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Foundations of quantum mechanics versus
the electric Aharanov-Bohm effect

E. COMAY

Raymond and Beverly Sackler Faculty of Exact Sciences,
School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel

Ann. Inst. Henri Poincaré,

VoL 48, n° 3, 1988, Physique ’ théorique ’

ABSTRACT. 2014 The significance of the complete wave function of a
closed quantum mechanical system of many particles is discussed. Using
basic properties of quantum mechanics, it is proved that the electric Aha-
ronov-Bohm effect does not exist.

RESUME. - La signification d’une fonction d’onde complete d’un sys-
teme ferme de plusieurs particules est discutee. Employant les proprietes
de base de la mecanique quantique il est demontre que Feffet électrique
Aharonov-Bohm n’existe pas.

- I INTRODUCTION

Unlike many other quantum mechanical predictions, the Aharonov-
Bohm (AB) effects [7] ] [2 ] were considered a controversial issue for a very
long time [3 ]. The effects are derived from the solution of the quantum
mechanical equation of motion of an electron in a nonsimply connected
field-free region [7] ] [2 ]. Recently, it has been shown that the original deri-
vation of the electric AB effects [7] ] [2] is based upon assumptions that
violate energy conservation [4 ]. This new aspect of the problem calls for
an investigation of the effect itself.

Classical equations of motion depend upon fields whereas the standard
formulation of quantum mechanics is written in terms of potentials. Hence,
relying upon the field-free requirement, the presently accepted inter-

pretation of the AB effects claims that these effects have no classical ana-
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254 E. COMAY

logue [7] ] [2 ]. This is probably the underlying reason that led some people
to deny the effects [5 ]- [7 ], to seek nonzero fields involved [8] or to look
for conditions where they are eliminated [9 ].
There are two kinds of AB effects [7] ] [2 ]. The electric one discusses an

electronic wave packet which is split into two coherent sub-packets, each
of which moves in a field-free region at which the electric potential takes
different values. At a later time the sub-packets are united and make an
interference pattern. In the second kind of the AB effects, an electronic
beam is split coherently into two parts, each of which moves at either side
of an infinitely long and thin magnet (or at the inner and at the outer sides
of a toroidal magnet) before being united on the interference screen.

This work discusses only the electric type of the AB effect. Unfortunately,
this version of the AB effect has not been tested experimentally [4] ] [7 ].
However, it is shown in this work that basic properties of quantum mecha-
nics predict the nonexistence of the electric AB effect. The magnetic AB
effect, as well as a discussion of general physical implications of the two
kinds of the AB effects, are beyond the scope of the present paper.
The cornerstone of this work is the significance of the complete wave

function of a quantum mechanical system of more than one particle. The
second section of this work discusses an atomic system from this point
of view. Quantum mechanical properties associated with the Einstein-
Podolski-Rosen (EPR) paradox [70] ] are discussed in the third section.
The fourth section is devoted to the calculation of the interference pattern
of the electric AB effect. The last section contains some concluding remarks.

II WAVE FUNCTION OF AN ATOMIC SYSTEM
OF MORE THAN ONE ELECTRON

It is well known that the quantum mechanical description of an atomic
system uses a wave function q which depends upon the coordinates of all
particles of the system. The significance of this property is crucial for the
main discussion of this work and the whole section is devoted to its pre-
sentation.
Atomic physics is a field where quantum mechanics has proved itself

as a very successful theory. The following description of a solution of an
atomic problem is presented and points of importance for the rest of this
work are discussed. A detailed discussion of the subject can be found in
textbooks [11 ].
The atomic wave function of n electrons is written as a linear combination

of elements of a basis of a Hilbert space
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255FOUNDATIONS OF QUANTUM MECHANICS VERSUS

where denotes a single particle wave function which belongs to an
orthonormal set, ar denotes a (yet undetermined) coefficient and A denotes
an antisymmetrization operator which guarantees the admissibility of ’P
as a wave function of identical fermions. The symbol I denotes a multiple
index I = (i 1, i2, ... , in). (For the purpose of this work it is not required
that the particles are identical.)
The solution of the problem is an eigenfunction of the Hamiltonian H

This Hamiltonian can be written as follows

where H 1 is a sum of single particle operators and H2 is a sum of two particle
operators. Due to practical reasons, the expansion ( 1 ) is truncated and the
solution is sought in a finite dimensional space. Substituting the truncated
form of (1) into (2), one reduces the problem to the eigenvalue problem of
the Hamiltonian matrix.
The first step is the calculation of the matrix elements of the Hamilto-

nian, each of which is a sum of matrix elements of one or two particles
operators. A single-particle operator takes the following form

where fj operates on the coordinates of the j’th electron. Hence, the required
matrix element of H 1 is a sum of quantities of the following form

Consider two cases of (5). In the first case i 1 = ~ ..., ~ while the
second one is the same except that in~i’n and n ~ j. Using the orthonor-
mality of the 03C8k, one finds that in the first case the integration on the coor-
dinates of all ri except rj yields unity and (5) reduces to the form

On the other hand, in the second case the integration on the coordinates
of the n’th particle vanishes. Indeed

which vanishes for in ~ i’n. It follows that the matrix element (5) vanishes
in the second case. A related general law says that a matrix element of a
single particle operator vanishes between two states which differ in more
than one individual set of quantum numbers [12 ]. An analogous law holds
for two-particles operators.

This example shows that matrix elements of a single-particle operator
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depend not only on the coordinates of the particular particle upon which
it operates but also on the coordinates of the other particles of the system
as well.

This result (henceforth called the completeness property) is the charac-
teristic feature required for the following discussion. Therefore, no further
analysis of atomic wave functions is carried out here. It is appropriate
to mention that the completeness property is a part of a theory that achieves
an amazing accuracy when compared with atomic data [13 ]. Physics is
a natural science and, besides logical selfconsistency, it should fit to expe-
riment. Hence, it can be concluded that the completeness property, which
passes these tests, is a part of what can be stated as a good description of
Nature.

III . WAVE FUNCTION _

OF TWO PARTICLES SEPARATED IN SPACE

The completeness property was shown to hold for an atomic system where
the single particle wave functions of all the electrons are nonzero at the
same atomic volume. Nevertheless, it is shown in this section that this result .

is valid for a wave function of two electrons even when they are very far
apart. This property is proved experimentally in a test of the EPR

paradox [10 ]. The following is a description of a Gedanken experiment
realizing Bohm’s version of this subject [14 ]. (This part of Bohm’s work
is irrelevant to the AB effect.)

Consider a pair of isoenergetic electrons that move along the Z-axis
in opposite directions and undergo a collision after which they are scattered
at a right angle along the x-axis. After traveling a certain distance, each of
the electrons enters a Stern-Gerlach analyzer (see fig. 1). Let us write a
quantum mechanical expression for this process.

FIG. 1. - Two isoenergetic electronic beams move along the z-axis in opposite directions.
Two electrons interact at the origin 0 and are scattered at right angles along the
x-axis. Each of the electrons enters a Stern-Gerlach analyzer, Ai and A 2, respectively.
The analyzers are located at r = (+ xo, 0, 0), respectively.
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257FOUNDATIONS OF QUANTUM MECHANICS VERSUS

The z-component of the linear momentum of each of the incoming elec-
trons is the sole nonvanishing component of their linear momentum.
Hence, the z-component of the overall orbital angular momentum L
vanishes. Assume that spin-orbit interaction can be ignored. It follows that
the eigenvalue ML = 0 is a constant of the motion. Hence, the angular-
spin part of the wave function can be written as follows

where PL (cos 0) are the Legendre polynomials and XL denotes the overall
spin part of the L’th term of this expansion.
The scattered particles are emitted at a right angle. Therefore, for an

odd L the factor PJO) vanishes. It follows that, in (8), the summation runs
on even values of L and the angular part of the wave function is symmetric.
Using Fermi-Dirac statistics, one finds that XL must be antisymmetric.
Therefore, the overall spin part of the wave function of the scattered elec-
trons is

where denotes that the z-component of the spin of the i’th electron is
± 1/2, respectively. This discussion shows that the scattered electrons have
a well defined overall spin : S = Ms = 0.
The scattered electrons move freely until each of them enters the res-

pective analyzer. Each analyzer measures the sz component of one of the
electrons and msi, which is the m quantum number of the i’th spin, becomes
a good quantum number. Therefore, after the electrons emerge from the
analyzers, the overall spin, S, is not a good quantum number and the wave
function (9) is projected onto either of the following wave functions

It follows that quantum mechanics predicts that after the analysis is carried
out for the two space-like separated events, one finds the following corre-
lation

This discussion shows that results of spin measurements depend upon the
overall spin wave function xa or ~b of ( 10) and ( 11 ). The wave function (9)

shows that each electron has an equal probability to yield msi = 2 or ~ = 2014 .
If this result depends just upon the spin part of the single particle wave
function then there will be no correlation between the measurements of
the two z-components of the spins and the quantity (12) should vanish.
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Experiments related to the one described above have been carried out
and prove the above property of quantum mechaniscs [7~]. Other impli-
cations of experiments of this kind are discussed in the literature [16 ].
Considering the subject of this work, the significance of the experiment
described in this section is that it shows that the completeness property
of quantum mechanics holds even if the constituents are not located at
the same spatial volume.

IV . THE ELECTRIC AHARONOV-BOHM EFFECT

The foregoing considerations provide a good basis for the analysis of
the electric AB effect. Consider an electronic wave packet which is split
into two coherent sub-packets [7] ] (see fig. 2). Each sub-packet enters a
very long hollow cylinder whose electric potential vanishes at the entrance
time. When the sub-packets are well inside the cylinders, the electric poten-
tial of one of them changes in time and vanishes again while the sub-packets
are still far from the cylindrical end points. The sub-packets emerge from
the cylinders and interfere on a screen. This interference pattern is compared
with the one obtained from a null experiment where the potentials of the
two cylinders vanish identically.
The following realization of this effect is discussed in this section. One

of the cylinders is removed. The other cylinder consists of two cylindrical
layers made of insulating materials. The outer layer is rigid and is covered
uniformly with negative charges. The same amount of positive charges

FIG. 2. - An isonergetic electronic beam moves from left to right. The beam is chopped
at A into rather short packets, each of which is split coherently at B into two sub-

packets. Each subpacket moves inside a long hollow cylinder. After emerging from
the cylinders, the subpackets interfere on the screen S.
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259FOUNDATIONS OF QUANTUM MECHANICS VERSUS

covers uniformly the inner flexible layer. When the electronic sub-packet
approaches the cylinder, the distance between its two layers is infinitesimal
and the electric potential at its inner part, as well as at its outer one, vanishes.
Later, when the electronic sub-packet is deep inside the cylinder, a special
device releases a fixed amount of mechanical energy. This mechanical

energy pushes adiabatically the inner flexible layer along the radial direction
in a way that conserves its cylindrical shape (see fig. 3). After a while the
flexible layer expands adiabatically back to its original size and the potential
vanishes again before the sub-packet approaches the other end of the cylin-
der. The term « moving electron » denotes the electron whose interference
pattern is discussed in this section.

FiG. 3. - A cross section of the cylinder whose potential at its inner part varies in time. The .

outer layer contains motionless negative charges. The inner layer contains positive charges
which, at the instant depicted, move towards the cylindrical axis. The small circle at
the center denotes the inner subpacket of the moving electron while traveling along
the cylindrical axis.

Outside the cylinder the electric potential vanishes identically. Here,
like in the original presentation of the electric AB effect [1] ] [2 ], edge phe-
nomena are ignored. This approximation relies upon the fact that the
cylinder is very long and that the moving electron is far from the cylindrical
ends when the distance between the two layers is nonzero. At the cylinder’s
inner part the potential does not vanish during a part of the time. At this
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time the electric field is nonzero only between the two layers and near the
edges. Hence, the two electronic sub-packets move in a nonsimply connected
field-free region. The interference pattern depends upon the relative phases
of the two parts of the wave function. These phases are calculated below.
It is assumed that the velocities of the charges are small and that the non-
relativistic limit holds.
The single particle wave function of the moving electron is written as a

sum of two quantities

where the subscripts I and 0 denote the inner and the outer sub-packets,
respectively. Let 03C6 denote the wave function of the rest of the system. The
overall wave function is tentatively written in the following form

The significance of the distinction between 4&#x3E;1 and 4&#x3E;0 will be discussed
later. Its origin pertains to the different responses of the cylindrical charges
to the positions of the moving electron associated with .pI and respec-
tively. Like in the original derivation of the electric AB effect [7] ] [2 ], it is
assumed here that the cylindrical parts of the wave function and 

vary adiabatically and that, at the interference time T, = 4&#x3E;o(T) [2 ].
Notice also that the form of (14) is analogous to that of (8). Indeed,

using (9), one can write (8) as follows

Both (8’) and ( 14) are written as a sum of two parts, each of which consists
of a multiplication of factors depending on appropriate coordinates. Intro-
ducing the radial coordinate and the center of mass ones, (8’) can be written
explicitly in terms of the coordinates of the two electrons. Evidently, the
spatial location of the first electron in (8’) is macroscopically far from that
of the second one. Considering (14), one finds that the same is true for the
moving electron with respect to the cylindrical charges. Thus, the analogy
between (8’) and ( 14) is established.

Henceforth, r and - e denote the coordinates of the moving electron and
its charge, respectively. ri and ei denote the coordinates of the i’th particle
at the cylinder and its charge, respectively. The index i runs on n charges.
For simplicity, it is assumed that the charged particles at the cylinder are
not electrons. Therefore, no antisymmetrization is required for 1/1. This
assumption simplifies notation and does not affect the results of this section.
The Hamiltonian is written as follows
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where Hc denotes the part of the Hamiltonian that operates only on the cylin-
drical constituents, He denotes the part that represents the kinetic energy
of the moving electron and V denotes the interaction between the moving
electron and the charges at the cylinder.
The interference patterns of two experiments are compared. In the first

experiment the electric potential associated with the cylindrical charges
vanishes identically while in the second one the inner cylindrical layer moves
as described above. Omitting V from (15), one finds for the first experiment

The substitution of ( 14) into ( 16) yields

The quantity relevant to the interference pattern is the phase difference
between and In the first experiment, the static charges at the
cylindrical layers do not gain energy. Therefore, in this case, the eigenvalue
of equals that of every instant. (As a matter of fact, in the
first experiment ~I(t) _ for all values of the time t and the distinction
between these functions is redundant.) It follows that the contribution of
the first term of (17) to the phase difference cancels that of the second one.
The resultant phase difference is

The expression on the first right hand side of (18) is obtained from the
Schrodinger equation. In the second expression, the integration is written
separately for the various terms. The last expression is obtained after eli-
minating the first two terms of the preceding expression. Cross terms which
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contain in the integrand are omitted because at least one of these
single particle wave functions of the moving electron vanishes at every
volume element.
The Schrodinger equation for the second experiment is

B

As stated above, the moving electron travels in a field-free region and
is macroscopically far from the rest of the charges. In this case the classical
limit holds. Ehrenfest’s theorem shows that the kinetic energy of the moving
electron changes due to the external Lorentz force. This force vanishes in
the field-free region where the moving electron travels. It follows that the
third and the fourth terms of ( 19) make the same contribution to the phase
difference as the corresponding terms of (17).
The potential V at the location of the moving electron takes the following

form

where 4&#x3E; denotes either 4&#x3E;1 or 4&#x3E;0 and the summation runs on the n particles
of the cylindrical layers. Evidently, . classical electrodynamic considerations
prove that the contribution of this quantity to the phase shift is

where the second term of the first line vanishes since V(r) = 0 where 
is nonzero.

Up to this point, the calculations agree with the corresponding ones
carried out in section III of reference 2. Let us turn to the first and the
second terms of ( 19). The charges at the cylinder move in a finite external
field. Their energy changes due to the field of the moving electron. The
change of the energy of these charges can be calculated, like that of the
moving electron, from Ehrenfest’s theorem. Using again simple classical
calculations, one finds that the electric field associated with t/1 0 makes no
contribution to the overall self energy of the cylindrical layers. On the
other hand, the field associated with 03C8I does make a change of the self
energy of the charges at the cylinder. _
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The law of energy conservation, which holds in classical electrodynamics,
can be used in this case. It shows that the change of the self energy of the
charges at the cylinder balances the work done on these charges by the
external field. In the case discussed here, the sole external field is the one
associated with the moving electron. The corresponding potential at the
location of the i’th charge is

The difference between the self energy of cPI and that of ~o is

Multiplying this quantity by - 1/h and integrating on the time, one obtains
the contribution of Hc to the phase shift. It is evident thas this quantity
and (21 ) cancel each other.

It is interesting to compare the different origins of (21) and (23). In (21)
the interaction energy is written as a quantity associated with the moving
electron. On the other hand, the sum (23) represents the contributions of
an astronomical number of charges at the cylinder. As proved above, this
quantity balances the energy difference derived in (21) for a single electron.
Using this sum, one shows energy conservation where the potential energy
associated with the interaction between the moving electron and the
cylinder balances the change of the cylindrical self-energy. Evidently, the
change of the self-energy of each of the charges at the cylinder follows its
motion in the field of the moving electron. Due to the macroscopic distance
between the moving electron and the cylinder, this quantity is very small.
However, as shown above and in reference 4, the utilization of the sum
of all these quantities (each of which is very small) is vital for the restoration
of the energy balance of the system. The authors of reference 2 use unjustified
approximations and neglect this quantity (see p. 1518).
The previous discussion shows that a nonvanishing contribution to the

phase difference is obtained from the third and the fourth terms of (19).
The discussion presented after (19) shows that the overall phase diffe-
rence of (19) is precisely the same as that written in (18). The latter quantity
was obtained in the first experiment where the cylindrical electric potential
vanishes identically at all times. This result shows that the electric version
of the AB effect does not exist. 

’ 

-,--

The main point used in this section is that there is no separate single
particle phase. If ’P is written as a sum of terms, like (4)1 t/JI + 4&#x3E;0 t/Jo)/2t
in (14), then each term has its own phase. It is impossible to split the phase
between the various factors of each term. This feature is a direct outcome
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of the completeness property of quantum mechanical wave function. The
calculations carried out above are based upon this property and prove the
main result of this work.

V CONCLUDING REMARKS

The dependence of a single particle matrix element upon the complete
wave function is a vital element of this work. This dependence, called above
the completeness property, is well known in atomic spectroscopy. It is

also a property of quantum mechanical states used in experiments which
test the EPR paradox. These fields of research show that quantum
mechanical predictions are confirmed by experiment.
Using the completeness property, it is shown in the fourth section of this

work that the electric AB effect does not exist. As a matter of fact, it is

already stated in the introduction that this version of the AB effect has never
been tested experimentally [4] ] [7 ]. Hence, the result of this paper is not
incompatible with experiment.
The main conclusion of this work disagrees with the corresponding

result of references 1 and 2. The discrepancies of these articles are as follows.
Reference 1 uses a single particle wave function which is in disagreement
with the completeness property of quantum mechanical wave functions.
Reference 2 neglects the contribution of the wave function ø of the apparatus
to the phase shift. It is shown in the previous section and in reference 4
that energy balance is achieved when the overall wave function is written

as in ( 14). Doing it this way, one realizes that the electric AB effect disappears.
It is mentioned in the introduction that, unlike other quantum mechanical

predictions, the AB effects were considered a controversial issue for a long
time. It turns out that most of the debate refers to the magnetic AB effect.
One may suppose that the results of this work are relevant to this contro-

versy. However, a discussion of these implications is beyond the scope of
the present article.

[1] Y. AHARONOV and D. BOHM, Significance of Electromagnetic Potentials in the Quan-
tum Theory, Phys. Rev., t. 115, 1959, p. 485-491.

[2] Y. AHARONOV and D. BOHM, Further Considerations on Electromagnetic Potentials
in the Quantum Theory, Phys. Rev., t. 123, 1961, p. 1511-1524.

[3] See for example, S. N. RUIJSENAARS, The Aharonov-Bohm Effect and Scattering
Theory. Ann. Phys., t. 146, 1983, p. 1-34 and references therein.

[4] E. COMAY, Conservation Laws and the Electric Aharonov-Bohm Effect, Phys. Lett.,
t. A120, 1987, p. 196-198.

[5] P. BOCCHIERI and A. LOINGER, Nonexistence of the Aharonov-Bohm Effect. Nuovo

Cimento, t. A47, 1978, p. 475-482. 

Annales de l’Institut Henri Poincaré - Physique ’ theorique ’


