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ABSTRACT. 2014 We construct the Foldy-Wouthuysen transformation

operator for wave equations describing two interacting particle systems,
and possessing Poincaré invariance and manifest covariance. We consider

systems composed of one spin2014 fermion and one spin-0 boson, and also
of one s p in-1 2 fermion and one s p in-1 2 antifermion. We first c on s tr u ct

the above operator in the free case. Then, we show that for several classes
of interaction potential it can also be constructed in a compact form.
As compared to the one-particle case, manifest covariance facilitates here
the construction of the Foldy-Wouthuyscn transformation operator,
although the number of particles is larger.

RESUME. 2014 On construit Fopcrateur de la transformation de Foldy-
Wouthuysen pour des equations d’onde decrivant des systèmes de deux par-
ticules en interaction, et possédant 1’invariance de Poincaré et la covariance

manifeste. On considere des s y stemes com p oses d’un fermion de spin -
et d’un boson de s p in 0, et aussi d’un fermion de spin - et d’un antifermion
de spin . On construit d’abord cet opérateur dans Ie cas libre. Puis onp ? . e opérat eur da s le ca hbre. u s o

montre que pour plusieurs classes de potentiels d’interaction, il peut aussi
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40 H. SAZDJIAN

être construit sous une forme compacte. En comparaison avec Ie cas d’une
particule, la covariance manifeste facilite ici la construction de Foperatcur
de la transformation de Foldy-Wouthuysen, bien que Ie nombre des parti-
cules soit plus grand.

1. INTRODUCTION

The Foldy-Wouthuysen (FW) transformation [7] ] [2] ] [3] ] of the Dirac
equation provides several decisive advantages for the understanding and
interpretation of the physical properties of this equation. It permits the
search for the solutions of the Dirac equation by means of two- component
spinors. But its main achievement consists in classifying these solutions
in two different subspaces, each of them corresponding to a definite sign
of the energy eigenvalues.
This feature leads in turn to other positive consequences. First, one is

led in a natural way to identify the physical Hilbert space of the theory
with the subspace of (normalizable) solutions having positive energies.
Second, it is in the Foldy-Wouthuysen representation that a consistent
definition of observables emerges. For instance, the usual operators of

position, spin and orbital angular momentum must be defined in the Foldy-
Wouthuysen representation. The reason for this is that operators defined
in this representation leave invariant the subspaces of solutions having a
definite energy sign. Thus, in particular, they leave invariant the physical
Hilbert space and can be considered, if they are hermitian, as observables.
In the Dirac representation, the expressions of observables are more
complicated and without the Foldy-Wouthuysen transformation one

probably would have difficulties to find them.
The Foldy-Wouthuysen transformation can also be used for the Klein-

Gordon equation, with a two-component formalism [4] ] [5 ].
In the presence of interaction, the FW transformation has not, in general,

a compact form and one usually uses series expansion methods, either in 1/c2
or in the coupling constant, to find its expression in an approximate way.
However, there are classes of interaction, represented for instance by the
static magnetic potentials, for which the FW transformation still has a

compact form [6 ].
The purpose of the present paper is to construct the FW transformation

operator in the case of two-particle relativistic quantum mechanics involving

spin-- particles. In recent years, the use of the manifestly covariant for-
Annales de l’Institut Henri Poincaré - Physique theorique



41THE FOLDY-WOUTHUYSEN TRANSFORMATION IN THE TWO-PARTICLE CASE

malism with constraints led to a consistent formulation and construction
of two-particle relativistic quantum mechanics [7] [8] ] [9]. Therefore,

in problems where spin-1 2 particles are present, the FW transformation
may again be in order.

Although two-particle problems are in general more complicated than
one-particle problems, the former display, however, a particular advantage
with the fact that two-particle relativistic quantum mechanics, with no
external potentials, is Poincare invariant. This has the consequence that
wave equations, as well as many transformation operators, can be construc-
ted in a manifestly covariant form. Contrary to the one-particle case, where
manifest covariance is broken, we shall see that the FW transformation
operator in the two-particle case has a manifestly covariant expression
(This is also the reason why we shall not consider the FW transformation
for spin-0 particles, in which case manifest covariance is again broken.)
The plan of the paper is as follows. In Section 2 we present a brief review

of two-particle relativistic quantum mechanics, mainly concerning the
expressions of the wave equations and the scalar product of states.

Section 3 is devoted to a discussion of the realization problem of the
unitarity property of the FW transformation. This question is not usually
paid sufficient attention in one-particle quantum mechanics. The FW
transformation does not, in a rigorous sense, define an operator in a given
Hilbert space ~f, for it does not transform the states of Jf into one another.
Rather, it transforms the Hilbert space ~f into another Hilbert space ~f,
by establishing a one-to-one connection between the states ~ of ~f and the
states / of J~. For this reason, the unitarity property of this transformation
is to be established in a more precise way than usually. To this end, it is
sufficient to demand that the scalar product in H is left invariant when
passing to that is, (03C8, 03C6) = (, ). However, the definition of the
scalar product in ~f is a matter of convention. Provided the transformation
operator from ~f to ~f is nonsingular, then it is always possible to define
a scalar product in ~f in such a way that the above property, and hence
the unitarity of the transformation, be ensured. In the on-particle case,
the kernel of the scalar product in the Dirac representation (i. e., in jf)
is simply 1; in the FW representation (i. e., in ~P) one can also choose it
to be 1; then the unitarity property of the transformation is verified for-
mally in either of the scalar products and the above subtleties do not occur.
The problem would certainly be more complicated and less clear if the
kernel of the scalar product in jf was some nontrivial operator K. It is
precisely this kind of situation which is met in the two-particle case, and
for this reason, this question is analyzed in some detail in Section 3.

, 

In Section 4, we construct the FW transformation operator in the free
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case, for systems composed of one fermion and one boson, and one fermion
and one antifermion, respectively (The treatment of two fermion systems
follows similar lines as those of fermion-antifermion systems and will
not be dealt with in this article.)

In Section 5, we construct the FW transformations for the above systems,
in the presence of special classes of interaction, in compact form. The
construction of the FW transformation for arbitrary types of interaction,
necessitates, as usual, the use of a series expansion method.

Conclusion follows in Section 6.

2. TWO-PARTICLE RELATIVISTIC

QUANTUM MECHANICS

In the manifestly covariant formalism, the two-particle wave function
satisfies two independent wave equations [9 ].
For a system of two spin-0 particles these equations read

where V is a manifestly covariant Poincaré invariant interaction potential.
For a system composed of one spin-1 2(particle 1) and one spin-0 (particle 2)

particles, the wave equations are

Here T is a four-component spinor function :

and the potential V may also depend on the Dirac matrices.
For a system composed of one fermion (particle 1) and one antifermion

(particle 2) of spin-!, the wave equations are

where T is a spinor function of rank two :

Annales de Henri Poincare - Physique theorique
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and the Dirac matrices y and ~ are defined as those acting on the spinor
indices of particles 1 and 2, respectively : ,

We also define

Here, the potential V may also depend on the matrices y and yy.
Because the wave function ’P satisfies two independent equations, the

latter must be compatible among themselves. The compatibility condition is

When applied to the above wave equations, this equation yeilds an equa-
tion for V which is

The potential V must be a solution of this equation. By introducing the
notations

equation (2.9) means that V depends on x through its transverse compo-
nents xT alone :

where the dots stand for the momenta and eventually for the Dirac matrice
(We also recall that V must be a Poincare invariant function of its arguments.)

Equations (2.1), (2. 2) and (2.4) lead also to the following equation for B}I
(which is a consequence of them)

This equation determines the evolution law of 03A8 with respect to the
covariant relative time variable xL. For eigenfunctions of the total momen-
tum p, the solution of Eq. (2.12) is

Vol. 47, n° 1-1987.
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where now represents the internal wave function and since it depends
on xT alone, the internal dynamics (or the eigenvalue equation) will be three-
dimensional, besides the spin degrees of freedom.
We notice that, because of the structure of the potential V [Eq. (2 .11) ],

the wave equation operators Hi and H2 commute with the longitudinal
components and of p1 and p2. Therefore the wave equations
may be considered as yielding eigenvalues for and ~’/?2’ It turns out
that they rather yield eigenvalues for and ( p ~ p2)2, which are also
related by Eq. (2.12). We admit that the physically acceptable potentials
are those which yield positive eigenvalues for and (~’~2)~. Then
both and have two real eigenvalues with opposite signs. Thus
the space of normalizable solutions of the wave equations splits into four
subspaces according to the signs of the eigenvalues of and 

The physical Hilbert space is identified with that subspace where both 
and have a positive sign. In this case the expressions of the latter are,
in terms of p2 and the masses,

This also ensures the positivity 
This definition of the physical Hilbert space is a direct generalization

of a similar definition in one-particle relativistic quantum mechanics,
where the physical Hilbert space is identified with the positive energy
solutions [5 ].

In order to construct the scalar product of the theory one searches for
a tensor current of rank satisfying two independent conservation
laws :

The current j 03BD must be a bilinear function of two wave functions ’P and C,
say, with eigenvalues p’ and p, respectively, and must have a kernel which
is translation invariant and covariant. Thus it should have the structure

where the stars on both sides of K indicate that the latter may represent
an integral operator. The kernel is translation invariant and a Lorentz

tensor of rank two.
The scalar product is then constructed according to the formula

where " the surfaces Ei and 0 I:2 are " three-dimensional and spacelike.

Annales de l’lnstitut Henri Poincare - Physique ’ theorique ’
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The conservation laws (2 .15), the structure (2 .16) of j 03BD and formula (2 .17)
then guarantee the hermiticity property of the Poincare group generators
and the unitary realization of the group.
The expressions of the currents j 03BD, satisfying the conservation laws (2 .15)

and having a structure of the form (2.16), have been presented in Ref. [10 ].
The scalar products and norms were calculated on parallel constant hyper-
planes 03A31 and 03A32, perpendicular to a timelike vector n :

For two spin-0 particle systems, the scalar product is

where the limit e = 0 is understood and the potential V is assumed to be

superficially hermitian, that is, hermitian in the usual L2 norm, when p~,
are replaced by real eigenvalues (In the expressions (2.19) the transverse
variables xT in V are calculated with respect to p’ and p - res-

pectively.)
The expression of the norm is

where the labels a, b distinguish different eigenfunctions with the same
mass squared p2. The normalization factor fa has a field theoretic origin
and reflects the fact that one uses here the normalization condition of

physical states p &#x3E;. It is determined by means of the relationship of
two-particle relativistic quantuum mechanics with the Bethe-Salpeter
equation [77] and has the expression .

where ( VT2 &#x3E; represents the mean value of vT2, calculated in the L2 norm
in the C. M. frame (vT is defined in (2.10).)

Vol. 47, n° 1-1987.
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The expressions of the scalar product (2.19) and of the norm (2.20)
simplify in the C. M. frame, where the operators i~10 and i~20 become iden-
tical to the longitudinal components and j5’/~ respectively, which
have well-defined eigenvalues, (2.14).

Furthermore, in the C. M. frame, the vector xT has the components (0, x)
and is independent of p2. Therefore the only p2-dependence of V comes
through its explicit dependence on p2 (for instance, through coupling
constants). If V is explicitly independent of p2, then in the C. M. frame
3V

~ p 2 
= 0 and the kernel of the norm reduces to the product 

which is positive, because, in the physical Hilbert space, and are

se p aratel y p ositive. Hence, the norm is p ositive. If ~V ~p2 ~ 0 in the C. M.p
frame, then the norm is no longer manifestly positive. However, one can
still show [1 D ], with arguments based on the properties of the domain
of positivity of p2, that it is actually positive for the physical states, charac-
terized by the eigenvalues &#x3E; 0, &#x3E; 0.
For a fermion-boson system, the expressions of the scalar product and

of the norm are the following :

where ~I’ = and V is again assumed to be superficially hermitian
= V in the usual L2 norm, when p  are replaced by real eigenvalues);

fa has the same expression as in Eq. (2.21). The comments made about
the positivity of the norm in the two-boson case remain also valid here.

Annales de l’Institut Henri Poincaré - Physique theorique
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For fermion-antifermion systems, the expressions of the scalar product
and of the norm are :

where B}I = and V is assumed to be superficially hermitian
= V in the usual L2 norm, when are replaced by real

eigenvalues) ; fa has the same expression as in (2 . 21 ).
If V is independent of p2 in the C. M. frame, the scalar product and the

norm do not reduce here to their « free » expressions, as in the two pre-
ceding cases, because of the presence of the term VyooV- However if V
satisfies the inequality

one can apply the transformations

on the wave functions and bring the scalar product and the norm to their
free expressions in the C. M. frame [9 ]. Then, the norm becomes mani-

festly positive. If a aV 2 ~ 0 in the C. M. frame, the norm still remams positivep
for physical states, although its manifest positivity is lost.

Vol. 47, n° 1-1987.
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3. ON THE UNITARITY PROPERTY
OF THE FW TRANSFORMATION

In order to discuss the unitarity property of the FW transformation
in the two-particle case, we shall first consider the general case of a trans-
formation in one-particle quantum mechanics, which illustrates this

question in some detail.
Let us assume that we dispose, in one-particle quantum mechanics, of

a wave equation satisfied by wave functions belonging to a Hilbert
space ~f:

(H is not the Hamiltonian).
The scalar product for the corresponding wave functions is assumed

to be defined by means of a kernel K in the three-dimensional space :

where K may also act as an integral operator. tf + is the adjoint of tf, i. e.,
the complex conjugate of 03C8 in the spin-0 case and the adjoint spinor in

1
the spin-2 case.

Let us now assume that there exists a nonsingular transformation ope-
rator S which modifies the wave equation operator H (3.1), as well as
the wave functions ~:

In this case, the Hilbert space ~f is transformed into another Hilbert

space ~f.
Strictly speaking, the transformation S does not define an operator in

the usual sense, for, it does not transform the states of the Hilbert space ~f
into one another. Instead, it establishes a one-to-one connection between
two different Hilbert spaces. For this reason the study of the unitarity
property of the above transformation demands some care.
We admit that the transformation S is unitary if it preserves the scalar

product of the Hilbert space Jf. In this case, we must have

However, the scalar product in is not defined a priori. We can use
Eq. (3.4) for the definition of the scalar product (~, ~); then the transfor-
mation S will automatically be unitary.

Annales de l’Institut Henri Poincaré - Physique théorique
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Equations (3 . 2), (3 . 3 b) and (3.4) imply that the scalar product in ~f
must be defined as

where S + is the hermitic conjugate of the operator S, calculated in the
usual L2 norm (with kernel 1). This shows that the kernel of the scalar
product in .~ is now

Once the scalar product in ~ is defined by Eq. (3 . 5), the transformation S
will have a unitary realization. We emphasize here the fact in the above
considerations, it is the nonsingular nature of the operator S which is
crucial. We could multiply S by arbitrary constants and still have a unitary
realization for it by means of a corresponding modification of the right-
hand side of Eq. (3.5).

It can also be seen that the definition (3.4) of the unitarity of S preserves
the hermiticity property of the operators in their transformation. Let A
be a hermitian operator in ~f. Then, it satisfies the equation

where again Ã + is the hermitic conjugate of Ã in the usual L 2 norm (with
kernel 1). The transform of Ã in ~f is

Then Eq. (3 . 8), together with (3 . 3 b) yields

which shows that A is hermitian in ~f.

Coming now back to the particular case of the FW transformation in
one-particle quantum mechanics, we notice that the kernel K here is simply
equal to unity; this feature simplifies the preceding formulas. It is customary
to choose the arbitrary multiplicative factor in S in such a way that the
kernel K (3 . 6), is also to unity, that is, now, S is unitary in the ordinary L2
norm.

The problem is more complicated in the two-particle case. The expres-
sions of the scalar products (2.19)-(2.25) show that their kernels are
not equal to unity and therefore the general analysis of this section must
be applied. What is actually important, is the nonsingular nature of the FW
transformation. Its unitarity is realized by an appropriate transformation
of the kernel of the scalar product of the initial Hilbert space J~.

Vol. 47, n° 1-1987.
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Let and Cp be two eigenfunctions of the total momentum operator 
with eigenvalues /?~ and p,~ respectively. We write the scalar products
(2.19)-(2.25) in the condensed form

We assume that the FW transformation S in the two-particle case
has been constructed, as a nonsingular operator, up to an arbitrary multi-
plicative constant :

The notation S’ indicates that the eigenvalue of the operator in S has been

replaced by p’  instead 
Then the unitarity of S will be ensured by the equality of the scalar pro-

ducts in ~f and Jf:

which shows that the expression of the scalar product in ~f must be

where the kernel is now

In order to fix the arbitrary multiplicative constant in S we make the
following convention. We noticed in Section 2, that when the potential V
is explicitly independent of p2 (that is, independent of p2 in the C. M. frame),
then the kernels of the various scalar products reduce in the C. M. frame
to their « free » expressions (In the fermion-antifermion case, one must
also make the transformation (2.27).) We shall fix the arbitrary multi-
plicative constant in S in such a way that when V is explicitly independent
of p2, then S becomes unitary in the C. M. frame in the « free » expressions
of the scalar products in Jf. In other words, the kernel K (3.14), takes
also in this case its « free » expression.

4. THE FW TRANSFORMATION IN THE FREE CASE

We consider in this section the case of two free particle systems, the
wave function of which is an eigenfunction of the total momentum f~
with eigenvalue p . We shall concentrate, for the sake of manifest covariance,

Annales de l’Institut Henri Poincare - Physique theorique
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on systems containing at least one fermion. It is worthwhile to recall that
in the two-particle case, the role of the energy eigenvalue of the one-particle
case is played by the two Lorentz invariant eigenvalues of the longitudinal
component operators and (2.14).
We first consider the fermion-boson system. Eqs. (2.2) become

where q is a four component spinor function (2.3).
We define the FW transformation as the transformation which brings

the four-component spinor ’P into a two-component spinor qí, the latter
being defined as an eigenfunction of the matrix y ~ p. This transformation
will mainly concern here the fermionic part of the system (particle 1 ),
that is, Eq. (4.1 a). The transformation S 1 == S is then defined by the equa-
tions

Since the wave equation (4 . 4) commutes with y’ p, then qJ can be classified
according to the eigenvalues of the matrix and will have two non-zero
components only :

It is at the same time a solution of the equation

and of Eq. (4.1 b), which is not affected by the operator S.
For positive eigenvalues will have, through Eq. (4 . 4), posi-

tive eigenvalues, given by (2.14).
The expression of the operator S (4.2)-(4.3), is

where the quantities a 1 and A 1 have the expressions :
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