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ABSTRACT. - We prove the existence of stationary solutions for the
Swift-Hohenberg équation

in the case when a and P are step functions taking différent values for
x  0 and x &#x3E; o. This setup corresponds to physical problems with différent
driving forces for and jc&#x3E;0.

RÉSUMÉ. - On démontre l’existence de solutions stationnaires de l’équa-
tion de Swift-Honhenberg

pour le cas où a et P sont des fonctions d’escalier qui prennent deux
valeurs différentes lorsque et x&#x3E;0. Ce cadre correspond à des
problèmes physiques où les forces extérieures différent pour x  o et x&#x3E; o.

(1) On leave from the University of Geneva.

Annales de l’Institut Henri Poincaré - Physique théorique - 0246-0211
Vol. 54/91/03/321/10/$3,00/(e Gauthier-Villars



322 J.-P. ECKMANN AND M. ZAMORA

1. INTRODUCTION

In this paper, we study the existence of solutions of the modified Swift-
Honhenberg équation

The bifurcation theory in the parameter E is well established in the case
of constant a and P, [CE]. The purpose of this paper is to show that a
two-parameter family of solutions exists in the case when a &#x3E; 0 and 03B2&#x3E;0
are constant on the two half-spaces x  0 and x &#x3E; 0 but are not necessarily
equal on the two sides of 0. We will show that such solutions exist when
the values on the left and the right are not too différent. Numerical

expérimentation shows that this restriction is unnecessary. We need it
because we use the implicit function theorem, starting from the homogen-
eous case.

The Equation ( 1.1 ) with non-constant coefficients is interesting for the
physics of extended systems with non-uniform driving forces such as the
Couette-Taylor experiment for cylinders with non-constant radius, or

Rayleigh-Bénard experiments with non-homogeneous driving forces or
non-constant plate-distances. More récent expérimental results, and theor-
etical work can be found in [R], [RP], [NAC], with références to the earlier
literature.
When a and P are independent of je, then it is known that at small

amplitudes there is a two-parameter family of solutions of the form

where 03C9~1 and 9 are the two parameters, and is given by a relation
of the form

Our result is therefore that, in some intuitive sensé, the number of para-
meters does not change as the problem becomes nonhomogeneous, but it
will be seen that the relation between the parameters and the amplitude c
is more interesting.

2. STATIONARY SOLUTIONS FOR HOMOGENOUS PROBLEMS

The basis for constructing solutions for the inhomogeneous problem is
the existence of solutions of half-spaces which we will describe below.
In this section, we restate the existence of stationary solutions [CE],
Theorem 17.1. We formulate it hère in a way which will be useful later.
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323STATIONARY SOLUTIONS FOR THE SWIFT-HOHENBERG EQUATION

PROPOSITION 2.1. - Let a &#x3E; 0, b &#x3E; 0 be given. Then there is an Eo &#x3E; 0
such that the equation

has a , solution of the form

for every E, 0  E  Eo and , for every W satisfying £ w2  1. The constants c
and , ro are defined by

and

Remark. - The above statement is a rewriting of Theorem 17.1 and of
the bound ( 17.27-28) in [CE]. We have introduced an explicit dependence
on the parameters a and b. This dependence follows at once from the case
c== 1, b =1 by replacing E by ce and u by u/b. The first transformation is
really a change of scale in E which we need to make explicit for the
matching problem. In the assumptions of Theorem 17.1, we required that
m2 be contained in some strict subinterval 1 of (2/5, 2). This assumption
is implied by the assumptions of Proposition 2.1. Namely, by (2. 3), we
see that c~~/3. Thus, for sufficiently small E, the resulting co, as defined
by (2.2), lies in I. The allowed range of W is in fact much larger than
what we assume in Proposition 2.1.
The periodic solutions described in Proposition 2.1 are not ail stable

and this phenomenon is well known as the "Eckhaus Instability". In terms
of the parameters in Proposition 2.1 the solutions are stable if

and unstable if the above inequality is reversed. Looking at the relation
(2. 3), we see that the instability occurs for small amplitudes. It describes
a possible sliding of wavelengths for small amplitudes. We will be interested
in "large" amplitudes, i. e., in ~Wjl/ /2.

3. SOLUTIONS IN HALF-SPACES

In the région where the periodic solutions are stable, a linear analysis
can be performed around thèse stable solutions and it shows that there
exist solutions which decay exponentially on half-spaces towards the stable
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324 J.-P. ECKMANN AND M. ZAMORA

solutions. This then implies by the contraction mapping principle that the
same kind of solution exists for the nonlinear problem.

Let uo dénote one of the 203C0/03C9-periodic stationary solutions described
by Proposition 2.1. We look now for solutions on the half-space
x &#x3E; 0 and we require v (x) -+ 0 as x -+ oo . The équation for v is clearly

We first study its linearization:

This is a fourth order differential équation with periodic coefficients and
therefore we can study its spectrum by the method of Bloch waves. The
relevant ansatz is

where w is a 203C0/03C9-periodic function (of small amplitude) and k~0. Writing
uo and w as Fourier séries,

one can do perturbation theory in E and the lowest order approximation
is, by (2 . 1 ),

where c is defined in (2 . 3), a2 = 3 c2 ( 1 + W2). To the same order in E, we
find that the "modes" W:t 1 découplé from the others and lead to the
coupled system of équations :

It is useful to introduce the parametrization

and to recall the relation

Then (3 . 3) takes the form of a matrix équation with matrix

This matrix has a zéro eigenvalue when K = 0 or K = ~ i /2-4W~. Thus,
k is either real or purely imaginary and if we require the decay as

x --~ oo, i. e., if we require that k is real, this means that we must have
W2  1 /2 as asserted above.
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We assume now W2  1 /2 and we set

Then AK has an eigenvector with eingenvalue 0 which is of the form

Since we are interested in real functions v, we also require w 1= w _ 1 so
that the Eq. (3 . 6) leads to the solution

with

From this, we see that, to first order in E, w is given by

and therefore

with p arbitrary. Note that by (3 . 4), (3 . 5), we have

We now use the stable manifold theorem [CE], Theorem 21.2, to conclude
that to the perturbative solution just given there corresponds a solution
of the non-linear problem (3.1). In other words, we have

PROPOSITION 3.1. - Let given and let W2  1 /2. Then
there are an Eo &#x3E; 0 and a to &#x3E; 0 such that the equation

has, on x &#x3E; 0, solutions for every E, every 0 of the form

and for every t, I t ~  to. These ’ solutions are of the form

The constant c satisfies the relation

k is given by

and 8 is given by (3 . 7).
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326 J.-P. ECKMANN AND M. ZAMORA

COROLLARY 3.2. - The above statements hold also for JC0 1 but with

(3 . 9) replaced by

Remark. - The présence of 6 in (3 . 9), (3 .11 ) shows a phase shift of
the exponential part of the solution with respect to the periodic part.

4. MATCHING OF SOLUTIONS

We now construct solutions for the differential équation ( 1.1 ) for the
case of

Thèse solutions will be 4 times differentiable except at x = 0 where they
are 3 times differentiable. Our strategy consists in checking the existence
of solutions at the linear level and then using the implicit function theorem
to etablish the existence of corresponding solutions to the nonlinear prob-
lem. The existence of the solution for the linear problem will follow from
a transversality argument. It is useful to introduce the following notation
for the solution on right (jc&#x3E;0), neglecting terms of order (!) (E3):

where

The définitions for the solution on the left are analogous, except that the
index R is replaced by Land that the sign sL is + 1. We impose the
continuity conditions
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This is a system of 4 équations in the 6 unknowns WR, tR, xR~
We now show that the rank of this system is 4, when aL = aR and LR’
(By continuity, this will continue to be the case when aL and aR resp. &#x26;L
and bR are close to each other.) To do this, we perform yet another (linear)
change of variables, namely

Dénote by T the map from (E; ~1, ... ) to (E; ... ), defined by this
transformation.
We show the existence of transversality by perturbing the problem

aL = aR = a, new coordinates, we know from

Proposition 2.1 that there is a two-parameter family of solutions for

where W2  1 /2 and x~R are arbitrary (this is the translation 9). Consider
now the natural décomposition in R6: ç = (y, z), with y~R2 and z~R4.
We want to apply the inverse function theorem to the function

..., F 4 0 T) to solve the équation

Since we know that (E; W, x, 0, 0, 0, 0) is a zero of F, for all x it suffices
to show that the derivative

does not vanish. A lengthy calculation, which can be done with computer
algebra, shows that the leading order of the déterminant is

for some C ~ 0. This means that we have the

LEMMA 4.1. - Let W 0  1/ J2. There is an Eo &#x3E; 0 such that for all E

satisfying O  E  Ep for all 1 W 1  W 0 and for all x E R, the determinant

det (DZ F) (E; W, x, 0, 0, 0, 0) is non-zero.
We now apply the Implicit Function Theorem to the function F and

we get the

LEMMA 4.2. - Let W 0  1 /~. There is an E 1 &#x3E; 0 such that for all E

satisfying 0  E  E1 for all 0  W Wo and for all xER, the continuity
conditions (4. 2) can be satisfied.

Vol. 54, n° 3-1991.



328 J.-P. ECKMANN AND M. ZAMORA

FIG. 1. - Three stationary solutions for the non-homogeneous equation. The parameters
are aR =0.5, aL =1.0, E=0.7, cL = 0.577,35. The other parameters are adapted to make a
smooth solution.

This means that the linearized equations have been matched at 0. We
now want to match the solutions in the half-spaces and we apply again
the Implicit Function Theorem.

THEOREM 4.3. - Fix a &#x3E; 0 and b &#x3E; o. Let There is an ao &#x3E; o,
a bo &#x3E; 0 and an E2 &#x3E; 0 such that the following holds: Let 1 aL - a ~ 1  ao,
1 aR - a|  a0, |bL - b 1 bo,1 bR - b|  bo. For all E satisfying 0  E  E2 for all
1 W 1  W 0 and for all x E R, the continuity conditions (4 . 2) can be satisfied
for the equation

Annales de l’Institut Henri Poincaré - Physique théorique



329STATIONARY SOLUTIONS FOR THE SWIFT-HOHENBERG EQUATION

with

Remark. - The steps to go from Lemma 4.2 to Theorem 4.3 are as
follows. Consider first the case a =1, b =1. The déterminant is a continuous
function of the parameters aL, aR, bL, and bR, with an expression as in
(4 . 3), so that det W, x, 0, 0, 0, 0)/E6 is uniformly bounded away
from zéro, when the aL, ... vary in small balls around 1. Therefore, the
implicit function theorem applies uniformly in thèse balls. The case of
arbitrary non-zero a and b follows now by scaling the variable E and the
amplitude of the solution.

5. EXAMPLE

In this section, we présent a numerical example (cf. Fig. 1 ), in which
we matched the leading order solutions for values of the parameters which
are certainly outside of the validity of Theorem 4.3 as we prove it. The

parameters have been chosen to make the following phenomena visible.
First, one can see how the exponential part aids the interpolation of the
two periodic solutions. Second, we see that as x is varied and the amplitude
of the left solution is kept fixed, the amplitude and the wavelength of the
right solution oscillâtes. Second, one should note that the speed of transla-
tion on the left is imposed (the three frames cover the three thirds of a
period on the l.h.s.) and the r. h. s. moves a different distance in this

period.

ACKNOWLEDGEMENTS

JPE was partially supported by the Einstein Center of Theoretical

Physics at the Weizmann Institute. He would also like to thank I. Procac-
cia for his usual warm hospitality.

[RP] H. RIECKE and H.-G. PAAP, Perfect Wave-Number Selection and Drifting Patterns
in Ramped Taylor Vortex Flow, Phys. Rev. Lett., Vol. 59, 1987, pp. 2570-573.

[R] H. RIECKE, Pattern Selection by Weakly Pinning Ramps, Europhys. Lett., Vol. 2,
1986, pp. 1-8.

Vol. 54, n° 3-1991.



330 J.-P. ECKMANN AND M. ZAMORA

[CE] P. COLLET and J.-P. ECKMANN, Instabilities and Fronts in Extended Systems, Prince-
ton University Press, 1990.

[NAG] L. NING, G. AHLERS and D. S. CANNELL, Wave-Number Selection and Travelling
Vortex Waves in Spatially Ramped Taylor-Couette Flow, Phys. Rev. Lett., Vol. 64,
1990, pp. 1235-1238.

( Manuscript received July 4, 1990.)

Annales de l’Institut Henri Poincaré - Physique " théorique "


