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Electrodynamics in Robertson-Walker spacetimes

Birgitta ALERTZ
Max-Planck-Institut f3r Astrophysik,

8046 Garching, F.R.G.

Ann. Henri Poincaré,

Vol. 53, n° 3, 1990, Physique théorique

ABSTRACT. - A complete set of electromagnetic eigenmodes of the
Einstein Universe is constructed. On Robertson-Walker spacetimes, the
inhomogeneous Maxwell equations are decoupled, integral kernels for the
resulting scalar equations are given, and the advanced and retarded fields
of arbitrary dipoles are determined. For a larger class of conformally
static spacetimes, comoving multipoles and their fields are presented.

RESUME. 2014 On commence par construire un ensemble complet de
modes propres electromagnetiques de l’Univers d’Einstein statique. Puis on
decouple les equations de Maxwell inhomogènes sur les espace-temps de
Robertson-Walker, on donne des noyaux integraux pour les equations
scalaires resultantes et on determine les champs avances et retardes d’un
dipole quelconque. En outre, on presente des multipoles comouvants et
leurs champs pour une classe plus grande d’espace-temps conformement
statiques.

. 
I. INTRODUCTION

Originally, the aim of this work was to give an overview of the solutions
of the homogeneous as well as of the inhomogeneous Maxwell equations in
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320 B. ALERTZ

the static Einstein Universe. This task arose in the context of investigations
concerning the arrow of time in the group of Prof. Dr. G. Supmann.
Parts of this paper are based on my Diplomarbeit there.
The eigenmodes of the Einstein Universe have been the subject of

various publications - directly or hidden in contributions to spectral
geometry or harmonic analysis, but either they were not given explicitly
(mathematics) or the proof of completeness was missing (physics). In

sections II to VI (in connection with sections VII and VIII) a bridge is
built: In 1940, Schrodinger [1] ] determined a set of eigenmodes of the
Einstein Universe, assuming its completeness. To prove that he was right
requires some mathematics: using Coulomb gauge, the spectrum of the
Laplace-Beltrami operator on the Hilbert space of coexact 1-forms on S3
must be determined and an orthonormal eigenbasis found. In [9], the

spectra of the Laplace-Beltrami operators on the spaces of p-forms on Sn
including the dimensions of the eigenspaces are derived, but they do not
agree with the ones of [8]. To be sure that the latter are not correct, I

calculate them again using orthogonality relations between spaces of Carte-
sian k-homogeneous polynomial forms of [R4. Then an orthonormal basis
of eigen-1-forms is constructed from the well known scalar spherical
harmonics on S3 [7] by evaluating special 1-form valued linear functionals
on them. A proof of its completeness is given and a more detailed version
of the Hodge decomposition theorem on S3 [12] is derived. The relation

to group theory is discussed in so far as the representations of SO (4) and
O (4) induced in the eigenspaces are identified. Here a connection with
the works of Kramer [2] and Jantzen [10] becomes obvious.

It seems to me, that electrodynamics on Robertson-Walker spacetimes
with negative spatial curvature has been somewhat neglected so far. There-
fore in section VII and IX, Maxwell’s equations, especially in the inhomo-
geneous case, are treated on all Robertson-Walker spacetimes simultane-
ously. This is possible due to their conformal invariance and a theorem
of Dodziuk, who showed in particular that on all simply connected
complete Riemannian manifolds of dimension n and constant nonpositive

sectional curvature, all L2 harmonic p-forms with p ~ ~ 2 vanish [11]. This

result will be applied parallely to the well known vanishing theorem for
L2 harmonic forms on compact oriented Riemannian manifolds [12]. For
fields of finite energy and sources that are Coo and have compact support
on the time slices, Maxwell’s equations turn into a divergence equation
for an exact 1-form and a wave equation for a coexact 1-form, both forms
being uniquely related to the field if the initial data for the latter are

chosen in L2. With generalizations of the functionals already mentioned
it is possible to decouple the coexact equation in such a way that there
result two conformally invariant scalar wave equations. The local advanced
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321ELECTRODYNAMICS IN ROBERTSON-WALKER SPACETIMES

and retarded Green functions for the latter - which are valid globally in
the cases of nonpositive curvature - are constructed according to [5], and
the Poisson kernels are given. The missing global Green functions for the
wave operator on the Einstein Universe are presented; they take into
account the refocussing of the light rays. An analysis of the general
solution of the homogeneous conformally invariant scalar wave equation
in section VIII shows, that Robertson-Walker spacetimes with nonpositive
curvature do not have eigenmodes.

Looking for a way to make the abstract formalism come alive, I finally
determined the fields of a few localized source distributions: In section X,
starting from the dipoles, comoving electric and magnetic multipoles are
defined and their unique "comoving" fields determined for a large class
of conformally static spacetimes; electric monopoles are discussed separ-
ately and some reflections on elementary charges are added. In section XI
finally, electric and magnetic dipoles on Robertson-Walker spacetimes are
related to each other, whereupon the advanced and retarded fields of the
magnetic dipoles are calculated (according to section IX and a generaliz-
ation of section VII to the case where the source is a distribution with

compact support on the time slices) and expressed in terms of their dipole
moments. The result is compared with the fields that Kohler [4] assigned
to an electric dipole in the Einstein Universe. It turns out that even locally,
the comoving fields agree with the advanced and retarded fields of a

comoving dipole only if the spacetime has nonpositive curvature.

II. CONVENTIONS AND PRELIMINARIES

R, p, 3, q&#x3E; are spherical and xi Cartesian coordinates on rR4 endowed
4

with the Euclidian metric such that ¿ where
i= 1

dcr2 = dp2 + sin 2 p (d 32 + sin 2 is the metric of S3 = rR4/R = l’ The
Einstein Universe is represented by (R x S3, di2 - 

d, 6 and A are the standard operators on p-forms on rR4. On p-forms
on S~, ~ is the Hodge star, * * =1, d is the differential, 8==(- )p * d * is
the codifferential, and A = dõ + 3d is the Laplace-Beltrami operator. - Õ
and * d on 1-forms on S~ correspond to the divergence and curl, respec-
tively, on vector fields on rR3. Sometimes, A, 8, d or * are taken to act on
p-forms of R x S3 or then they are defined as acting on the pullback
of these forms or to the sphere of radius R, i. e. R. S3,
respectively. On C2 functions f and I-forms on R4

p, 3, cp }, one has 
" 
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322 B. ALERTZ

A Hilbert product of two square integrable real or complex valued p-

forms oc and 03B2 on R . S3, { 03C4} X S3 or S3 is given by a, 03B2 ): = 03B1 /B 

III. EIGENVALUES AND EIGENSPACES OF THE LAPLACE-
BELTRAMI OPERATOR ON S3

The spaces of Cartesian k-homogeneous polynomial p-forms on ~4 will
be shown to be spanned by particular subspaces whose nonvanishing
pullbacks to S~ are eigenspaces of A. Since *4 = ~*, the eigenspaces of ð.
in the spaces of 2-forms and volume forms on S~ are given as the Hodge
duals of the eigenspaces of A in the spaces of 1-forms and functions on
S3, respectively. The cases of functions and 1-forms will be treated paral-
lelly, since essential intermediate results can be transferred.
The vector spaces (over (~ e {[R, C}) needed are:

For all of them, a subscript (’)s denotes the pullback to S3, and omission
of the superscript (. )~ indicates span, U (. )~ where span~ U means the

k ~ N0

vector space of all finite linear combinations of elements of a subset U of

a vector space over K.

Examples, of which the last follows from (2.4) and (2. 2):

!£s is the space of spherical harmonics on S3,
Cs consists of exact 1-forms on S3, i. e. 6~ = (3.1)
~ consists of coclosed 1-forms on S3, i. e. 
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323ELECTRODYNAMICS IN ROBERTSON-WALKER SPACETIMES

In this notation the relations to be established are:

They immediately imply the essence of this section, namely:

In order to prove (3 . 2), it has to be shown that for !!l’ E { 2, ~, ~ ~ ~,

and that

The inclusions" ;2" then follow because R2 is a polynomial, and only the
equality of the dimensions will remain to be shown.

Proo, f ’ of (3 . 4). - Specialising equation (2 . 1 ) to and equation
(2 . 3) to and results in:

Thus all Lk, Ek, Sk are eigen-p-forms of A, the Laplace-Beltrami operator
on S~, and k is uniquely determined by the corresponding eigenvalue.
Moreover, the respective sets of eigenvalues for tC and ~ are disjoint.
Restricting any Lk, Ek or Sk to S3, the only information one looses is

about powers of R, i. e. k, and the R-component of Ek, i. e. E~. The former
can be recovered from the eigenvalue and the latter by means of (2.2)
together with SEk E {0}. Therefore,

For any three EE, the assumption R + E + S = 0 implies
E,+S~=0 and by (3 .1 ) also OES = 0 = By (3. 5) it then follows that
0 = E = S. Therefore 

Since A is selfadjoint, the eigenspaces 6§, ~s are mutually orthog-
onal, and consequently their respective extensions 2k, ~ yk are linearly
independent. Equation (3 . 4) follows from (3 . 4) with H = 2.

It will now be shown that the spaces on the left and right hand sides of
equations (3.2) have the same dimensions. This could be started with the
dimensions of 9B 2k and obtained by counting polynomial coeffici-
ents, but the proof of (3.2) can also be completed without using any
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324 B. ALERTZ

actual dimension:
From dim’pk = dim f!lJk - dim Af!lJk and Af!lJk = one gets by induction

that

Since dim Fk=4 dim and because of (3 . 4), the second part of (3 . 2) is
satisfied if

From dim 2k can be derived dim ~k = dim ~k -1 and dim ~k = dim ~k + 1,
but with dim Fk it is not so easy. In [8] it was claimed that

dim ~ = dim Yfk - dim probably assuming that the restriction 
is bijective. Actually, this is not the case, because

The implications

and

imply:

Equation (3. 8) now follows from dim Dk = dim dim 03B4Hk together
with 
The actual dimensions of all vector spaces involved can finally be

obtained from

IV. COMPLETENESS

By the Stone-Weierstrass theorem, is dense in the Banach space of

continuous functions on S3 with respect to the uniform norm. For any
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325ELECTRODYNAMICS IN ROBERTSON-WALKER SPACETIMES

such function f,

Therefore is also 11.1 ~2-dense in this Banach space. Consequently
2s is dense in the Hilbert space of square integrable functions on S3.
The analog for 1-forms: Since (83, d03C32) is homothetic to (SU (2), dk2),

dk2 being the Killing metric of this compact Lie group, there exist globally
analytic orthonormal cobases of S3. Let (E"), ae {1,2,3 }, be one of them.
At the points of S3, (dR, E") and (dxi) are two analytic fields of orthonor-
mal cobases of [R4 related to each other by an O (4) valued field OJ,
which is also analytic. For any continuous 1-form

on S3, all G~ are thus continuous functions
on S~ which consequently have I ~-expansions in ~. Let now the
uniform norm of G be defined by

The relation

then implies that G has an )) . ) ~-expansion in Because in analogy to

the latter is also an ) ) . ) ~-expansion in Therefore, Øs 
is dense in the Hilbert space of square integrable 1-forms on S3.
The results about functions and 1-forms imply that ~s, ~ and 2:

together with their Hodge duals form a complete system of eigenspaces
of A in the Hilbert space of p-forms on S~.

COROLLARY. - A decomposition theorem:
In the next section, analytic orthonormal bases of the 2:, the ø: and

the Hilbert closures 9/ of ~s will be derived, the latter consisting of
coexact 1-forms only. The span of the resulting orthonormal bases of 2s,
~ 3 ~S together with their Hodge duals is also dense in the Frechet space
ofC~ p-forms on S3 with respect to its standard topology for the following
reasons: Because of (4. 3), it suffices to show that all Lie derivatives with
respect to Killing vector fields on S3 of any Coo function f on S~ have
expansions in 2s converging in the uniform norm, and that any such
expansion is identical with the respective derivative of the expansion of f
in 2s. The first follows from the Stone-Weierstrass theorem, and the
second is true because the expansions are unique and all Killing vector
fields on S3 describe infinitesimal rotations.

Vol. 53, n° 3-1990.



326 B. ALERTZ

From this, a more detailed version of the Hodge decomposition theorem
for S3 follows: with the notations of (5.4) and because the differential
operators d, 0/1, 5, 3 appearing there are continuous with respect to the
topology of this Fréchet space,

the space of C~ 1-forms on SJ is d(V) (V) ~ T (V), 4 , 5the space of C~ 2-forms on S3 is * d(V) ~+*u (V) (V), (4.5)

An analogous decomposition theorem on [R3 or on the hyperbolic space
H~ for the space of Coo p-forms which additionally are in L2 can be
deduced from section VII, in particular (7.6). In the notation of
section VII, this space equals

where W and dW are the spaces of Coo functions and exact 1-forms,
respectively, or [R3 of H3 which are in L2. To deduce (4.6) from (7.6),
one only needs to add the well known Hodge decomposition theroem for
Coo forms on smooth oriented noncompact Riemannian manifolds ([17],
article 196 D., p. 628), and the theorem derived by Dodziuk [11].

V. EXPLICIT ORTHONORMAL BASES

According to section III, the supposed bases must satisfy: ,

A well known orthonormal basis of ~S is the set of ultraspherical
harmonics

where q» denote the standard spherical harmonics on S~ and

c2kl = 2 (k+ 1) (k -l)!. This is shown, for example, in [7]. At the two
x (k+ 1 - j!

poles (p - 0, x), all the with 1# 0 take the value zero whereas the
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Ykoo take the values k + 1 203C02. Similarly,

is an orthonormal basis of because

The construction of an orthonormal basis of 9f needs a little prepara-
tion : On the space V of Coo functions on S3,

where sin p dp could be replaced by the restriction to S3 of an arbitrary
unit 1-form of [R4, are two coexact 1-form valued linear functionals.

Explicitly,

and quite obviously

Evaluating these functionals on (Y klm) results for each k in 2 k (k + 2)
mutually orthogonal and nonvanishing eigenforms of A with eigenvalue
(k + 1 )2: the eigenvalues arise from (5 . 5) and Yklm, the
orthogonality relations are implied by (5 . 6) together with

The latter also imply !~(Y,J~=0~~(Y,J~=0~/=0, which
fixes the number of linearly independent ~ and ff respec-
tively. For each k, it is equal to (k + 1 ) 2 -1. Although and
ff are analytic, they are generally not restrictions of polynomial 1-
forms on [R4. This is due to the use of * in their definition and contrasts
with the Yklm and 
From all these preliminaries one concludes that

Vol. 53, n° 3-1990.
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is an analytic orthonormal basis of ~S (but not of //s)’ which has the
useful properties

Of geometric interest could be that - up to signs -
a change of orientation of the sphere neither

affects the Yklm nor the Eklm, (5 . 9)
but exchanges the Pklm and the Nklm’

The latter happens, because * appears once in the definition of u ( f ),
but twice in the definition of 

VI. GROUP THEORETICAL ASPECTS

By the use of ~, vector fields Pm: = P~ 1 m and Nm : = N i 1 m on S~ are
generated from the 1-forms dual to them with respect to da2. These here
come from the rescaled restrictions Y 11- and Y110 of the polynomi-
als x, y and z of [R4, respectively. Comparable vector fields coming from

Y100 = , J2 cos p do not exist, according to the previous section. With oc, 03B2,
7T

ye{20141,0,1}, the above fields satisfy the commutator relations

They can therefore be identified as orthogonal bases of the left and right
invariant vector fields on SU (2) respectively. The Killing metric dk2
induced on SU (2) by either one of them is related to the metric da2 of
S3 by ~=2~o~. The six vector fields Pm and Nm generate the identity
component SO (4) of the isometry group O (4) of S3. They help to identify
the representations of these groups induced in the eigenspaces of A by
forming

Casimir operators with respect to the left and right action, respectively,
of SU (2) onto itself (more details about that can be found in [10])
satisfying on S~:

Anncrlcw cle Henri Poincaré - Physique théorique
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The importance of CL and CR lies in the following: since SU (2) x SU (2)
is the (twofold) universal covering group of SO (4), any irreducible repre-
sentation of SO (4) can be labelled by the two spin indices j and j’ which
represent the eigenvalues j (j+ 1) of C~ and j’ (j’ + 1) of CR in it. If conver-
sely on a representation space V of SO (4), CL=7(/+ 1) and CR = j’ (j’ + 1)
with 2 j, 2 j’, j + j’ E ~ o, and if additionally (2 j + 1 ) (2/+l)=dimV, then
the representation is irreducible. This is shown in chapter 10 of [6], for
example.
From (6.3) and the preceding section it follows that all Yklm, Eklm, Pklm,

Nklm and their Hodge duals are simultaneous eigenforms of C~ and CR:

the dimensions of the eigenspaces are (k + 1 )2 for the Yklm and the Eklm,
but k (k + 2) for the Pklm and the 
Thus for k &#x3E;_ 1, span~ and span~ are carrier spaces

I, m I, m

...., .~.

span~ and their Hodge duals are represen-
t, m l, m

tation spaces for irreducible representations of O (4).

Remarks on the literature

The last of the relations (6 . 3) is also described in [ 10], eqs (5 . 18) to
(6 . 3). The Casimir operators C± of [2] acting on I-form potentials in
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Coulomb gauge and thus on coclosed 1-forms on 83 are related to the
ones above by C+= 2014 A, C _ = 2 * d.

In [16] it is shown that the complex span of all Yklm together is the
representation space of an irreducible unitary representation of O (1,4),
the conformal group of S~. It seems likely that the same is true for all
Pklm, and Eklm together, but this has not been proved.

VII. DECOUPLING OF MAXWELL’S EQUATIONS

Let RW = (R x Mk, Q2 (r) di2 dp2 S; dro2)), d32 + sin2 3 be
an arbitrary Robertson-Walker spacetime: for k = -1, 0,1,
(Mk, Sk) = (H3, sinh p), (~3, p), (S~, sin p), respectively. Remember that pro-
per time t is connected to the time parameter T by the relation dt = S2 (r;) di.
Let {*k, d, õ, A) now refer to (Mk, dp2 + S; dro2).

Maxwell’s equations in terms of F and J are invariant under conformal
rescalings of the spacetime metric if the 4-current density J is considered
to be a 3-form. The continuity equation then means that J is closed, while
the 2-form F is closed by the homogeneous Maxwell equations. The
inhomogeneous equations require that the differential of @ F equals J,
where ? denotes the Hodge star on RW such that dr A @ di is the
volume form on this spacetime, and @ sin2 p sin 3 dp A d3 A dcp. Con-
sequently, F satisfies an inhomogeneous wave equation where the source
term is the differential of @ J. Analogously, any 1-form potential A whose
differential equals F satisfies a conformally invariant wave equation with
@ J as source. A is taken to be in Coulomb gauge, since this gauge is
invariant under conformal rescalings of the spacetime metric with factors
Q2 (T).

If J is Coo and has compact support for all times i, the

property of A or F being in L2 (Mk, dp2 + S; is preserved for all finite
values of r for the following reasons: The fact that RW is locally confor-
mally flat makes the wave equation locally equivalent to a symmetric
hyperbolic system of first order and thus the method of energy inequalities
(see [18], for example) applicable; the global hyperbolicity of RW ensures
the existence of advanced and retarded solutions. Therefore, it is reasona-
ble to assume that F and A are COO and in L2 on all subspaces r; = Const.
ofRW.

By the Hodge decompositions on these subspaces it then follows that

with Je exact and JS, AS coexact such that Jo, Je, J~, Ao, AS are Coo and Je,
JS, AS are in L2 on the time slices. All L2 harmonic p-forms on the spaces
(Mk, dp2 + Sk vanish, according to [11]. Jo, Je and JS are conformally
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invariant because J is, and Jo uniquely determines Je via the continuity
equation Jo, ’t + 6J~ = 0.

Similarly, any closed 2-form F consisting of L2 fields E and B uniquely
determines AS and Ee such that

where Ee is the exact part of the electric 1-form, A~ ~ its coexact counterpart
and dAs equals the magnetic 2-form B. Since gauge transformations always
mean adding a 4-gradient to A, they cannot affect AS. Gauge freedom
here only exists as the choice of mixture between the electric potential and
the exact part of the 1-form potential. From AS and Ee one can obtain a
1-form potential in Coulomb gauge, or in time gauge,
A = - Ae + As . Ao and Ae are then defined by - dAo = Ee = but not

uniquely. To achieve Lorentz gauge, a scalar wave equation on RW must
be solved that is not conformally invariant. Instead of the gauge potential
A, I will from now on preferably use the 1-forms A~ and Ee.

In terms of Jo, JS and Ee, AS the inhomogeneous Maxwell equations on
RW become:

On Robertson-Walker spacetimes with positive curvature, solutions only

exist if the total charge on S3 vanishes, because * Jo = -* Ee = 0.
Then the divergence equation has a unique solution such that 
This solution is square integrable on the time slices. 
The 1-form wave equation in (7 .1 ) will now be decomposed into a

system (8 . 8) of two conformally invariant scalar wave equations and two
Poisson equations on S2:
Let f and g be a real valued Coo function on RW, let -vk denote the

exact analytic 1-form Sk dp on Mk and vk the vector field dual to it with
respect to dp2 + S~ dro2. Then define

In the case that 03A92 (1:)= 1, 03C3 + k + 0394 is the conformally invarianta~ 2
scalar wave operator on and J k are generalizations of the
functionals U and J of (5 . 4), and in analogy to (5 . 4 - 6), one deduces
with or without coordinate representations:
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