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ABSTRACT. - The unique ergodic non finite absolutely continuous inva-
riant measure is obtained via the convergence of some average of the
iterates of the Perron-Frobenius operator for endomorphisms of the inter-
val which are smooth enough and expanding except at a neutral fixed
point.

RESUME. - L’unique mesure ergodique non normalisable, absolument
continue par rapport a la mesure de Lebesgue est obtenue par une moyenne
des iteres de Foperateur de Perron-Frobenius pour des endomorphismes
de l’intervalle réguliers et dilatants sauf en un point fixe neutre.

1. INTRODUCTION

The construction of invariant measures for expanding dynamical systems
has been the object of many developments in the past few years. In

Annales de l’lnstitut Henri Poincaré - Physique théorique - 0246-021 1
Vol. 52/90/03/283/19/$3,90/© Gauthier-Villars



284 P. COLLET AND P. FERRERO

particular, for one dimensional systems one has now rather detailed results
at least in the case of uniformly expanding systems. There are however
important situations where one meets non uniformly expanding one dimen-
sional systems. A typical example is the case of quadratic maps which
have a critical point. In this paper we shall consider a different (and
milder) case of non uniform expansiveness, namely maps of the interval
which are expanding except in one point. It is easy to see that in order to
prevent some iterate of the mapping to be expanding, one has to impose
that the non expanding point be a fixed point. In other words, we shall
consider maps of the interval [0,1] which are continuously differentiable
except at finitely many points where their derivatives have limits on both
sides, and such that the slope is in modulus everywhere larger than one
except at a fixed point where it is one (we shall make more precise
hypothesis below, in particular, we shall only consider Markov maps).
One of the simplest example of such maps is given by the following
formula -

In their original paper about expanding maps of the interval [L-Y],
Lasota and Yorke observed that in the above situation the map cannot
have an absolutely continuous invariant probability. It is now known [Me]
that for such maps the Bowen-Ruelle measure is the delta measure at the

marginal fixed point (here x=0). This class of maps which are expanding
except at a marginal fixed points appear in several contexts [Man]. It was
shown by P. Manneville [Ma] [G-W] that they are a model for the

dynamics that takes place just at the point of an intermittency transition.
They also recently appeared in the renormalisation group analysis of
critical diffeomorphisms of the circle with general rotation number [F].
As we have already mentioned, the Bowen-Ruelle measure is trivial for
the map that will be discussed in this paper. It was discovered by Manne-
ville however that the transient behavior of these dynamical systems is far
from trivial. He gave very strong arguments for the existence of another
(non normalisable) invariant measure which disappears from the ultimate
time asymptotic results but is responsible for interesting finite time results.
In particular, he showed that the occupation time of a set which does not
contain the fixed point has an unusual behavior proportional to n/log n
(instead of n). He also derived consequences for the behavior of the

spectrum of correlations.
We shall give below a proof of existence and uniqueness of a (non

normalisable) absolutely continuous invariant measure for a class of maps
similar to the above example. Our proof is based on direct estimates for
the dynamics of the map. The key argument for proving the existence is a
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compactness result based on an unusual normalisation of the Cesaro

average of the iterates of the Perron-Frobenius operator.
In fact, using the standard normalisation, one would get back the trivial

Dirac measure at the fixed point. The complete argument is given in

section 2 and uses some technical results which are collected in the

appendix. Our method allows us to recover Bowen’s result [B]. Section 3
is devoted to a detailed analysis of the ergodic properties of the invariant
measure. We first give a precise estimation of the singularity of the
measure. We then prove that the measure is unique and ergodic. In

appendix B we shall give a precise estimate of the abnormal ergodic
normalisation using a tauberian theorem. Throughout this paper, if f is a
map of the interval, f’n will denote the n-th iterate off

2. EXISTENCE OF AN ABSOLUTELY CONTINUOUS INVARIANT
MEASURE

We shall be interested in invariant measures which are absolutely con-
tinuous with respect to the Lebesgue measure ~, (a.c.i.m. for short). Their
density h must be a fixed point of the Perron-Frobenius operator P given
by

If I is bounded below by a number larger than one, it is well known
that under the above hypothesis there is a unique a.c.i.m., and if f has an
indifferent fixed point, there may not be any normalizable one [L-Y]. We
shall denote by (hn)n E N the sequence of functions defined by

hn=pnl
One of the most interesting property of these functions is summarized by
the following formula

for any Borel subset A of [0, 1]. We shall prove the following theorem
MAIN THEOREM. - Suppose that

We denote by f- and f+ the inverses of the restriction of f to [0,1 /2] and
]1/2, 1].

Vol. 52, n° 3-1990.
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(3) f is C3 except at x =1 /2 where its first three derivatives have left
and right limits, and also it is monotone on [0,1/2[ and on ]1 j2, 1].

(4) There is some number a &#x3E; 1 such that

which implies f " (0) &#x3E; 0.

Then

( 1 ) P has a fixed point e, which is unique under some additional

assumptions given below.

is of order n/Log n.
(3) denote the Lebesgue measure, and u is any real function, bounded

away from 0 and + ~, 1 j2 Holder, then .

for the uniform convergence on compact subset of ]0,1]. Moreover f is
ergodic for the measure e~,.

Note however that it follows from a result of Aaronson [A] that for a
measurable function u integrable with respect to the invariant measure,
one cannot have convergence almost everywhere of the ergodic average

toward e X (u).
On the other hand it is shown by [Me] that 80 is the Bowen-Ruelle

measure, that is

for all continuous fonction u, and almost every x.
We shall investigate the large n behavior of the sequence (hn)n E N by

looking at the ratios
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for x and y in ]0,1].
It is easy to see that if F denotes the partition {[0,1/2[, ]1/2,1]} (modulo

~), we shall have to estimate quantities of the form

n

where x and y belong to the same atom of v F.

LEMMA 2 1. - There is a number E &#x3E; 0, and a number c &#x3E; 0 such that if
K is an atom of v F with f (K) c [0, E] for 0 _ then, if x and

o 

y are in K

Proof. - We have

Since f is in C3 ([0,1/2]), there is a constant A such that

where 2~==/"(0). Therefore

This implies

Vol. 52, n° 3-1990.
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Using now Lemma A. 3 we obtain

The result follows now by summation over p.

LEMMA 2. 2. - There is a positive number El 1 and a real positive valued
function D defined on ]0, El] which satisfies D (E) = O (E2) such that if K is

n

an atom of v F and if x and y in K satisfy

then

Proof - We shall first consider the case 
From the hypothesis we have

where c~ depends only on f (we have 1 ).
n

We shall now estimate the Let
n

If a is small enough, we have 11 (a) = f(riv) - a.
Note also that 11 (a) = 0 (a2) if a - 0. We now observe that if fi (y) &#x3E;__ s,

~/’ (y) -11 (s) . Therefore if 8 (y) ~ 1/2 for 0 ~ i _ n we must
have n (y) 11 (8)’ B and f (y) (y) - (n - i) 11 (a) which implies
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If (x) - f " (y) ~ (y)/2 we must have f " (y) _ 2fn (x) _ 2 E, and there
is a number c3 &#x3E; 0 such that Ilogf’ (y))/f (x)) I  (x) - (y) I .
The result now follows from lemma A. 3.

LEMMA 2. 3. - There is a number c4 &#x3E; 0 such that if K is an atom of
n

v f -i F with
o

and af’ x, y ~ K then

Proof. - Since f is expanding on [ 1 /2, 1 ], we have

The result follows at once from

We shall now derive a uniform estimate for the ratio of the derivatives of
the n-th iterate of our map.

LEMMA 2 . 4. - There is a number c &#x3E; 0 such that if K is an atom of

and if x and y belong to K, then

where C" is defined below. Moreover, for any bE[O, 1], there is a constant
C (b) such that for all x, y E [b,1 ], we have ( ), 1  s  n ~ denotes the
set of preimages of order po a fixed number to be defined below

I

Proof - Let E&#x3E; 0 small enough to be chosen later on. E will be smaller
than the constant E1 in Lemma 2. 2. ... ~7~ 
be a sequence of integers defined for E small enough by

Vol. 52, n° 3-1990.
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We may have jo and ko equal to zero, hs and i equal to s. Notice that if
n

L belongs to v f - i F, Ln[0,s]~0, and/(L)n[0,s[=0 then
o

f (L) c [0,1/2]. From Lemma 2.1,2.2 and 2 . 3, we have

where

We now have to complete the estimation of log D2. Using Lemma 2.1
and the above estimate, we have

(we have assumed x  y for definiteness).
We shall first treat a special case.
Assume first that f n (x), f’n (y) E [0, E]. Then, we conclude by Lemma 2 1

and the result follows in this case.

The same argument can be used in the general situation if f has some
special properties.

In the general case for f, one has first to be sure that the preimages are
in [0, E] to be able to apply the above estimates.

Let x and y be two points in [0,1] ] and let J denote the interval with

endpoints ~ x, y ~ . We shall determine the largest connected component of
f -1 (J) . .

Let po be an integer large enough so and let no = 2p~.

For l&#x3E;log2 no we shall construct a family of intervals J 1, ... , Jno, such
that f ~ (JS) = J (for 1 _ s _ no) and the largest connected component of

is one of these intervals. We proceed as follows.

Annales de l’lnstitut Henri Poincaré - Physique théorique
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Let K1, ..., Kno be the ordered family of connected components of
(J). We define _ s _ no) by

Let U be the largest connected components of f - Po (J). If U c [0, E], then

f- (U) is bigger than f+ (U), and it is easy to see recursively (using
/[o,e[/[e, i]) is the largest connected component of (J).

Assume [0, E] for 0 _ i po. Then using lemma A4, there is
a number 6&#x3E; 1 such that X (U) _ 8-p~ ~ (U)). However by Lemma A3,

This is a contradiction, and we conclude that the largest connected com-

ponent (J) is one of the ..., 

We now define Kn (x, y) by replacing x and y by extreme points of some
KS, namely

LEMMA 2 . 5 . - The sequence hn ( 1 ) satisfies

Proof - If we set y =1 in the bound of Lemma 2. 4, we get

We integrate over x, and use the fact that to get the
o

estimate.
We now introduce a normalisation for the density of the invariant

measure. We define a sequence en of functions by

THEOREM 2 . 6. - The sequence e" is precompact in C° (]0, 1]). Every
accumulation point e is a fixed point of P, i. e. the density of an invariant
measure. Moreover it satisfies the estimate

for x, y E [0,1 [.

Vol. 52, n° 3-1990.
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Proof - From Lemma 2.4 we have

Therefore for any 1 &#x3E; b &#x3E; 0, using en(1/2)= 1, we conclude that the sequence
en is equicontinuous on [b, I], and compactness follows from the Stone-
Weierstrass theorem. The uniform bound follows by taking the limit. We
also have (recall that ho =1)

and using lemma B we see that P e = e.

3. PROPERTIES OF THE INVARIANT MEASURE

In this section we shall prove some results about the density of the
invariant measure and derive its uniqueness and ergodic properties. We
shall first give a precise estimate on the singularity of the density of the
a.c.i.m. at the fixed point.

LEMMA 3. 1. - Any accumulation point e of the sequence e" satisfies

Proof. - From lemma 2 . 4 we have for jce[l/2,1] ]

It is easy to show recursively that

n

We now use this decomposition in order to estimate L hq (x). We shall
q=0

first replace the contributions of the sum in the above expression by the
more manageable quantity (this corresponds to preimages whose orbit is
not entirely contained in A _ )
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We first estimate the correction coming from this replacement. It is given
by

From Lemma A. 2 and Lemma A. 3, we and

/~(~)~0(1)~/(~:+1)~. We now have an estimate on the sequence of
functions en

Using the result of appendix B, we have

for all fixed nonzero x if t - 1 _ . Using Karamata’s theorem (see [Ti]) and
theorem B we obtain

+00

The result follows easily from the fact that L (x) has a pole of order
1=0

: one at zero.

Vol. 52, n° 3-1990.
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We now show that the absolutely continuous invariant measure is

unique.

Then gl = g2.

Proo, f. - We have by hypothesis. Multiplying gl
by a constant, we can assume that 03B11 = 03B12. Let g=g1-g2, then obviously
P g = g and This implies

The sequence of functions

is uniformly bounded and converges to zero Lebesgue almost everywhere
since the Bowen-Ruelle measure is the Dirac measure at 0.

It follows from the Lebesgue convergence theorem that g = 0, i. e. gi = g2.

THEOREM 3.3 : 1

for the topology of uniform convergence on compact subset of ]0, 1], and

n- 1

Proof. - The sequence PI 1 has only one accumulation point
i=o

by lemma 3 . 2.

THEOREM 3 . 4. - Any invariant Borel set A such that + 00 has

Lebesgue measure zero.
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Proof. - According to the definition of the Perron-Frobenius operator

we have for all integer k, ~ (A) = dt, which implies

Therefore

and

Now using Lemma B

but on the other hand I ej (x) - Ilx _ O ( 1 ) x -1 ~2 implies

and therefore

which implies X (A) = 0.

LEMMA 3 . 5 . - Let u be a real function on [0, 1] such that
(1) There is some strictly positive constant C, such that 
(2) u is C 1.

Then there is a finite constant cr (u) such that

Proof. - It is easy to modify the proofs of lemma 2.1-2.4 and 3 .1, to
show that P"M satisfies a bound similar to Pn 1. This follows from the fact
that if L is an n-preimage of the segment [x, y] then

Vol. 52, n° 3-1990.
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We now apply the Chacon-Ornstein ergodic theorem [F] to the operator
P in Li ([0,1]) and we deduce that

n-l

converges almost surely. Therefore Pj u is also almost surely con-
o

vergent. From the compactness in the topology of compact convergence
on ]0,1], it follows that we have convergence everywhere. Let e* be the
limit; using lemma 3.2, we conclude that e* is proportional to e. Notice
that it is easy to extend a to a probability measure, since it is a linear
functional on C 1 bounded in the C° topology.

LEMMA 3.6. - Let u~L1, then

o

and f is ergodic.
Proof - By the Chacon-Ornstein identification theorem [K], [N]

where E ( . I ¿) denotes the conditional expectation on the o algebra

of invariant sets. Using the density of C° in Li 1 we obtain
E (u |03A3) = 03C3 (u) E ( 1 03A3) for all u in L 1. This implies that E ( 1 |03A3) is almost

surely constant, since all the characteristic functions of level sets of
E (1 ~) are proportional to E (11 ~).

i i
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’ 

APPENDICES

Appendix A

The following result is an obvious consequence of our hypothesis. We
state it as an independent lemma for further references. We recall that a
is defined by 2 a = f" (0). The following lemma is an immediate conse-

quence of the regularity off

LEMMA A.I.- There is a Cl function r defined on [0, 1], such that

The following result is almost a rephrasing of a result in [D]. We shall
give it for the convenience of the reader. We first introduce some notations.
For x in [0,1] we set 8(jc)=~ and ~(~)= 1/(~+6).
We also define un=fn/tn and We shall not indicate the x

dependence when there is no ambiguity. From lemma A. 1 we have the
following recursive relation for wn

LEMMA A. 2. - There is a positive real number Zo such that if 0  x  Zo,
then for every integer n we have

and

Proof. - From the above recursion on w, it follows easely that if tn is
small enough, then implies wn + 1 I _ tn ~+ 1. The estimate is
obvious for n = 0 since wo = 0, and the assertion follows recursively if we
start with a small enough x since the sequence t is decreasing.

LEMMA A. 3. - If x and x’ are small enough, then

Proof. - Let on = wn (x) - wn (y) we have the following recursion relation
for ~n where and assuming x  y, which implies

Using lemma A. 2 and the obvious estimate

Vol. 52, n° 3-1990.
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we obtain

This implies since 00 = 0

The result follows at once from the relation

using the above estimate and lemma A. 2.

LEMMA A. 4. - Let U be an interval such that 1 j2 is not in the interior
[0, E] for Then for some p &#x3E; 1 which depends

only on E, and not on U, such that

we have

Proof - This is obvious if f~(U)Q [0,e]=§§ for 0~/~. If

(U) n [0, E] # 0, using Lemma A. 3 and X I {U)) _ p { 1 ), it is easy to

check that for some E1 &#x3E; 0 such that f~ (D) n [0, si) = 0 for 0 -- l _ n and
the result follows.

LEMMA A. 5. - Let E be small enough such that

Then there is a constant As such that if U is an interval contained in [0, E],
then for any integer n ,

Proof. - We have

Using lemma A. 1 it is easy to show that for E small enough we have

and the result follows from the definition of t.
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Appendix B

We define a function ~ by

We shall be interested in the dominant singularity of ç (t) when t - 1_.
We then use a Tauberian theorem to obtain the asymptotic behaviour of

n

E hp (1/2).
p=o

THEOREM B: ( 1 ) Since hn ( 1 /2) is bounded (as follows easily from Lemma
2 . 4), ~ (t) is analytic in the unit disk.

Proof - We shall first find an equation for ç (t). We start with the
relation

which is easy to prove recursively. We integrate from 0 to 1 and get

where

However

up to the first order. Multiplying by t" and summing over n we get for
Itl1 1

Vol. 52, n° 3-1990.
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where

This implies

~- o~

We define a function v by v (t~ _ ~ t~, ( 1 ), and we obtain
i=0

We shall now give a bound on R (t). We have

when ~e[l/2,1[, and therefore

Hence if t e [1 /2, 1 there exists a positive constant

such that

Therefore if t is such that 1- ( 1- t) v (t) is positive

Now we use the fact that (lemma A. 2)

On being a bounded sequence. Henceforth

where VI (t) is uniformly bounded in [1 /2, 1]. We now recall Karamata’s
theorem.
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THEOREM [H], [Ti]. - Suppose that
( 1 ) for all n 0,

Then

We conclude using this last theorem for the function [2014log(l ~)K(~),
and a direct estimate of the Taylor coefficients of ç expressed as convolu-
tions of the Taylor coefficients of the functions -1/log(1-t) and
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