R, 9, ~p) is independent of () and ~p. We assume that h(R, (), ~p) has
an isolated non-degenerate eigenvalue E(R) for R in some open neigh-
borhood U of some value Ro &#x3E; 0. In addition, we assume that E(R) has
a local minimum at Ro with E"(Ro) strictly positive. In many examples of
interest, E(R) is the ground state energy (which is necessarily non-degenerate)
of h(R, (), and has a global minimum at some value Ro.

If the potentials Vij for our system are coo(~3), then under the above
assumptions, we can choose a real x S2) eigenfunction ~(R, (), ~p),
so that

h(R, (), (), ~p) = (), 

With this notation, we can now state our main result:

THEOREM 2.1. - Assume the situation described above, with the Vi~
smooth. Then given an arbitrary K, there exist quasimode energies

so that

for ~ = 0, 1, 2, ...,= 0, 1, 2, .... and ~ =-,-+ 1, ...,- U. The
numbers and En,l,m; 5 are always zero. = E(Ro) is
the electronic contribution to the energy, and = (n+ 1/2) [E"(Ro)]l~
is the harmonic approximation to the nuclear vibrational energy. The
formula for is given in the remarks below. The zeroth order term
in the quasimode is

where are constants, Hn is the degree Hermite polynomial,
is the (1, spherical harmonic function, and 03A6 is the electronic

eigenfunction corresponding to E(R).

Annales de l’Institut Henri Poincaré - Physique theorique



7TIME-INDEPENDENT BORN-OPPENHEIMER APPROXIMATION. - I

Remarks. 2014 1. There may be several different choices of E(R) and Ro,
depending on the details of the electronic hamiltonian h(R, (), ~p).

2. If lies below the essential spectrum of H(s) for all small ~,
then it asymptotically corresponds to an eigenvalue of H(e). It is concei-
vable that there might be eigenvalues with asymptotics other than the
various 

3. It t is reasonable to conjecture that the quasimodes of the theorem
whose energies lie in the essential spectrum of H(e) correspond to reso-
nances of the molecule.

4. If E(R) is chosen to be the ground state energy of h(R, (), and if E(R)
has a global minimum at Ro with E"(Ro) &#x3E; 0, then the asymptotics of
the lowest lying eigenvalues of H(e) are completely described by the cor-
responding i. e., there are no other low lying eigenvalue asympto-
tics. This is a result of [2] ] [3] ] [4 ].

5. The formula for depends on the electronic eigenfunction C,
but we can still give a fairly explicit formula for it. Explicitly,

where

is the dominant term in the angular momentum dependence of the mole-
cule’s energy ;

is the lowest order nontrivial coupling of the electronic and nuclear
motions (Do is the constant term in the power series in e4 for D(e)); and

is the lowest anharmonic correction to the nuclear vibrational energy.
6. The fourth order terms break the infinite degeneracy,

but through fourth order remains finitely degenerate. The 
have no m-dependence through fourth order, and so to that order, each
quasimode energy corresponds to 21 + 1 orthogonal quasimodes. Except
for degeneracies due to symmetry, we expect the degeneracy to be com-
pletely broken at sixth order.
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8 G. A. HAGEDORN

§ 3. FORMAL DERIVATION OF THE EXPANSION

In this section we give a formal derivation of the results that were stated
in Section 2. These formal computations are based on the « method of
multiple scales » applied to the variable R. This method is appropriate
because of the presence of effects which occur in the variable R on length
scales of order 1 and order e.
As described in the previous sections, we wish to study the small e asymp-

totics of the solutions to the equation

To simplify the radial Laplacian, we make a standard change of dependent
variable and concentrate on (), rp, r) = (), (~ r). Then, rather
than directly seeking (), rp, r), we will seek a solution (), rp, r)
to a higher dimensional problem. We will then recover

This is the technique of « multiple scales. » It is useful for our problem

because as e ~ 0, the variables x = R and - R - Ro behave in a moree
or less independent fashion. Moreover, semiclassical effects occur in the
variable y, and adiabatic effects occur in the variable x. Without the inde-

pendent treatments of these variables, the two types of effects become
intertwined and much more difficult to understand. The introduction
of the two variables x and y allows one to do a separation of variables
in the low orders of approximation. It also yields a clean formalism for
splitting high order correction terms into adiabatic and semiclassical

components. Without this clean splitting, the analysis is prohibitively
complicated.
To obtain the equation that is satisfied by Y? ~ ~ ~ we make a

formal change of variables from (R, (), ~p, r) to (x, y, (), ~p, r), with x = R

and y = We also make a careful choice of when to replace the
e

variable R by x or [Ro + and we introduce some operators T~ whose
purpose is to change x dependence into y dependence. These operators
simply do the bookkeeping associated with the fact that x and yare not
actually independent. Without the operators Tj, one cannot treat x and y
as though they were independent. The apparent independence is a conse-
quence of a proper choice of the T/s, and their choice provides a uniqueness
criterion in the expansion.

Annales de l’Institut Henri Poincaré - Physique theorique



9TIME-INDEPENDENT BORN-OPPENHEIMER APPROXIMATION. - I

The equation satisfied by ~rF(r, y, 8, ~p, r) is the following:

where L2 denotes the usual quantum mechanical angular momentum
operator. It is trivial to check that any solution y, (), ~ r) to equa-

tion ( 3. 2 ) gives rise to a solution ’1,(R, 0, (p, r) R 

to equation (3 .1), regardless of the choices of the T/s. Our particular choices
of the T/s will be specified later in this section. They will be chosen to be
certain operators on L2 (sin and the choices will be made in
order to make certain functions in the expansion independent of x. In
Section 4 we will prove that our procedure gives rise to certain approximate
solutions to equation (3.2), which in turn give rise to approximate solu-
tions to equation (3.1)..
To formally derive our approximate solutions to equation (3.2), we

begin by assuming the hypotheses of Theorem 2.1 and making the ansatz
that equation (3.2) possesses an approximate solution of the form

with

Here F(x) is a function with compact support that is identically 1 on an

open neighborhood of x = Ro, and has support inside the set where E(x)
is non-degenerate.

Remark. 2014 The reader who is not interested in a detailed proof of Theo-
rem 2.1 is encouraged to ignore the factor F(x) in this ansatz, and to think
of the open set U as all of [0, oo). The factor F(x) is necessary for the proof
that is given in Section 4. It provides some uniformity in the estimates
and causes the proper boundary condition to be satisfied at R = 0, but it
causes an extra complication in the formal computations. In particular,
certain terms which occur below contain derivatives of F. In Section 4,
these terms are proved to be basically irrelevant. Whenever we encounter
one of these terms in this section, we will make a comment, drop the term,
and refer the reader to Section 4 for the explanation of why the term can
be dropped.

Heuristically, these terms can be dropped because derivatives of F(R)
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10 G. A. HAGEDORN

are supported in a region of configuration space where the wave function
is exponentially small in e as e ~ 0.
We now need to determine the functions Since F(x) = 0 for x ~ U,

we can arbitrarily set y, (), = 0 for all x ~ U. To determine these
functions for x E U we substitute the expressions (3 . 3) into equation (3 . 2)
and expand all e dependence in its Taylor series in powers of e. Then we
multiply everything out and equate coefficients of like powers of e on the
two sides of the equation.
The zeroth order terms force us to take

Since this is to be true for all x E U, we are forced to take

and

where ho is (so far) arbitrary.
The first order terms force us to take

Since this is to hold for all y and x E U, we must have

where h 1 is (so far) arbitrary.
The second order terms require

To satisfy this equation, we recall that we have assumed E"(Ro) &#x3E; 0.
We let z = and take

and

where go and h2 are (so far) arbitrary, and Hn denotes the nth degree Hermite
polynomial.
As we commented earlier, we have the freedom to choose the operator T~

in order to impose uniqueness conditions on the We will arbitrarily
pick the first operator T4 so that go will have no dependence on the variable x.

Annales de Henri Poincaré - Physique theorique



11TIME-INDEPENDENT BORN-OPPENHEIMER APPROXIMATION. - I

(It is clear that we can impose such a condition on go . In our final answer,
(), ~p) is equivalent to go(Ro + ~ (), and we can expand this last

expression in its Taylor series in e. We can then put the constant term
in this series in and put all the other Taylor series terms in the higher
order We accomplish this by choosing T4 appropriately.) So, we
henceforth assume go to be a function of () and ~p only.
With this assumption we now approach the third order terms. There

is one third order term that contains a derivative of F. It makes no contri-
bution to the expansion at any finite order (see section 4), so we will ignor
it here. The remaining terms require

To satisfy this equation we introduce some new notation. We break as

where

but orthogonal to

and

With this notation, we can now satisfy equation (3.4) by looking at the
components in the various directions in the Hilbert space :
The components on the two sides of equation (3.4) that are x, (), and ~p

dependent multiples of (), ~ r) must be equal. From this
we obtain

and

where gl is (so far) arbitrary.
We assume Ts will be chosen so that gl will not depend on x. The argu-

ment for why this may be done is the same as the one that allowed us to
choose T4 so that go would be independent of x.
The components of equation (3.4) that are multiples of 0(~ (), ~ r),

but orthogonal to must be equal on the two sides of the equation.
So, 

, _ ,
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12 G. A. HAGEDORN

where [Hose - ~2 ]r ~ 1 denotes the inverse of the restriction of

to the subspace of orthogonal to We note that

belongs to this subspace because of symmetries.
The components that are orthogonal to C(x, (), ~p, r) in L2(dr) must also

be equal on the two sides of equation (3 . 4). So we have

where [h(~ (), (~) - E(x)]~ ~ denotes the inverse of the restriction of

[~ (), (~) - E(x)] to the subspace of orthogonal to C(~ (), (~, r).
~D

Note that since 03A6(x, (), 03C6, r) is a unit vector in L2(dr), - (x, (), 03C6, r) is ortho-
ex

gonal to C(x, (), (~ r) in 
We now concentrate on the fourth order terms in equation (3.2). They

require

We again ignor terms involving derivatives of F because they will be shown in
Section 4 to not contribute at finite order. The components of equation (3 . 5)
that are x, () and ~p dependent multiples of (), ~ r) force us
to have
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