L. Accardi
Y. G. Lu

The weak coupling limit without rotating wave approximation

<http://www.numdam.org/item?id=AIHPA_1991__54_4_435_0>
The weak coupling limit without rotating wave approximation

by

L. ACCARDI and Y. G. LU (*)

Centro Matematico V. Volterra,
Dipartimento di Matematica, Università di Roma II, Italy

ABSTRACT. — We investigate the behaviour, in the weak coupling limit, of a system interacting with a Boson reservoir without assuming the rotating wave approximation, i.e. we allow the system Hamiltonian to have a finite set of characteristic frequencies rather than a single one [cf. equation (1.4)]. Our main result is the proof that the weak coupling limit of the matrix elements with respect to suitable collective vectors of the solution of the Schrödinger equation in interaction representation (i.e. the wave operator at time t) exists and is the solution of a quantum stochastic differential equation driven by a family of independent quantum Brownian motions, one for each characteristic frequency of the system Hamiltonian.

RÉSUMÉ. — Nous étudions le comportement dans la limite de couplage faible d'un système interagissant avec un réservoir de bosons sans supposer l'approximation d'onde tournante, c'est-à-dire que nous permettons à l'hamiltonien du système d'avoir plusieurs fréquences caractéristiques au lieu d'une seule [voir équation (1.4)]. Notre résultat principal est une preuve de l'existence de la limite de couplage faible des éléments de matrice par rapport à certains vecteurs collectifs de la solution de l'équation de Schrödinger dans la représentation interaction (c'est-à-dire de l'opérateur

(*) On leave of absence from Beijing Normal University.
d’onde à l’instant $t)$. De plus cette limite est solution d’une équation différentielle stochastique contenant une famille de mouvements browniens quantiques indépendants, un par fréquence caractéristique de l’hamiltonien.

1. INTRODUCTION

The attempt to produce a satisfactory quantum description of irreversible phenomena has motivated many investigations. In the last 30 years these investigations have produced a number of interesting models, but the theoretical status of these models has remained, for a long time, uncertain and even (in some cases) contradictory [14]. The standard approach to the problem is the following: one starts from a quantum system coupled to a reservoir (or heat bath, or noise—according to the interpretations). The reservoir is physically distinguished by the system because its time correlations decay much faster and one expects that, by the effect of the interaction, and in some limiting situations some energy will flow irreversibly from the system to the reservoir. One of the best known, among these limiting situations, is the so-called van Hove (or weak coupling) limit, in which the strength of the coupling system-reservoir is given by a constant λ and one studies the average values of the observables of the system, evolved up to time t with the coupled Heisenberg evolution of the system + reservoir, in the limit $\lambda \to 0$, $\lambda^2 t \to \tau$ as $\lambda \to 0$. This limiting procedure singles out the long time cumulative behaviour of the observables and the weakness of the coupling implies, in the limit, an effect of lost of memory (Markovian approximation).

In a first stage of development of this approach one only considered averages with respect to the Fock vacuum or to a fixed thermal state. This limitation has the effect of sweeping away, in the limit, all the terms of the iterated series except those which, in the Wick ordering procedure, correspond to the scalar terms. The resulting reduced evolution was a quantum Markovian semigroup and the corresponding equation—a quantum master equation (cf. [6], [7], [8], [11]).

Independently of these developments, and on a less rigorous mathematical level, the notion of quantum Brownian motion emerged from investigations of quantum optics, especially in connection with laser theory and, with the work of Hudson an Parthasarathy this notion was brought ot its full power with the construction of the quantum stochastic calculus for the Fock Brownian motion [13].
The new idea of quantum stochastic calculus is that one does not limit oneself to the reduced evolution (i.e. the master equation) but one considers the noise (quantum Brownian motion) as an idealized reservoir and one studies the coupled evolution of the system coupled to the noise. This evolution is not a standard quantum mechanical one, because it is not described by the usual Heisenberg equation, but by a quantum stochastic differential equation, called the quantum Langevin equation.

The physical importance of this more complete description has been pointed out by many authors and, from an intuitive point of view is quite clear: if the noise is looked at as an approximate description of the reservoir field (or gas), then in order to extract experimental information on the coupled system, one can choose to measure either the system or the reservoir, while in the previous approach one could only predict the behavior of the observables of the system ([9], [10]).

In order to put to effective use this new connection with the experimental evidence, a last step had to be accomplished: to prove the internal coherence of this picture. This means essentially two things:

(i) to explain precisely in which sense the quantum Brownian motions are approximations of the quantum fields (or of Boson or Fermion gases at a given temperature);

(ii) to explain precisely in which sense a quantum stochastic differential equation is an approximation of a ordinary Hamiltonian equation.

Once answered the questions (i) and (ii), all the previous results on the master equation follow easily applying a (by now standard) quantum probabilistic technique — the quantum Feynman-Kac formula (cf. [0]).

In a series of papers [1], ..., [5] (cf. also [12], for more recent results), we have solved the problems (i) and (ii) in a variety of models which include the most frequently used models in quantum optics.

The present paper points out two qualitatively new phenomena which arise when there are several characteristic frequencies in the original system:

(i) In the limit, not a single quantum Brownian motion arises, but several independent and mutually non isomorphic ones: one for each frequency of the system.

(ii) The collective vectors suitable to evidentiate the weak coupling behavior, in this case are not the same as in previous papers. This suggests the appearance of a interesting new phenomenon, namely: that the choice of the correct collective vectors needed to evidentiate the weak coupling limit behaviour should depend on the form of the interaction. We expect this new phenomenon to play an important part in the study of macroscopic, i.e. collective, quantum effects.

A natural extrapolation of our result to the case of continuous spectrum, leads to conjecture that in this case one should have a continuous tensor
product of quantum Brownian motions labeled by the energy spectrum of the original system. However it is not clear to us how to adapt the techniques developed so far to the case of a system with continuous spectrum.

Let us now fix the notations and state our basic assumptions.

We consider a quantum "System + Reservoir" model. Let H_0 be the system Hilbert space; H_1 the one particle reservoir Hilbert space; H_S the system Hamiltonian; $H_R = d\Gamma (-\Delta)$ where Δ is a negative self-adjoint operator—the one particle reservoir Hamiltonian—and $S_0^0 := e^{-it\Delta}$. The total space is

$$H_0 \otimes \Gamma (H_1)$$

where $\Gamma (H_1)$ is the Fock space over H_1 and the total Hamiltonian is

$$H^{(0)} = H_S \otimes 1 + 1 \otimes H_R + \lambda V \quad (1.1)$$

where,

$$V = V_g := -\frac{1}{i} (D \otimes A^+ (g) - D^+ \otimes A (g)) \quad (1.2)$$

D is a bounded operator on H_0 and $g \in H_1$.

The rotating wave approximation corresponds to the two following assumptions:

(i) in the interaction there are no terms of the form $D \otimes A (g)$ or $D^+ \otimes A^+ (g)$.

(ii) D is an eigenvector of the free evolution of the system, i.e.

$$D (t) := e^{-itH_S} De^{itH_S} = e^{-it\omega_0} D \quad (1.3)$$

In [6], condition (1.3) is replaced by the following weaker condition: H_S has pure non-degenerate discrete spectrum and the system Hilbert space is finite dimensional. This assumption implies that

$$D (t) := e^{-itH_S} De^{itH_S} = \sum_{d=1}^N D_d e^{-it\omega_d} \quad (1.4)$$

where the $D_d (d = 1, \ldots, N)$ are bounded operators on H_0 and $\omega_d \neq \omega_d'$. In the present paper, we shall prove that if condition (1.3) is replaced by condition (1.4), then all the results of [2] are still valid with the only difference that the resulting quantum stochastic differential equation is driven not by a single quantum Brownian motion, but by N-independent ones [in the sense of Definition (1.1)]. The reason of the appearance of these N-independent Brownian motions is explained in Section 2.

Now let $H^{(0)} = H^{(0)} - \lambda V = H_S \otimes 1 + 1 \otimes H_R$, then the operator

$$U^{(0)} (t) = e^{-itH^{(0)}} e^{itH_L} \quad (1.5)$$
satisfies the equation

$$\frac{d}{dt} U^{(\alpha)}(t) = \frac{1}{i} V_g(t) U^{(\alpha)}(t) \quad (1.6)$$

where

$$V_g(t) := -\frac{1}{i} (D(t) \otimes A^+ (S^0_t g) - D^+(t) \otimes A (S^0_t g)) \quad (1.7)$$

In the following, we shall use the notation

$$V_g(t) = -\frac{1}{i} \sum_{d=1}^{N} (D_d \otimes A^+ (S^d_t g) - D^+_d \otimes A (S^d_t g))$$

$$= i \sum_{d=1}^{N} \sum_{\epsilon \in \{0, 1\}} D^\epsilon_d \otimes A^\epsilon (S^d_t g) \quad (1.8)$$

where,

$$D^0_d := -D^+_d; \quad D^1_d := D_d \quad (1.9)$$

$$A^0 := A; \quad A^1 := A^+ \quad (1.10)$$

and

$$S^d_t := e^{-i \omega_d t} S^0_t \quad (1.11)$$

In our assumptions, the iterated series

$$U^{(\alpha)}(t) = \sum_{n=0}^{\infty} (-i)^n \lambda^n \int_0^t \int_0^{t_1} \cdots \int_0^{t_n} dt_n \cdots dt_2 dt_1 V_g(t_1) \cdots V_g(t_n) \quad (1.12)$$

converges weakly on the domain of vectors of the form $u \otimes \psi$, where $u \in H_0$ and ψ is a coherent vector in H_1.

In order to formulate our results we have to introduce the notion of N-independent Boson Brownian motions.

Definition (1.1). Let K_1, \ldots, K_N be Hilbert spaces and let, for each $d=1, \ldots, N$, be given a self-adjoint operator $Q_d \geq 1$ on K_d. The process of N-independent Boson Brownian motions, respectively with values in K_1, \ldots, K_N and covariances Q_1, \ldots, Q_N is the process obtained by taking the tensor product of the Q_d-quantum Brownian motions on $L^2 (\mathbb{R}, dt; K_d)$ (cf. Def. (2.3) of [2]) for $d=1, \ldots, N$. In other terms this is the cyclic quasi-free representation W of the CCR on

$$\bigoplus_{d=1}^{N} L^2 (\mathbb{R}, dt; K_d)$$

Vol. 54, n° 4-1991.
with respect to the state \(\varphi \) characterized by

\[
\varphi\left(\mathcal{W}\left(\bigoplus_{d=1}^{n} \chi_d \otimes f_d\right)\right) = \exp\left(-\frac{1}{2} \sum_{d=1}^{N} \left\| \chi_d \right\|^2 \langle f_d, Q_d f_d \rangle\right),
\]

(1.14)

\(\chi_d \in L^2(\mathbb{R}); \quad d = 1, \ldots, N \)

If

\(Q_d = 1; \quad d = 1, \ldots, N \)

then we speak of \(N \)-independent Boson Fock Brownian motions.

The Hilbert space where this representation lives is the tensor product of the spaces \(\mathcal{H}_{Q_d}(d = 1, \ldots, N) \). Denoting

\[
A_d(\chi_{s,t} \otimes f_d), \quad A_d^+(\chi_{s,t} \otimes f_d) \quad ((s, t) \subseteq \mathbb{R}, f_d \in K_d)
\]

the annihilation and creation operators acting on the \(d \)-th factor of the tensor product, one often uses the unbounded form of the quantum Brownian motion process given by the pair of operators

\[
\begin{align*}
A_d(t, f_d) &= A_d(\chi_{0, t} \otimes f_d) \\
A_d^+(t, f_d) &= A_d^+(\chi_{0, t} \otimes f_d),
\end{align*}
\]

(1.15)

\(t \in \mathbb{R}_+, \quad f_d \in K_d, \quad d = 1, \ldots, N \)

All these operators are defined on the domain of the vectors

\[
\mathcal{W}\left(\bigoplus_{d=1}^{n} \chi_d \otimes f_d\right) \cdot \left(\bigotimes_{d=1}^{N} \Psi_d\right)
\]

\(= \bigotimes_{d=1}^{N} [\mathcal{W}_{O_d}(\chi_d \otimes f_d) \Psi_d] = : \bigotimes_{d=1}^{N} \Psi_d(\chi_d \otimes f_d) \) (1.16)

Where \(\chi_d \in L^2(\mathbb{R}), f_d \in K_d \) and \(\Psi_d \) is the cyclic vector of the representation \(\mathcal{W}_{O_d} \).

As in [2], we shall suppose that there exists a non-zero subspace \(K \subset H_1 \), such that

\[
\int_{\mathbb{R}} |\langle f, S^d_t f' \rangle| dt < \infty, \quad \text{for each } f, f' \in K
\]

(1.17)

This condition implies that, for each \(d = 1, \ldots, N \), the sesquilinear form

\[
f, f': \quad K \to (f | f')_d := \int_{\mathbb{R}} \langle f, S^d_t f' \rangle dt
\]

(1.18)

[where \(S^d_t \) is defined by (1.11)] defines a pre-scalar product on \(K \). In the following, for each \(d = 1, \ldots, N \), \(K_d \) shall denote the Hilbert space completion of the quotient space of \(K \) for \((. | .)_d\)-null space.

With these notations we can state our main result:

Theorem (1.2). — *Under the condition (1.4) and the notation (1.15), (1.16), for each \(N \in \mathbb{N}, g, \{f_d\}_{d=1}^{N}, \{f'_d\}_{d=1}^{N} \subset K, \{S_d, T_d, S'_d, T'_d\}_{d=1}^{N} \subset \mathbb{R},*
t ≥ 0, u, v ∈ H₀, the limit as λ → 0 of the matrix element
\[\langle u \otimes W \left(\lambda \sum_{d=1}^{N} \int_{S_d \lambda^{-2}}^{T_d \lambda^{-2}} S_d^d f_d^d \, du \right) \Phi, \]
exists and, in the notation (1.16), is equal to
\[U^{(1)}(t \lambda^2) v \otimes W \left(\lambda \sum_{d=1}^{N} \int_{S_d \lambda^{-2}}^{T_d \lambda^{-2}} S_d^d f_d^d \, du \right) \Phi \] (1.19)
where, U(t) is the solution of the quantum stochastic differential equation
\[U(t) = 1 + \int_{0}^{t} \sum_{d=1}^{N} \left(D_d \otimes d \tilde{A}_d(s, g) \right) \]
\[- D_d^+ \otimes d \tilde{A}_d(s, g) - D_d^+ D_d \otimes 1^\otimes n \cdot (g \mid g)_d - ds \] U(s) (1.21)
on H₀ ⊗ \otimes \Gamma (L^2(\mathbb{R}) \otimes (K_d, \langle . \rangle_d)) and where, by definition for each
d = 1, \ldots, N,
\[\tilde{A}_d(s, g) = 1^\otimes (d-1) \otimes A_d(s, g) \otimes 1^\otimes (N-d) \] (1.22)
and A_d(s, g) is given by (1.15).

ACKNOWLEDGEMENTS

L. Accardi acknowledges support from Grant AFSR 870249 and ONR N00014-86-K-0583 through the Center for Mathematical System Theory, University of Florida.

2. THE CONVERGENCE OF THE RESERVOIR PROCESS

In this section, we prove the convergence of the reservoir process to a N-independent quantum Brownian motion. This corresponds to the convergence of the 0-th order term of (1.13) in the series expansion (1.12).

The following result generalizes Lemma (3.2) of [2]:

LEMMA (2.1). – In the notation (1.18), for each N ∈ N, f₁, \ldots, f_N, g₁, \ldots, g_N ∈ K and for each S₁, \ldots, S_N, T₁, \ldots, T_N, S'_₁, \ldots, S'_N, T'_₁, \ldots, T'_N in R.
By the Riemann-Lebesgue Lemma, one gets
\[\lim_{\lambda \to 0} \left(\lambda \sum_{d=1}^{N} \int_{S_d/\lambda^2}^{T_d/\lambda^2} S_u^d f_d du, \lambda \sum_{d'=1}^{N} \int_{S_{d'}/\lambda^2}^{T_{d'}/\lambda^2} S_u^d g_d du \right) \]
\[= \sum_{d=1}^{N} \left\langle \chi_d(S_d, T_d), \chi_d(S_d, T_d) \right\rangle_{L^2(R)} (f_d, g_d)_d \]
\[= \left(\bigoplus_{d=1}^{N} (\chi_d(S_d, T_d) \otimes f_d) \right) \bigoplus_{d=1}^{N} (\chi_d(S_d, T_d) \otimes g_d) \]
(2.1)

Proof. — For each \(f_1, \ldots, f_N, g_1, \ldots, g_N \in K \) and for each \(S_1, \ldots, S_N, T_1, \ldots, T_N, S'_1, \ldots, S'_N, T'_1, \ldots, T'_N \),

\[\left\langle \lambda \sum_{d=1}^{N} \int_{S_d/\lambda^2}^{T_d/\lambda^2} S_u^d f_d du, \lambda \sum_{d'=1}^{N} \int_{S_{d'}/\lambda^2}^{T_{d'}/\lambda^2} S_u^d g_d du \right\rangle \]
\[= \sum_{d=1}^{N} \sum_{d'=1}^{N} \left\langle \lambda \int_{S_d/\lambda^2}^{T_d/\lambda^2} S_u^d f_d du, \int_{S_{d'}/\lambda^2}^{T_{d'}/\lambda^2} S_u^d g_d du \right\rangle \]
\[= \sum_{d=1}^{N} \sum_{d'=1}^{N} \int_{S_d/\lambda^2}^{T_d/\lambda^2} \int_{S_{d'}/\lambda^2}^{T_{d'}/\lambda^2} du \left\langle f_d, S_{d'}^d g_{d'} \right\rangle e^{i(\omega_d - \omega_{d'})} u/\lambda^2 \]
(2.2)

By the Riemann-Lebesgue Lemma, one gets
\[\lim_{\lambda \to 0} \int_{S_d}^{T_d} \int_{(S_{d'}/\lambda^2)}^{(T_{d'}/\lambda^2)} \left(f_d, S_{d'}^d g_{d'} \right) e^{i(\omega_d - \omega_{d'})} u/\lambda^2 \]
\[= \begin{cases} 0, & \text{if } d \neq d' \\ \left\langle \chi_d(S_d, T_d), \chi_d(S_d, T_d) \right\rangle_{L^2(R)} (f_d, g_d)_d, & \text{if } d = d' \end{cases} \]
(2.3)

and this ends the proof.

The following lemma shows in which sense the "collective Hamiltonian process" converges to N-independent quantum Brownian motion.

Lemma (2.2). — For each \(n \in N \), \(\{ f_d^{(k)} \}_{1 \leq d \leq n, 1 \leq k \leq n} \subseteq K \), \(\{ S_d^{(k)} \}_{1 \leq d \leq n, 1 \leq k \leq n} \subseteq R \) and \(S_d^{(k)} \leq T_d^{(k)} \), the limit

\[\lim_{\lambda \to 0} \Phi \left(\sum_{d=1}^{N} \chi_d^{(1)} \lambda \int_{S_d^{(1)}/\lambda^2}^{T_d^{(1)}/\lambda^2} S_u^d f_d^{(1)} du \right) \times \ldots \]
\[\times W \left(\sum_{d=1}^{N} \chi_d^{(n)} \lambda \int_{S_d^{(n)}/\lambda^2}^{T_d^{(n)}/\lambda^2} S_u^d f_d^{(n)} du \right) \Phi \]
(2.4)
exists uniformly for \(\{ x^{(k)}_d \}_{1 \leq d \leq N, 1 \leq k \leq n}, \{ S^{(k)}_d, T^{(k)}_d \}_{1 \leq d \leq N, 1 \leq k \leq n} \) in a bounded set of \(\mathbb{R} \) and is equal to

\[
\prod_{d=1}^{N} \langle \psi_d, W(x^{(1)}_d, \chi_{[S]_d}, T^{(1)}_d) \otimes f_d^{(1)} \rangle \times \ldots
\times W(x^{(n)}_d, \chi_{[S]_d}, T^{(n)}_d) \Psi_d \rangle
\]

\[
= \langle \psi_1 \otimes \ldots \otimes \psi_N, \otimes_{d=1}^{N} W(x^{(1)}_d, \chi_{[S]_d}, T^{(1)}_d) \otimes f_d^{(1)} \rangle \times \ldots
\times \otimes_{d=1}^{N} W(x^{(n)}_d, \chi_{[S]_d}, T^{(n)}_d) \Psi_1 \otimes \ldots \otimes \Psi_N \rangle
\]

\[
= \langle \psi_1 \otimes \ldots \otimes \psi_N, W \left(\sum_{d=1}^{N} x^{(1)}_d \chi_{[S]_d}, T^{(1)}_d \otimes f_d^{(1)} \right) \times \ldots
\times W \left(\sum_{d=1}^{N} x^{(n)}_d \chi_{[S]_d}, T^{(n)}_d \otimes f_d^{(n)} \right) \Psi_1 \otimes \ldots \otimes \Psi_N \rangle
\] (2.5)

where, \(\Psi_d \) is the vacuum of \(\Gamma (L^2(\mathbb{R}) \otimes (K d, \ldots, d)) \).

Proof. For each \(n \in \mathbb{N} \), \(\{ f^{(k)}_d \}_{1 \leq d \leq N, 1 \leq k \leq n} \subseteq \mathbb{R}, \{ S^{(k)}_d, T^{(k)}_d \}_{1 \leq d \leq N, 1 \leq k \leq n} \subseteq \mathbb{R} \) and \(S^{(k)}_d \leq T^{(k)}_d \), \(1 \leq d \leq N, 1 \leq k \leq n \), by the Riemann-Lebesgue Lemma,

\[
\langle \Phi, W \left(\sum_{d=1}^{N} x^{(1)}_d \chi_{[S]_d}, T^{(1)}_d \otimes f_d^{(1)} \right) \times \ldots
\times W \left(\sum_{d=1}^{N} x^{(n)}_d \chi_{[S]_d}, T^{(n)}_d \otimes f_d^{(n)} \right) \Phi \rangle
\]

\[
\exp \left(-\frac{1}{2} \sum_{1 \leq i, j \leq n} x^{(i)}_d x^{(j)}_d \lambda^2 \right)
\times \left(\int_{S^{(1)}_d}^{T^{(1)}_d} S^{(1)}_d f^{(1)}_d du \right)
\times \left(\int_{S^{(n)}_d}^{T^{(n)}_d} S^{(n)}_d f^{(n)}_d du \right)
\]

\[
\exp \left(-i \text{Im} \sum_{1 \leq i, j \leq n} x^{(i)}_d x^{(j)}_d \lambda^2 \right)
\times \left(\int_{S^{(1)}_d}^{T^{(1)}_d} S^{(1)}_d f^{(1)}_d du \right)
\times \left(\int_{S^{(n)}_d}^{T^{(n)}_d} S^{(n)}_d f^{(n)}_d du \right)
\]

\[
\rightarrow \exp \left(-\frac{1}{2} \sum_{1 \leq i, j \leq n} x^{(i)}_d x^{(j)}_d \right)
\times \left(\chi_{[S]_d}, T^{(1)}_d \otimes f^{(1)}_d, \chi_{[S]_d}, T^{(n)}_d \otimes f^{(n)}_d \right)
\]

\[
\exp \left(-i \text{Im} \sum_{1 \leq i, j \leq n} x^{(i)}_d x^{(j)}_d \right)
\]

Vol. 54, n° 4-1991.
and obviously, the convergence is uniform for \(\{ x_d^{(k)}, S_d^{(k)}, T_d^{(k)} \}_{1 \leq d \leq N, 1 \leq k \leq n} \) in a bounded subset of \(\mathbb{R} \).

3. THE WEAK COUPLING LIMIT

The strategy of the proofs in the section is similar to that applied in [2], therefore we shall only outline the proofs, giving the full details only of those statements which are qualitatively different from the corresponding ones in [2].

First of all, in analogy with Lemma (4.1) of [2], we have the following

Lemma (3.1). — For each \(n \in \mathbb{N} \), the product

\[
(-i)^n V_g(t_1) \ldots V_g(t_n)
\]

can be written as a sum of two types of terms (called terms of type I and of type II):

\[
\sum_{\varepsilon \in \{0, 1\}^n} (I^e_{g, D}(n, t) + \Pi^e_{g, D}(n, t))
\]

with

\[
I^e_{g, D}(n, t) := (-D^+(t_1)) \ldots D(t_j) \ldots D(t_k) \ldots (-D^+(t_n))
\]

\[
\otimes \sum_{m=0}^{\infty} \sum_{1 \leq r_1 < \ldots < r_k \leq n} \prod_{h=1}^k \left(\sum_{j_h^k = 1 \cap \{j_h^k-1\}^m = 1} \prod_{z \in \{j_h^k\}^m \setminus \{j_h^k-1\}^m} A^+(S_{t_j}^0 g) \right)
\]

\[
\prod_{n \in \{j_h^k\}^m \setminus \{j_h^k-1\}^m \setminus \{j_h^k-1\}^m} A(S_{t_j}^0 g)
\]
and

$$\Pi^g_{n, D}(n, t) := (-D^+(t_1)) \ldots D(t_{j_1}) \ldots D(t_{j_k}) \ldots (-D^+(t_n))$$

$$\otimes \sum_{m=0}^{k \wedge (n-k)} \sum_{1 \leq q_1 < \ldots < q_m \leq n} \sum_{(q_h)_{h=1}^m = (1 \ldots m)_{1 \vee (p_h)_{h=1}^m}} \prod_{h=1}^{m} \langle S_{t_{p_h} g}^0, S_{t_{q_h} g}^0 \rangle$$

$$\times \prod_{a \in \{j_h\}_{h=1}^k \setminus \{q_h\} = 1} A^{+}(S_{t_{q_a} g}^0) \prod_{a \in \{1, \ldots, n\} \setminus \{j_h\}_{h=1}^k \cup \{p_h\} = 1} A(S_{t_{p_a} g}^0) \quad (3.2b)$$

As in [2], \(j_1 < \ldots < j_k\) are the indices of the creators; \(q_h\) (resp. \(p_h\)) are the indices of those creators (resp. annihilators) which have given rise to a scalar product. Moreover, we recall from [2] that \(\sum_{(p_1, \ldots, p_m; \{q_h\} = 1)}^\prime\) means that the sum which runs over all \(1 \leq p_1, \ldots, p_m \leq m\) satisfying

\[
\begin{align*}
|\{p_h\}_{h=1}^m| &= m \\
\{p_h\}_{h=1}^m &\subseteq \{1, \ldots, n\} \setminus \{j_h\}_{h=1}^k \\
p_h &< q_h, \quad h = 1, \ldots, m \\
q_h - p_h &\geq 2 \quad \text{for some } h = 1, \ldots, m
\end{align*}
\]

(3.3a) \quad (3.3b) \quad (3.3c) \quad (3.3d)

The proof is the same as in [2] except for the fact that now the \(D\) depend on \(t\).

Lemma (3.2). – For each \(g \in K\), and \(D \in B(H_0)\), there exists a constant \(C\), such that for each \(u, v \in H_0\), \(n \in \mathbb{N}\), and \(t \geq 0\),

$$\left| \langle u \otimes W \left(\lambda \sum_{d=1}^{N} \int_{S_d/\lambda^2} \mathbf{S}_{d}^2 f_d du \right) \Phi, \Phi \rangle \right|$$

$$\leq \|u\| \cdot \|v\| \cdot C^n \frac{1}{((1/3) n)!} (t v^1)^n \quad (3.4)$$

Proof. – The difference between (3.4) and the uniform estimate of Lemmata (5.2), (5.3) of [2] consists only in the following two points:

(i) replacing \(D\) by \(D(t) := e^{-iHs} D e^{iHs}\);

(ii) replacing the scalar product

$$\left| \left\langle \int_{S/\lambda^2} \mathbf{S}_u f_d du, \mathbf{S}_{v/\lambda^2} g \right\rangle \right|$$

(3.5a)
by

$$\left| \sum_{d=1}^{N} \int_{S_{d/\lambda}^2}^T \mathcal{S}_d^0 f_d \, du, \, S_{\nu/\lambda}^0 g \right|$$ (3.5b)

Since \(\| D(t) \| = \| D \| \), the difference (i) can’t influence the uniform estimate. But also the difference (ii) is not important since (3.5b) is majorized by

$$\sum_{d=1}^{N} \int_{S_{d/\lambda}^2}^T \left| \mathcal{S}_d^0 f_d, \, g \right| e^{-i \omega_d \nu/\lambda} \, du \leq \sum_{d=1}^{N} \int_{-\infty}^{\infty} \left| \mathcal{S}_d^0 f_d, \, g \right| \, du \quad (3.6)$$

So, we get the uniform estimate with the same arguments as in the above mentioned Lemmata of [2].

The following lemma states the irrelevance, in the weak coupling limit, of the terms of type II in the decomposition (3.1).

Lemma (3.3). - For each \(g \in K \), and \(D \in \mathcal{B}(H_0) \), there exists a constant \(C \), such that for each \(u, v \in H_0 \), \(n \in \mathbb{N} \), and \(t \geq 0 \),

$$\lim_{\lambda \to 0} \left| \left\langle \sum_{d=1}^{N} \int_{S_{d/\lambda}^2}^T \mathcal{S}_d^0 f_d \, du, \sum_{d=1}^{N} \int_{S_{d/\lambda}^2}^T \mathcal{S}_d^0 f_d \, du \right\rangle \Phi, \right| = 0 \quad (3.7)$$

Proof. - With the same arguments as in the proof of the Lemma (4.2) in [2] we obtain the inequality

$$\left| \left\langle \sum_{d=1}^{N} \int_{S_{d/\lambda}^2}^T \mathcal{S}_d^0 f_d \, du, \sum_{d=1}^{N} \int_{S_{d/\lambda}^2}^T \mathcal{S}_d^0 f_d \, du \right\rangle \Phi, \right| \leq C_1^n \lambda^{-2m} \int_{0}^{t} dt_1 \cdots \int_{0}^{t_{n-1}} dt_n \Pi_n \mathcal{Y}_D(n, t) \times v^\mathcal{W} \left(\lambda \sum_{d=1}^{N} \int_{S_{d/\lambda}^2}^T \mathcal{S}_d^0 f_d \, du \right) \left. \right| \Phi \right| \right| (3.8)$$

Replacing \(S_t \) by \(S_t^0 \), we see that the right hand side of (3.8) has the same form as (4.21) of [2]. So we can conclude the proof with the same arguments as in Lemma (4.2) of [2].
The following lemma gives the explicit form of the limit of the terms of type I.

THEOREM (3.4). — *For each* \(n \in \mathbb{N} *\), *the limit*

\[
\lim_{\lambda \to 0} \left\langle u \otimes \mathcal{W} \left(\lambda \sum_{d=1}^{N} \int_{S_{d}/\lambda^2}^{\Lambda_{d}/\lambda^2} S_{d}^d f_d \, du \right) \Phi, \right.
\]

\[
\left. \lambda^{n} \int_{0}^{t} dt_{1} \int_{0}^{t_{1}} dt_{2} \ldots \int_{0}^{t_{n-1}} dt_{n} I_{n, \tau, D} (n, t) \right. \]

\[
\left. \ni \otimes \mathcal{W} \left(\lambda \sum_{d=1}^{N} \int_{S_{d}/\lambda^2}^{\Lambda_{d}/\lambda^2} S_{d}^d f'_{d} \, du \right) \Phi \right\rangle (3.9)
\]

exists and is equal to

\[
\sum_{m=0}^{k \wedge (n-k)} \sum_{1 \leq r_{1} < \ldots < r_{m} \leq k} \sum_{1 \leq d_{1}, \ldots, d_{j_{1}} - 1 = d_{j_{1}}, \ldots, d_{j_{m}} - 1 = d_{j_{m}}, \ldots, d_{n} \leq N} \left\langle u, D_{n} (j_{1}, \ldots, j_{k}, \{ d_{h} \}_{h=1}^{n}) \right\rangle \left\langle g \right\rangle_{d_{j_{1}}-} \\
\left. \times \int_{0 \leq t_{1} \leq \ldots \leq t_{m} \leq \ldots \leq t_{j_{1}} \leq \ldots \leq t_{j_{m}} \leq \ldots \leq t_{1} \leq t} dt_{1} \ldots dt_{j_{1}} \ldots dt_{j_{m}} \ldots dt_{n} \right. \\
\left. \times \prod_{\alpha \in \{ j_{h} \}_{h=1}^{k} \setminus \{ j_{r} \}_{r=1}^{m}} \chi_{[S_{d_{h}}], \tau_{d_{h}}} (t_{a}) (f_{d_{a}} | g)_{d_{a}} \\
\left. \times \prod_{\alpha \in \{ 1, \ldots, n \} \setminus \{ j_{h} \}_{h=1}^{k} \cup \{ j_{r} \}_{r=1}^{m}} \chi_{[S_{d_{\alpha}}, \tau_{d_{\alpha}}} (t_{a}) (g | f'_{d_{\alpha}})_{d_{\alpha}} \\
\left. \prod_{d=1}^{N} \mathcal{W} \left(\bigoplus_{d=1}^{N} \chi_{[S_{d}, \tau_{d}] \otimes f'_{d}} \right) \Psi_{1} \otimes \ldots \otimes \Psi_{N}, \right. \]

\[
\mathcal{W} \left(\bigoplus_{d=1}^{N} \chi_{[S_{d}, \tau_{d}] \otimes f'_{d}} \right) \Psi_{1} \otimes \ldots \otimes \Psi_{N} \right\rangle (3.10)
\]

where,

\[
D_{n} (j_{1}, \ldots, j_{k}, \{ d_{h} \}_{h=1}^{n}) := (- D_{d_{1}}^{+}) \ldots D_{d_{j_{1}}} \ldots D_{d_{j_{2}}} \ldots (- D_{d_{n}}^{+}) (3.11)
\]

and

\[
(g | g)_{d,-} := \int_{-\infty}^{0} \left\langle g, S_{t}^{d} g \right\rangle \, dt (3.12)
\]
Proof. – Using the expression (3.2a) of the type I terms, one has for each \(\varepsilon \in \{ 0, 1 \}^n \), \(\{ j_1, \ldots, j_k \} = \{ j, \varepsilon(j) = 1 \} \),

\[
\left< u \otimes W \left(\lambda \sum_{d=1}^{N} \int_{S_d/\lambda^2}^{T_d/\lambda^2} S_d^d f_d \, du \right) \Phi, \right.
\]

\[
\lambda^n \int_0^{t_\lambda^2} dt_1 \int_0^{t_2} dt_2 \cdots \int_0^{t_{n-1}} dt_n \left< g, \sum_{x^k} \int_{S_d/\lambda^2}^{T_d/\lambda^2} S_d^d f_d \, du \right> \Phi
\]

\[
\times (n, t)
\]

\[
\times \sum_{m=0}^{k \land (n-k)} \sum_{1 \leq r_1 < \ldots < r_m \leq k} \lambda^{-2m} \int_0^{t_1} dt_1 \ldots
\]

\[
\times \left< g, \sum_{h=1}^{m} \int_{S_{h^d}/\lambda^2}^{T_{h^d}/\lambda^2} \right> \phi
\]

\[
\times \left< u, D^\varepsilon_1 (t_1/\lambda^2) \ldots D^\varepsilon_n (t_n/\lambda^2) v \right>
\]

\[
\times \left< \sum_{d=1}^{N} \int_{S_d/\lambda^2}^{T_d/\lambda^2} \right> \phi
\]

From this, using (1.4), we know that (3.13) is equal to

\[
\sum_{m=0}^{k \land (n-k)} \sum_{1 \leq r_1 < \ldots < r_m \leq k} \lambda^{-2m} \int_0^{t_1} dt_1 \ldots \int_0^{t_{n-1}} dt_n
\]

\[
\times \left< g, \sum_{h=1}^{m} \int_{S_{h^d}/\lambda^2}^{T_{h^d}/\lambda^2} \right> \phi
\]

\[
\times \left< u, D^\varepsilon_1 (t_1/\lambda^2) \ldots D^\varepsilon_n (t_n/\lambda^2) v \right>
\]

\[
\times \left< \sum_{d=1}^{N} \int_{S_d/\lambda^2}^{T_d/\lambda^2} \right> \phi
\]
Now, multiplying and dividing by a factor \(e^{-i\omega g t} \) and using (1.4), we can reduce the \(S^d - S^0 - \) scalar products to \(S^d - S^d - \) scalar products. Thus the expression (3.14) becomes

\[
\times \sum_{m=0}^{k \wedge (n-k)} \sum_{1 \leq r_1 < \ldots < r_m \leq k} \lambda^{2m} \int_0^t dt_1 \ldots \int_0^{t_n-1} dt_n \\
\times \sum_{1 \leq d_1, \ldots, d_n \leq N} \langle u, D_{d_1}^{(1)} \ldots D_{d_n}^{(n)} \nu \rangle \\
\times \prod_{h=1}^m \left(\int S_{d_h}^d \int t_{r_{h-1}} t_{r_h} t_{r_{h-1}} \langle g, S_{d_h}^d, S_{t_{r_{h-1}}}^2 g \rangle e^{i(\omega d_{i_{r_{h-1}}}-\omega d_{i_{r_h}}) t_{r_{h-1}} t_{r_h}} du \right) \\
\times \prod_{\epsilon \in (j_h)^k} \left(\int S_{d_h}^d, S_{t_{r_{h-1}}}^2 g \right) e^{-i\omega (d_{i_{r_{h-1}}}-\omega d_{i_{r_h}}) t_{r_{h-1}} t_{r_h}} du \\
\times e^{i(\omega d_{i_{r_{h-1}}}-\omega d_{i_{r_h}}) t_{r_{h-1}} t_{r_h}} du \left(\int S_{d_h}^d, S_{t_{r_{h-1}}}^2 g \right) e^{-i\omega (d_{i_{r_{h-1}}}-\omega d_{i_{r_h}}) t_{r_{h-1}} t_{r_h}} du \left(\int S_{d_h}^d, S_{t_{r_{h-1}}}^2 g \right)
\right) (3.15)
\]

With the same changes of variables as those used in Theorem (5.1) of [2] we reduce (3.15) to the form

\[
\sum_{m=0}^{k \wedge (n-k)} \sum_{1 \leq r_1 < \ldots < r_m \leq k} \lambda^{2m} \int_0^t dt_1 \ldots \int_0^{t_n-1} dt_n \\
\times \sum_{1 \leq d_1, \ldots, d_n \leq N} \langle u, D_{d_1}^{(1)} \ldots D_{d_n}^{(n)} \nu \rangle \\
\times \int_0^t dt_1 \ldots \int_{t_{r_{h-1}}-t_{r_{h-1}} \lambda^2}^0 dt_{r_{h-1}} \int_{t_{r_{h-1}}-t_{r_{h-1}} \lambda^2}^{t_{r_{h-1}}+t_{r_{h-1}} \lambda^2} dt_{r_{h-1}} + \ldots
\]

Vol. 54, n° 4-1991.
By the Riemann-Lebesgue lemma, in the limit only those terms will survive for which $\omega_{a_h} = \omega_d$. Therefore the expression (3.15), in the limit $\lambda \to 0$, is equal to the limit, as $\lambda \to 0$, of the expression
THE WEAK COUPLING LIMIT

Notice that,

\[\lim_{\lambda \to 0} \int \langle g, S_d^d f \rangle du = \chi_{[S, T]}(g | f)_d \]

and

\[\int \langle g, S_d^d f \rangle du \leq \int \langle g, S_0^d f \rangle du < \infty \]

for each \(f, g \in K \), \(d = 1, \ldots, N \) and \(S, T \in \mathbb{R} \), \(t \geq 0 \). So we can apply again the Riemann-Lebesgue Lemma and conclude that, in the limit for \(\lambda \to 0 \) of the expression (3.17), only the terms with

\[d_{j_h-1} = d_{j_h}; \quad h = 1, \ldots, m \]

will survive. This implies that apart from the (irrelevant) sum over \(d_1, \ldots, d_m \), the terms non vanishing in the limit of the expression (3.17) are exactly of the same form as the expression (5.10) of Theorem (5.1) of [2]. Applying this Theorem, (3.10) follows easily, and this ends the proof.

From the above we obtain the explicit form of the limit (1.11).

THEOREM (3.5). For each \(N \in \mathbb{N} \), \(g \), \(\{ f_d \}_{d=1}^N \subseteq K \), \(\{ S_d, T^d, S'_d, T'_d \}_{d=1}^N \subseteq \mathbb{R} \), \(t \geq 0 \), \(u, v \in H_0 \), the limit

\[\lim_{\lambda \to 0} \left(u \otimes \mathcal{W} \left(\lambda \sum_{d=1}^N \int \frac{T_d \lambda^2}{S_d \lambda^2} S_u^d f_d du \right) \Phi \right) \]

exists and is equal to

\[\sum_{n=0}^{\infty} \sum_{k=0}^{n} \sum_{1 \leq j_1 < \ldots < j_k \leq n} \sum_{m=0}^{k \wedge (n-k)} \sum_{1 \leq r_1 < \ldots < r_m \leq k} \prod_{l=1}^{m} (j_{r_l-1})_{l+1}^{j_{r_l}} \otimes (j_{h_l})_{h_l=1}^{h_l} = \emptyset \]

\[\times \int_{0 \leq t_n \leq \ldots \leq t_m \leq \ldots \leq t_1 \leq t} dt_1 \ldots dt_{j_1} \ldots dt_{j_m} \ldots dt_n \]
Proof. – Expand $U_{\lambda_0}^{(t/\lambda^2)}$ using the iterated series and use Lemmas (3.1), (3.2), (3.3) and Theorem (3.4).

4. THE QUANTUM STOCHASTIC DIFFERENTIAL EQUATION

In the section, we shall prove that the limit (3.20) is the solution of a quantum stochastic differential equation (q.s.d.e.) whose explicit form we are going to determine.

We shall first determine an equation satisfied by the limit (3.20) and then we shall identify this equation with a q.s.d.e.

From Lemma (3.2) we know that for each $u \in H_0$, $t \geq 0$, there exists a $G(t) \in H_0$, such that (3.21) can be written to

\[\langle u, \Phi \rangle = \langle u, G(t) \rangle \]

Denote for each $\lambda > 0$,

\[\langle u, G_\lambda(t) \rangle := \langle u \otimes W \left(\lambda \sum_{d=1}^{N} \int_{S_d/\lambda^2}^{T_d/\lambda^2} S_d f_d du \right) \Phi, \]

\[U^{(\lambda)}(t/\lambda^2) \varphi \otimes W \left(\lambda \sum_{d=1}^{N} \int_{S_d/\lambda^2}^{T_d/\lambda^2} S_d f_d' du \right) \Phi \]

then Theorem (3.5) shows that

\[\lim_{\lambda \to 0} \langle u, G_\lambda(t) \rangle = \langle u, G(t) \rangle \]

Moreover for each $n \geq 1$,

\[\frac{d}{dt} \left\langle u \otimes W \left(\lambda \sum_{d=1}^{N} \int_{S_d/\lambda^2}^{T_d/\lambda^2} S_d f_d du \right) \Phi, \right. \]

\[\lambda^n \int_0^{t_1} dt_1 \int_0^{t_2} dt_2 \ldots \int_0^{t_{n-1}} dt_n V_\theta(t_1) \ldots V_\theta(t_n) \]

Annales de l'Institut Henri Poincaré - Physique théorique
\[
\times v \otimes W \left(\sum_{d=1}^{N} \int_{S_{d}/\lambda^2}^{T_{d}/\lambda^2} S_{u}^{d} f_{d}^{u} du \right) \Phi \right) \\
= \left\langle u \otimes W \left(\sum_{d=1}^{N} \int_{S_{d}/\lambda^2}^{T_{d}/\lambda^2} S_{u}^{d} f_{d}^{u} du \right) \Phi, \right. \\
\times \lambda^{n-2} \int_{0}^{t_{1}/\lambda^2} dt_{1} \int_{0}^{t_{2}/\lambda^2} dt_{2} \ldots \int_{0}^{t_{n-1}/\lambda^2} dt_{n-1} dt_{n} V(t/\lambda^2) V_{g}(t_{2}) \ldots V_{g}(t_{n}) \\
\left. \times v \otimes W \left(\sum_{d=1}^{N} \int_{S_{d}/\lambda^2}^{T_{d}/\lambda^2} S_{u}^{d} f_{d}^{u} du \right) \Phi \right) \\
\left(4.3\right)
\]

Notice that \(\|D(t)\| = \|D\|\) so, using the proof of Theorem (6.4) in [2], we know that there exists a constant \(C_{2}\) such that

\[
\frac{d}{dt} \left\langle u \otimes W \left(\sum_{d=1}^{N} \int_{S_{d}/\lambda^2}^{T_{d}/\lambda^2} S_{u}^{d} f_{d}^{u} du \right) \Phi, \\
\lambda^{n} \int_{0}^{t_{1}/\lambda^2} dt_{1} \int_{0}^{t_{2}/\lambda^2} dt_{2} \ldots \int_{0}^{t_{n-1}/\lambda^2} dt_{n-1} dt_{n} V_{g}(t_{1}) \ldots V_{g}(t_{n}) \\
\times v \otimes W \left(\sum_{d=1}^{N} \int_{S_{d}/\lambda^2}^{T_{d}/\lambda^2} S_{u}^{d} f_{d}^{u} du \right) \Phi \right\rangle \leq C_{2} \left(t \vee 1 \right)^{n} \left[n/3 \right] ! \\
\left(4.4\right)
\]

Therefore the function \(t \rightarrow \langle u, G_{\lambda}(t) \rangle\) is differentiable and its derivative is equal to

\[
\frac{d}{dt} \left\langle u \otimes W \left(\sum_{d=1}^{N} \int_{S_{d}/\lambda^2}^{T_{d}/\lambda^2} S_{u}^{d} f_{d}^{u} du \right) \Phi, \\
U^{(0)}(t/\lambda^{2}) v \otimes W \left(\sum_{d=1}^{N} \int_{S_{d}/\lambda^2}^{T_{d}/\lambda^2} S_{u}^{d} f_{d}^{u} du \right) \Phi \right\rangle \\
= \sum_{n=1}^{\infty} \frac{d}{dt} \left\langle u \otimes W \left(\sum_{d=1}^{N} \int_{S_{d}/\lambda^2}^{T_{d}/\lambda^2} S_{u}^{d} f_{d}^{u} du \right) \Phi, \\
\times (\lambda^{n} \int_{0}^{t_{1}/\lambda^2} dt_{1} \int_{0}^{t_{2}/\lambda^2} dt_{2} \ldots \int_{0}^{t_{n-1}/\lambda^2} dt_{n-1} dt_{n} V_{g}(t_{1}) \ldots V_{g}(t_{n}) \\
\times v \otimes W \left(\sum_{d=1}^{N} \int_{S_{d}/\lambda^2}^{T_{d}/\lambda^2} S_{u}^{d} f_{d}^{u} du \right) \Phi \right\rangle \\
\left(4.5\right)
\]

From (4.3) and (4.5), one gets

\[
\frac{d}{dt} \left\langle u \otimes W \left(\sum_{d=1}^{N} \int_{S_{d}/\lambda^2}^{T_{d}/\lambda^2} S_{u}^{d} f_{d}^{u} du \right) \Phi, \\
U^{(0)}(t/\lambda^{2}) v \otimes W \left(\sum_{d=1}^{N} \int_{S_{d}/\lambda^2}^{T_{d}/\lambda^2} S_{u}^{d} f_{d}^{u} du \right) \Phi \right\rangle
\]

Vol. 54, n° 4-1991.
If we call $I(t, \lambda)$ [resp. $II(t, \lambda)$] the piece of the scalar product in (4.6) containing the terms $D_d \otimes A^+$ (resp. $-D^+_d \otimes A$), then (4.6) can be written as

$$
\frac{1}{\lambda} I(t, \lambda) + \frac{1}{\lambda} II(t, \lambda) \tag{4.6a}
$$

Notice that

$$
\lim_{\lambda \to 0} \frac{1}{\lambda} I(t, \lambda) = \lim_{\lambda \to 0} \sum_{d, d' = 1}^{N} \left\langle D^+_d u \otimes W \left(\lambda \sum_{d' = 1}^{N} \int_{S_{d'}/\lambda^2}^{T_{d'}/\lambda^2} S^d_{u', d'} du' \right) \Phi, \right.
\left. U^{(\lambda)}(t/\lambda^2) v \otimes W \left(\lambda \sum_{d' = 1}^{N} \int_{S_{d'}/\lambda^2}^{T_{d'}/\lambda^2} S^d_{u', d'} du' \right) \Phi \right\rangle
\int_{S_{d}/\lambda^2}^{T_{d}/\lambda^2} \left\langle S^d_{u, d'}, S^{d'}_{u', d'} g \right\rangle du
$$

$$
\lim_{\lambda \to 0} \sum_{d, d' = 1}^{N} \left\langle D^+_d u \otimes W \left(\lambda \sum_{d' = 1}^{N} \int_{S_{d'}/\lambda^2}^{T_{d'}/\lambda^2} S^d_{u', d'} du' \right) \Phi, \right.
\left. U^{(\lambda)}(t/\lambda^2) v \otimes W \left(\lambda \sum_{d' = 1}^{N} \int_{S_{d'}/\lambda^2}^{T_{d'}/\lambda^2} S^d_{u', d'} du' \right) \Phi \right\rangle
\int_{(S_{d'}/\lambda^2}^{(T_{d'}/\lambda)^2} \left\langle S^d_{u, d'}, S^{d'}_{u', d'} g \right\rangle e^{i (u_{d'} - u_d) t/\lambda^2} du \tag{4.7}
$$
Therefore, by the Riemann-Lebesgue Lemma, Theorem (3.5), the definitions (4.1), (4.2) and dominated convergence, one has

$$\lim_{\lambda \to 0} \frac{1}{\lambda} \int_0^t ds I(s, \lambda) = \sum_{d=1}^N \int_0^t ds \chi_{[\delta, \tau]}(s) \cdot (f_d | g)_d \cdot \langle D_d^u, G(s) \rangle \quad (4.8)$$

The $\frac{1}{\lambda} \Pi(t, \lambda)$ term is dealt with the same strategy for the term Π in [2] (cf. formula (6.14) of [2]). That is:
- one brings $-D_d^+ \otimes 1$ on the left hand side of the scalar product.
- one writes

$$1 \otimes A \left(\text{S}^{d, \lambda^2}_{t, \lambda^2} g \right) U^{(t)}(t/\lambda^2) = U^{(t)}(t/\lambda^2) 1 \otimes A \left(\text{S}^{d, \lambda^2}_{t, \lambda^2} g \right) + [1 \otimes A \left(\text{S}^{d, \lambda^2}_{t, \lambda^2} g \right), U^{(t)}(t/\lambda^2)] \quad (4.9)$$

- the first term on the right hand side of (4.9) acts on the coherent vector giving rise to an expression similar to (4.7) which, in the limit $\lambda \to 0$ convergences a.e. to

$$\int_0^t ds \sum_{d=1}^N \chi_{[\delta, \tau]}(s) \cdot (f_d | g)_d \cdot \langle D_d u, G(s) \rangle \quad (4.10)$$

- the commutator term is the sum, for $d=1, \ldots, N$, of

$$\left\langle -D_d u \otimes W \left(\lambda \sum_{d=1}^N \int_{S_{d, \lambda^2}}^{t/\lambda^2} S_d f_d' du \right) \Phi, \quad [1 \otimes A \left(S^{d, \lambda^2}_{t, \lambda^2} g \right), U^{(t)}(t/\lambda^2)] \times v \otimes W \left(\lambda \sum_{d=1}^N \int_{S_{d, \lambda^2}}^{t/\lambda^2} S_d f_d' du \right) \Phi \right\rangle \quad (4.11)$$

Expressing of $U^{(t)}(t/\lambda^2)$ in terms of the iterated series, the n-th order term in λ is

$$(-i)^n \lambda^n \int_0^{t/\lambda^2} \int_0^{t_1} \int_0^{t_2} \cdots \int_0^{t_{n-1}} dt_n$$

$$\times \left\langle -D_d u \otimes W \left(\lambda \sum_{d=1}^N \int_{S_{d, \lambda^2}}^{t/\lambda^2} S_d f_d' du \right) \Phi, \quad [1 \otimes A \left(S^{d, \lambda^2}_{t, \lambda^2} g \right), V_g(t_1) \cdots V_g(t_n)] \times v \otimes W \left(\lambda \sum_{d=1}^N \int_{S_{d, \lambda^2}}^{t/\lambda^2} S_d f_d' du \right) \Phi \right\rangle \quad (4.12)$$
But the limit, as $\lambda \to 0$, of (4.12) is the same as the limit, as $\lambda \to 0$, of
\[
(-i)^n \lambda^{n-2} \int_0^t dt_1 \int_0^{t_1/\lambda^2} dt_2 \ldots \int_0^{t_n-1} dt_n
\times \left\langle -D_d u \otimes W \left(\lambda \sum_{d=1}^N \int_{S_d/\lambda^2}^{T_d/\lambda^2} S_d f_d du \right) \Phi, \right.
\]
\[
\left. \left[1 \otimes A \left(S_{t_1/\lambda^2}^d g \right), V_{g \left(t_1/\lambda^2 \right)} \right] V_{g \left(t_2 \right)} \ldots V_{g \left(t_n \right)} \right. \times \nu \otimes W \left(\lambda \sum_{d=1}^N \int_{S_d/\lambda^2}^{T_d/\lambda^2} S_d f_d^d du \right) \Phi \right\rangle (4.13)
\]
because all the other terms will contain scalar products of the form
\[
\left\langle S_{t_1/\lambda^2}^d g, S_{t_1/\lambda^2}^d g \right\rangle
\]
with $j \geq 2$ which are terms of type II in the sense of Lemma (3.3), and therefore vanishing in the limit $\lambda \to 0$. Moreover the commutator in the expression (4.13) is equal to
\[
\sum_{d=1}^N \left\langle S_{t_1/\lambda^2}^d g, S_{t_1/\lambda^2}^d g \right\rangle (4.14)
\]
and since
\[
\left\langle S_{t_1/\lambda^2}^d g, S_{t_1/\lambda^2}^d g \right\rangle = \left\langle S_{t_1/\lambda^2}^d g, S_{t_1/\lambda^2}^d g \right\rangle \cdot e^{i \left(\omega_d - \omega_d \right) t_1/\lambda^2}
\]
the Riemann-Lebesgue Lemma implies that only the term with $d = d'$ survives. So the limit, as $\lambda \to 0$, of integral of (4.11) is equal to the limit, as $\lambda \to 0$, of
\[
(-i)^n \lambda^{n-2} \int_0^t dt_1 \int_0^{t_1/\lambda^2} dt_2 \ldots \int_0^{t_n-1} dt_n
\times \left\langle -D_d u \otimes W \left(\lambda \sum_{d=1}^N \int_{S_d/\lambda^2}^{T_d/\lambda^2} S_d f_d du \right) \Phi, \right.
\]
\[
\left. \left\langle S_{t_1/\lambda^2}^d g, S_{t_1/\lambda^2}^d g \right\rangle \cdot e^{i \left(\omega_d - \omega_d \right) t_1/\lambda^2} V_{g \left(t_2 \right)} \ldots V_{g \left(t_n \right)} \right. \times \nu \otimes W \left(\lambda \sum_{d=1}^N \int_{S_d/\lambda^2}^{T_d/\lambda^2} S_d f_d^d du \right) \Phi \right\rangle (4.15)
\]
But this limit is exactly of the same type as that considered in (4.7) and therefore it exists. The estimate (4.4) guaranties that, in the expansion of (4.11) with the iterated series, one can go to the limit term by term. Resumming the limit (4.15) in n and using Theorem (3.5), one gets that the limit of (4.15) is equal to
\[
\sum_{d=1}^N \int_0^t ds \left(\chi_d S_d, \tau_d \left(s \right) \left(g \left| f_d \right. \right) \cdot \left\langle -D_d u, G \left(s \right) \right\rangle + \left(g \left| g \right. \right)_{d, -} \cdot \left\langle -D_d^+ D_d u, G \left(s \right) \right\rangle \right) (4.16)
\]
Summing up:

Theorem (4.1). — For each \(u \in H_0 \), the map \(t \mapsto \langle u, G(t) \rangle \), defined by (4.1), is differentiable almost everywhere and satisfies the integral equation

\[
\langle u, G(t) \rangle = \lim_{\lambda \to 0} \langle u, G_\lambda(t) \rangle = \lim_{\lambda \to 0} \left(\langle u, G_\lambda(0) \rangle + \int_0^t ds \frac{d}{ds} \langle u, G_\lambda(s) \rangle \right)
= \langle u, v \rangle \left(\sum_{d=1}^N W \left(\oplus \chi_{[S_d, T_d]} \otimes f_d \right) \Psi_1 \otimes \ldots \otimes \Psi_N, \right.
+ \sum_{d=1}^N \int_0^t ds \left[\chi_{[S_d, T_d]}(s) \langle f_d | g \rangle \cdot \langle D^+_d u, G(s) \rangle
+ \chi_{[S_d, T_d]}(s) \langle g | f_d \rangle \cdot \langle -D_d u, G(s) \rangle \right]
+ \langle g | g \rangle \cdot \langle -D_d^+ D_d u, G(s) \rangle \right)
\]

(4.17)

Proof. — Putting together (4.5), (4.6), (4.6a), (4.8), (4.9), (4.10), (4.16) we obtain:

\[
\langle u, G(t) \rangle = \lim_{\lambda \to 0} \langle u, G_\lambda(t) \rangle
= \lim_{\lambda \to 0} \left(\langle u, G_\lambda(0) \rangle + \int_0^t ds \frac{d}{ds} \langle u, G_\lambda(s) \rangle \right)
= \langle u, v \rangle \left(\sum_{d=1}^N W \left(\oplus \chi_{[S_d, T_d]} \otimes f_d \right) \Psi_1 \otimes \ldots \otimes \Psi_N, \right.
+ \sum_{d=1}^N \int_0^t ds \left[\chi_{[S_d, T_d]}(s) \langle f_d | g \rangle \cdot \langle D^+_d u, G(s) \rangle
+ \chi_{[S_d, T_d]}(s) \langle g | f_d \rangle \cdot \langle -D_d u, G(s) \rangle
+ \langle g | g \rangle \cdot \langle -D_d^+ D_d u, G(s) \rangle \right]
\]

(4.18)

From the above we can easily deduce the proof of our main result

Proof of Theorem (1.2). — For each \(N \in \mathbb{N} \), \(g \), \(\{f_d\}_{d=1}^N \subseteq K \), \(\{S_d, T_d, S_d', T_d'\} \}_{d=1}^N \subseteq \mathbb{R} \), \(t \geq 0 \), \(u, v \in H_0 \), denote

\[
F(u, t) := \left(u \otimes \sum_{d=1}^N W \left(\chi_{[S_d, T_d]} \otimes f_d \right) \Psi_1 \otimes \ldots \otimes \Psi_N, \right.
\]

(4.19)

It is clear that \(F(u, t) \) satisfies (4.17) the equation with the same initial condition. Hence by the uniqueness of the solution of the q.s.d.e. (4.17), we have

\[
F(u, t) = \langle u, G(t) \rangle, \quad t \geq 0
\]

(4.20)
which, because of (4.19) and (4.2a), implies the thesis.

REFERENCES

(Manuscript received August 1, 1990.)