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ABSTRACT. - As a first step in the program of an algebraic formulation
of Lagrangian Dynamics, a theorem, giving sufficient conditions in order
for a manifold to carry a tangent bundle structure, is proven.
As examples, the electron in a monopole field and the free relativistic

particle are considered.

RESUME. 2014 Comme point de depart, pour une formulation algebrique
de la dynamique lagrangienne, on demontre un theoreme donnant des
conditions suffisantes afin qu’une variete puisse. etre consideree comme
un fibre tangent.
On analyse, a titre d’exemple, 1’electron dans un champ de monopole

et la particule relativiste libre.

1. INTRODUCTION

The usual procedure to define a Lagrangian dynamics, consists in choos-
ing, first, a configuration manifold and, then, in assigning a Lagrangian
function on its tangent bundle. However, in several physically relevant
instances, the situation is more involved.

Typical instances of this are constrained dynamics which play a pre-
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eminent role in the construction of theoretical frameworks for funda-
mental interactions. A consistent constrained dynamics corresponds, in
fact, to a redundant set of degrees of freedom and, both at merely classical
level for a well posed formulation of the initial data problem, and in order
to avoid meaningless divergent contributions to path-integral when inte-
grating on the orbits of gauge groups [1 ], this redundancy has somehow
to be tamed.
What should, in principle, be performed is a reduction procedure leading

to a reformulation without fictitious degrees of freedom.
The traditional setting in which this problem was first analysed, was

the hamiltonian one [2 ], although, with the growing relevance of the
Lagrangian formulation due to the general acceptance of path-integral
quantization, in its original Lagrangian form, as a working tool in gauge
field theories, this same question was also studied for Lagrangian dyna-
mics [3 ].
A related problem in this context is to realize the reduced dynamics as

a second order and, possibly, a Lagrangian one, the first natural step in
this direction obviously being the characterization of the reduced phase
space as a tangent bundle.
The aim of this paper is to state and prove a theorem (sect. 2) giving

sufficient conditions in order for a manifold to carry a tangent bundle
structure, which in the authors opinion, apart for its independent mathe-
matical relevance, can be of help in the aforementioned context. In section 3,
the electron in a monopole field and the free relativistic particle are consi-
dered.
As to terminology and notations, see ref. [4] for the general geometrical

setting and ref. [5] ] for tangent bundle geometry and second order dynamics.
By now there are also several papers dealing with constraints in the frame-
work of differential geometry [6 ].

2. THE TANGENT BUNDLE
AND ITS NATURAL TENSOR FIELDS [7]

It is worth to start with a brief review of some basic facts about tangent
bundle geometry.
A tangent bundle 7r : TQ -+ Q,

being a vector bundle, is endowed with the dilation vector field

Dez(TQ),
which is fiberwise defined : on a generic linear space W, the dilation field
is the generator of the flow
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A peculiar feature of tangent bundles is a (1,1) tensor field

which, in terms of the corresponding endomorphisms :

is naturally defined as follows.
If w E TxTQ, then u^xw is the tangent vector in x to the curve

where T?r : TTQ -+ TQ is the tangent map of vr.

If

is a local chart, and

(where, with a harmless abuse of notation, the q’s and their pull back are
identified) is the corresponding tangent bundle chart, then the local expres-
sion for v and D is

where summation on i from 1 to k is implied.
It can be easily shown that v and D satisfy the following properties

I) Ker = Im for every P E TQ

II) 
III) N" = 0

IV) 
V) LDv = - v.

where v ^ denotes the endomorphism corresponding to v, x"er(TQ)
the vertical sub algebra of x(TQ) and Nv the Nijenhuis tensor of v

Because of property II), v is usually called the vertical endomorphism 0 TQ.
In the following it will be shown how the existence of a tensor field v,

and a complete vector field D on a manifold M, which fulfil properties I),
with M substituted for TQ, III), IV) with the range of the endomorphism
replacing the vertical algebra, and V), allows to state that the considered
manifold can be endowed with a unique tangent bundle structure whose
dilation field and vertical endomorphism respectively are v and D. This
can be proved if a further requirement on D is satisfied, which essentially
grants that all integral curves of D lie on unstable manifolds of points
belonging to the zero section of the implied tangent bundle).

Vol. 50, n° 2-1989.
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We shall prove the following

THEOREM. - Let M be a C2 manifold, ~ and D respectively a (1,1) tensor
field and a complete vector field on M which fulfil the following hypotheses

for every P ~ M

2) N, = 0

3) D ~ Im v^
4) L~ === 2014 ~

5) lim etDP exists for every P E M,
f-~ 2014 00

where

denotes the flow of D.
Under such hypotheses M has a unique tangent bundle structure (i. e.

a sub-atlas of its maximal atlas being a maximal tangent bundle atlas)
whose dilation operator is D and whose vertical endomorphism is v.

For the dynamical applications alluded to before, involving degenerate
lagrangians and reduction procedures, the manifold M is to be identified
with the reduced phase space while v and D could be the projections onto M
(if they are well defined) of the corresponding canonical objects on the
tangent bundle one started with. A couple of examples will be given in
the following to clarify this point.
The theorem will be now proved in two steps : first hypotheses 1) through

4) will be used to show that the manifold is locally endowed with a uni-
quely defined tangent bundle structure ; then chart domains in the neigh-
bourhood of singular points of D will be extended all along integral curves
of D itself (the flow e-D, when applied to a neighbourhood of a singular
point generates the whole corresponding fibre). Hypothesis 5) will then
grant that the so built charts give the looked for atlas. The proof will be
unusually detailed in such a way that the construction procedure for the
tangent bundle structure can be easily applied by any interested reader
to his or her own needs.

Proof Since the rank of every finite-dimensional linear operator is
both equal to the dimension of the range and the codimension of the
kernel, condition 1 ) implies

dim (M) = 2 dim (Ker v ^ P) = 2 dim (Im v ^ P) == 2k for every P e M. (9)

K vector fields ..., ek can, then, be chosen in a suitable open neigh-
bourhood U of an arbitrary point P E M so to give a basis of Im for
all Q E U, by which v is locally written

Annales de l’Institut Henri Poincare - Physique " theorique " )
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where 0B ..., ek are local 1-forms which, by 1 ), vanish on the e’s, i. e.

and are linearly independent,

all over U, since otherwise Im vA would be somewhere smaller than the
linear span of ..., ek. Incidentally, (e 1, ..., 9k) is a basis of the image
and of the kernel of the transposed endomorphism 
Now property 2) implies, which would be very easy to show, that Im r"

is an involutive distribution

and this in turn is equivalent to

Relation ( 14) implies (Frobenius theorem) that k real functions x 1, ... , xk
on an open neighbourhood V c U of P can be found such that in V

where ~.~,=i,.,,:V ~ GL(n,R). If

then in V

where, as a consequence of eqs. (11) and (13),

On the other hand, are k vector fields, in an appropriate open
neighbourhood W c V of P, such that (/i, ..., fk, g 1, ... , gk) is a local
frame in Wand

then, if fJ is a generic 1-form in W,

where eqs. ( 18) and ( 19) were repeatedly used, so that

By eq. (21 ) k real functions xk + 1, ... , x2k : U’ c W -+ R on a suitable
open neighbourhood U’ of P exist such that

Vol. 50, n° 2-1989.
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is a local coordinate system and in U’

If a coordinate transformation

is now considered, the local expression of v becomes

where the S’’s nowhere vanish, v having constant rank, so that, if Fj
the canonical form 

.

is obtained.
From hypothesis 3) the dilation operator can locally be written in this

coordinates, as

hypothesis 4) implying

i. e.

If the coordinate transformation in U’

is performed, v and D simultaneously assume their canonical form :

It is easily checked that coordinate transformations, sending canonical
coordinates into canonical ones, that is preserving the canonical form
both of v and D, just are tangent bundle coordinate transformations, that
is the ones of the form :

By the above construction, a globally and uniquely defined tangent
bundle atlas on M is then exhibited, apart for checking that the chart
domains can be extended in such a way to have the u’’s ranging over the
whole real line. -
The completeness assumption for D and hyp. 5) are now going to be

Annales de l’lnstitut Henri Poincare - Physique theorique
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used to exhibit chart domains of the form ~c-1(I), I being an open set in
the « base manifold » of singular points of D and

the canonical projection of the deduced tangent bundle structure.
In order to get a true tangent bundle atlas, consider now a canonical

chart constructed according to the above procedure, whose domain Up
is an open neighbourhood of the generic singular point P of D. A smaller
neighbourhood Vp c Up can obviously be considered such that the image
of Vp, by the considered canonical chart is the cartesian product

where (q 1, ... , denotes the image of V by

and is assumed to be star-shaped, while Br denotes the zero centred ball
with a sufficiently small radius r.

It will be now shown how the local coordinate system

where, once again, explicit notational reference to the restriction operation
is omitted, can be extended to a proper tangent bundle chart, i. e. one in

which the ball Br in (33) is replaced by Rk.
To this end, if the local 1-forms

are considered, then by the coordinate expression of D in (30) :

By this a unique extension of 1-forms (35) from Vp to

is defined if equations

are required to be satisfied in Wp. On the other hand eqs. (38) by taking
exterior derivative give

and, by uniqueness of solution of these equations, the extended 1-forms

Vol. 50, n° 2-1989. 8
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are closed. Exactness follows by Poincare lemma since Wp is homotopic
to Vp and Vp is star-shaped.
The 2k, 1-forms solving equations (38) are then the exterior derivatives

of 2k functions which can be chosen to be extensions from Vp to Wp of
the coordinate functions in (34). The so defined function

is C by construction and is invertible since different u coordinates on
the same integral curve of D and different x coordinates respectively imply
being different points on the same curve and being on different integral
curves. On the other hand eqs. (27) imply that

and then that dq1 A ... A dqk A dul A ... A duk nowhere vanish, by
which the inverse of (40) is C2.

_ 

The function (40) is, then, a chart whose range is the cartesian product

as implied by eqs. (38) and completeness of D. If the vector fields

are considered, they give a frame on Wp apart for singular points of D,
whose elements are Lie transported along integral curves of D, as can
easily be checked.
The expression of D in this frame is then a linear combination with

constant coefficients, which implies that D has canonical form as in (30)
all over Wp. As to v, the same conclusion can now be derived by condi-
tion 4) and the assumed validity of eqs. (30) in B~p.

Since the above procedure leads to the construction of a proper tangent
bundle chart in the neighbourhood of every singular point of D, in which
both v and D assume their canonical form, then by condition 5) the proof
is therefore accomplished.

3. EXAMPLES

A couple of examples will now be used to illustrate the given theorem
in the realm of second order dynamics on tangent bundles.
For what follows it is worth to remark that, while projectability for a

vector field X, with respect to an involutive distribution K generated by
Xl, ..., XH, just means

Annales de l’lnstitut Henri Poincare - Physique ’ theorique ’
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for a (1, 1) tensor field T it will be here checked by means of the corres-
ponding endomorphisms T"P,in terms of which projectability conditions
read

A. Electron in a monopole field [8].

It is well known that equations of motion for an electrically charged
particle in a magnetic monopole field do not admit a global Lagrangian
description if the configuration manifold Q is identified with the tridi-
mensional euclidean space deprived of the singular point of the magnetic
field. If Q = R3 - { 0 }, equations of motion read

where x2, are orthonormal coordinates an Q, (xl, x2, x3, ul, u2, u3~)
are the corresponding tangent bundle coordinates an TQ, n is the product
of electric and magnetic charge divided by the mass of the electrically
charged particle. The obstruction to a global Lagrangian description comes
from the field strength 2-form just being closed but not exact, which forces
to define the gauge 1-form on a simply connected open submanifold of Q
(Dirac string). A way out of this problem is to enlarge the configuration
manifold to SU(2) x R and to define an T(SU(2) x R) a globally Lagran-
gian dynamics which projects to the original one.
To be specific let

denote the canonical projection of the U(l) Hopf bundle based on S .
Then the implied projection

is the tangent map of

the dynamics on T(SU(2) x R) having a global Lagrangian description
with Lagrangian function given by

Here r denotes the R coordinate, s the generic element of SU(2), and yl, y2, y3
are orthonormal coordinates on S2 = 1), 63 being the usual Pauli
matrix. (For simplicity SU(2) is here identified with its usual matrix repre-
sentation.)
An alternative more natural approach to obtain the reduced dynamics

Vol. 50, n° 2-1989. 8*
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from the one an T(SU(2) x R) would be to project with respect to the invo-
lutive distribution of the kernel of the Lagrangian 2-form

here

denotes the endomorphism of the 1-form module defined by

It can be shown that this kernel is the linear span of the tangent lift X3
of the generator X3 of U(l) in the Hopf bundle, i. e. of the flow

and of the vertical field V3 = vA is the flow of X E X(Q) than the
tangent lift XT E X(TQ) of X is the generator of the fiow exp’ XT where

is the tangent map of

If in local coordinates

then in the corresponding tangent bundle coordinates

In fact, since tangent lifts leave v invariant and X3 is a symmetry field
for L by inspection, then

On the other hand

and then

but iXT32-1ds is a constant matrix (in intrinsic terms it is a constant element
of the Lie algebra su(2)) since is the Maurer-Cartan 1-form and X3
is left-invariant, it being a generator of the right action of SU(2) on itself.
This, by eq. (55), proves that X3 belongs to the kernel of S2L ; this is also
true for V3 , since it can be shown in general that

In the present case the two generators of the kernel of the Lagrangian
2-form X3, V3 preserve the vertical endomorphism, i. e. Lxv = 0 for X repre-
senting both fields, by which v is projectable. Moreover the dilation vector
field is projectable because the tangent lift of any vector field on Q commutes
with D and property V) of v, D implies that 

Annales de l’lnstitut Henri Poincare - Physique theorique
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Thus one could conclude a priori that, if the quotient manifold, w. r.
to the considered distribution, does exist with smooth projection, the
projections of u and D provide such a manifold with a tangent bundle
structure, the theorem hypotheses being then all trivially satisfied.

In the present example one can explicitely show that the quotient mani-
fold does exist. As a matter of fact the kernel of the Lagrangian 2-form is
spanned by the complete vector fields X3 and V3 ; the two of them span
the Lie algebra ofTU(l) [9] and the integral manifolds of the distribution
are the orbits of the action of TU(1) on TSU(2). Then, by the functoriality
of T (the tangent functor) it follows that TSU(2)/TU(1) exists (it being
diffeomorphic with T(SU(2)/U(1)). 

’

It is worth to remark by the way that the Lagrangian function is not
projectable, because, although it is invariant under X3, it is not invariant
under V3.

B. Free relativistic particle.

Now the configuration space is taken to be R4 endowed with Minkowski
metric ; the considered degenerate Lagrangian is

and the kernel of the Lagrangian 2-form is spanned by

the x’s and u’s once again denoting tangent bundle coordinates. In this
case the dilation field D obviously projects onto the zero vector field
while it can be easily shown that the vertical endomorphism v is not pro-
jectable. (This easily follows by considering that Im and
Im 1m vA are not included in the involutive algebra generated
by r and v),
Thus in this case the quotient manifold will not inherit a tangent bundle

structure.

Conclusions and final remarks.

It should be stressed that the present theorem, when applied to the
reduction problem, does not allow to exclude that the quotient manifold
carries suitable tangent bundle structure. It just implies, in some cases as
in application B), that the possible tangent bundle structure is not inherited
by projection. Just to be specific, consider on S1 x R, a possible reduced
phase manifold, the vector field and the vertical endomorphism
e-r de x where r, o denote polar coordinates.
Then, although « algebraic conditions » 1) through 4) are satisfied, these

tensor fields do not fulfil global topological assumptions, i. e. completeness
and condition 5), and our theorem does not allow for a tangent bundle struc-
ture associated with these tensor fields. On the other hand, the considered

Vol. 50, n° 2-1989.
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manifold can obviously be endowed with a tangent structure, since it is
diffeomorphic to Clearly tensor fields associated with this tangent
bundle structure do not coincide with previous one.

Thus, from our theorem, it is clear that a tangent bundle structure is a
joint property of our starting manifold and the two tensor fields we are
considered
We shall mention, at this point, that a theorem which is the analogue

of the present one in the realm of cotangent bundles was proved in ref. [10 ]
(see also ref. [11 ]).

In it, the existence of a 1-form, with symplectic exterior derivative, is
postulated ; by it the canonical 2-form, which plays a role similar to the
vertical endomorphism, and the dilation vector field are constructed.

It is easily seen that, in close analogy to the assumptions of the present
theorem, the existence of the dilation field and of the 2-form, satisfying
suitable requirements, could be equivalently assumed. A remarkable
difference in the genuinely topological assumptions is, on the contrary,
of a substantial nature.
To construct a (unique) cotangent bundle structure, in fact, not only

hypothesis 5) like here has to be made, but also it is necessary to assume
the set of singular points of the dilation field to be a submanifold of half
the dimension of the manifold, which could be deduced here. This in a
sense is not surprising since the vertical endomorphism carries with itself
an exhaustive information on the bundle structure, it defining vertical
subspaces, while the symplectic form gives a less stringent information.

It is also worth to remark that generalized versions of Lagrangian dyna-
mics can be formulated on manifolds which are endowed with a so called
quasi-tangent structure [12 ]. The present theorem gives sufficient condi-
tions for such a q.-t. structure to reduce to an ordinary tangent one.
As for the possibility to prove our theorem under weaker assumptions,

it should be remarked that counterexamples can easily be given if one of
them is removed. It is under investigation if hypothesis 1) can be weakened
by requiring that Im v ^ where v^ is globally considered as a
vector field module endomorphism.

This point is connected with a purely algebraic version of Lagrangian
dynamics which is presently being developed [paper in preparation ]. It
is formulated in the realm of derivation algebras on rings endowed with
the algebraic version of the vertical endomorphism and the dilation field.
If in particular the algebra is the one of derivations on the ring of Coo
real functions on a Coo manifold, then the presented theorem allows to
reconstruct a Lagrangian dynamics in the usual sense.
A different characterization of tangent bundle structure on a mani-

fold M has been provided by Crampin and Thompson [13 ]. The first part
of their paper, i. e. how to construct a local tangent bundle structure, is
close to our presentation.
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