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On essential self-adjointness
of the relativistic hamiltonian of a spinless particle
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ABSTRACT. - The relativistic quantum hamiltonian H describing a
spinless particle in an electromagnetic field is considered, where H is
associated with the classical hamiltonian c ~ mo c2 + ~ p - A (x) I2 ~ 1~2 + V (x)
via the Weyl correspondence. We show that if V (x) is bounded below by
a polynomial, H is essentially self-adjoint on Co (Rn). This result is quite
different from that on the non-relativistic hamiltonian, i. e. the Schrodinger
operator, and is close to that on the Dirac equation. Our proof is done
by using the commutator theorem in [6].

RESUME. 2014 L’hamiltonien relativiste quantique H decrivant une parti-
cule sans spin dans un champ electromagnetique est considere, ou H est
associe a l’hamiltonien classique via la

correspondance de Weyl. Nous demontrons que si V (x) est borne infe-
rieurement par un polynome, H est essentiellement auto-adjoint sur

Cy (Rn). Ce resultat est tout a fait different de celui sur l’hamiltonien non-
relativiste, c’est-a-dire l’opérateur de Schrodinger, et est voisin de celui sur
l’opérateur de Dirac. La preuve est faite en utilisant Ie theoreme du
commutateur dans [6].
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242 W. ICHINOSE

1. INTRODUCTION

In the present paper we study the problem of essential self-adjointness
of the operator

as an operator in the Hilbert space L2 (Rn), where

V (x) is a real valued function and c, mo are positive constants.

Os - f ... means the oscillatory integral (e. g. chapter 1 in [11]).

L2 = L2 (R") is the space of all square integrable functions on Rn. HA is
called the Weyl quantized hamiltonian with a classical hamil-

tonian hA(x, 03BE). When n = 3, this operator H can be considered as the
hamiltonian describing a relativistic spinless particle with charge one and
rest mass mo in an electromagnetic field whose scalar and vector potentials
are given by V (x) and A (x) respectively. There c denotes the velocity of
light ([16], [7], [4], [8] and etc.).

Let Co (R n) be the space of all infinitely differentiable functions with
compact support. We denote HA where A(;c)=(0, ..., 0) by Ho. Essential
self-adjointness and spectral properties of Ho + V (x) where V (x) is the
Coulomb potential, a Yukawa-type potential and their sum have been
studied in [16], [7] and [4]. On the other hand as for general HA, essential
self-adjointness of H = HA + V (x) has been studied in [ 12], [8] and [9] under
the assumption that V (x) is bounded from below. Recently the author
proved self-adjointness of H with H f (x) E L2 ~ as one
of results in [ 10] under the assumptions ( 1. 3) and ( 1. 4) below.

are bounded on

R" for all multi-indices (X= «(Xl’ ..., such that

There exists a constant ~ ~ 0 such that

are 
" valid 0 for all multi-indices a with constants Ca. ( 1 . 4)
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243ON THE RELATIVISTIC HAMILTONIAN

Our aim in the present paper is to show that the above assumption
( 1. 4) can be replaced by a much weaker one for essential self-adjointness
of H with domain Co (Rn). For example, we can obtain the following
results. We denote by = (R n) the space of all locally square integra-
ble functions. Let V (x) be a real valued function in such that

is valid for non-negative constants C and m. Let Z be a constant less than

(~-2)c/2. Then both and with domainA ( ) 0 

I 
( )

C~ (Rn) are essentially self-adjoint under a slightly weaker assumption
than (1. 3) (Theorem 2 . 2 and Corollary 2 . 4 in the present paper). ~3 is
assumed for the latter operator. The assumption ( 1 . 3) is not so limited,
because we need such an assumption to define HA by ( 1.1 ). But we must
note that a more general definition of HA is proposed in [8].

As for the Schrodingcr operators 201420142014A+Vs(x), we know that we
2 mo

need for their essential self-adjointness the limitation on the decreasing
rate at infinity of negative part of Vs (x) (e. g. Theorem 2 in [5] and page
157 in [1]). On the other hand as for the Dirac operator, we know from
Theorem 2.1 in [3] that such a limitation is not necessary at all for its
essential self-adjointness. Hence our decreasing rate (1. 5) for essential self-
adjointness of H lies between those of the Schrodinger and the Dirac
operators.
Our proof in the present paper is quite different from that in [10]. In

[ 10] we studied the theory of pseudo-differential operators with basic
weight functions and applied it. In the present paper we use the commuta-
tor theorem in [6].
The plan of the present paper is as follows. In section 2 we will state

all results. Some of results will be proved there. Sections 3 and 4 will be
devoted to the proofs of main results.

2. THEOREMS

Let k(x, ç) be a C~-function on R2n. We suppose that for any multi-
indices (0, ..., 0) and 03B2 there exists a constant Ca, 13 satisfying

follows from the mean value theorem that

Vol. 60, n° 2-1994.



244 W. ICHINOSE

are valid for all 03B2 with constants Cp. Hence by analogy with arguments
in chapter 2 of [11] ] and chapter 4 of [ 15] we can define the pseudo-
differential operator K (X, Dx) with symbol k (x, ç) by

for f (x) E [/’. f (~) denotes the Fourier transformation f (x) dx and

!/ the space of all rapidly decreasing functions on Rn. It is easy to show
that K (X, Dx) makes a continuous operator from  into .

THEOREM 2 . 1. - Let 03A6 (x) be a real valued function in (Rn). Assume
that K (X, Dx) defined above is symmetric on Co (Rn) and that

The quadratic form inequality (2. 3) means that

({K (X, Dx) + C M} f (x), f M) ~ 0 for all f (x) E C~ (Rn). Moreover we
assume that for all W (x) being in with W(~)~0 almost

everywhere (a. e.) K (X, DJ+0(~)+W(~-) with domain is essen-

tially self-adjoint. Then satisfies (1. 5) for non-negative con-
stants C and m, then K (X, with domain C~ (Rn) is also
essentially self-adjoint.
Theorem 2.1 will be proved in section 3. We will prove the following

theorem from Theorem 2. 1 by using the results obtained in [8].

THEOREM 2 . 2. - Consider H defined by ( 1 . 1 ) with domain C~ (Rn). We
assume

for all rJ. # (0, ..., 0) with constants Ca. Let V (x) be the same function as
in Theorem 2.1. Then H is essentially self-adjoint.
Remark 2 . 1. - As was stated in introduction, H defined by ( 1. 1 ) with

is self-adjoint under the assumptions
( 1. 3) and ( 1. 4) . We note that this H is also self-adjoint even if ( 1. 3) is

replaced by (2 . 4) there. This result follows from Theorem 1 in [ 10] at

once.

Proof of Theorem 2 . 2. - We can easily have from the assumption

for all a and 03B2 with constants C’03B1, 03B2. So it follows from the analogy with
arguments in section 2 of chapter 2 in [11] that HA makes a continuous
operator from !/ to !/ and HA is symmetric on ~. We note that the

l’Institut Henri Poincaré - Physique theorique



245ON THE RELATIVISTIC HAMILTONIAN

assertion in Lemma 2 . 2 in [8] remains valid under our weaker assumption
(2 . 4) than that in [8]. So Theorem 5 .1 in [8] indicates on C~ (Rn)
and essential self-adjointness of HA + W (x) with domain for any

such that a. e.

We set

Then

follows from analogy of Theorem 2 . 5 in [ 11 ] . Let l be an even integer
such that l &#x3E; n + 1. Then taking the integration by parts, we have

for any ex and P. We note that ç) satisfies the same inequalities as
(2 .1 ) for all a and 03B2 such that with another constants 
under the assumption (2 . 4). So 

and -1, x, y ERn), we can see that

are valid for all a and 03B2 such that with constants Hence
we can easily see from (2 . 5) and (2. 6) that we can apply Theorem 2 .1 to
HA + V (x) as K (X, Dx) = HA = P (X, Dx) So Theorem 2 . 2
can be proved.

Q.E.D.

Remark 2 . 2. - As will be noted in Remark 3 . 1 in the present paper,
the assumption in Theorem 2 .1 that (2 .1 ) must hold for all a 7~ (0, ... , 0)
and 03B2 can be weaken. The assertion of Theorem 2.1 remains valid even
if we replace this assumption by a weaker one that (2 . 1 ) holds for all
03B1~(0, ..., 0) and 03B2 satisfying and |03B2|~J, where J is an integer
determined from n and m. So the assumption in
Theorem 2 . 2 can be similarly replaced by a weaker one that

are valid for all 0  |03B1| J, where ~ &#x3E; 0 is a sufficiently small constant and
J is a sufficiently large integer. ~ and J are determined from nand m.

THEOREM 2.3. - Let Ho be the operator defined in introduction with
domain Co (Rn). Suppose that ~ (x) is a real valued function in and a

Ho-bounded multiplication operator with relative bound less than one. Let

Vol. 60, n° 2-1994.
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V (x) be the same function as in Theorem 2 . 1. Then Ho + I&#x3E; (x) + V (x) with
domain Co (Rn) is essentially self-adjoint.
Theorem 2. 3 will be proved in section 4.

COROLLARY 2 . 4. - Let n &#x3E;_ 3 and Z be a constant less than (n - 2) c/2.
Let V (x) be the same function as in Theorem 2 . 1. Then Ho Z + V xo 

Ixl I 
()

with domain Co (Rn) is essentially self-adjoint.

Proof of Corollary 2 . 4. - When Z~ o, essential self-adjointness of

H Z + V x follows from Theorem 2 . 2 at once. Let 0  Z  2 c.
We denote L2-norm by ~II . We know the Hardy inequality

(e. g. page 169 in [13] and (2 . 9) in [7]). So

holds for W x ) E C o °° ( R" )~ Consequently - -I Z is Ho-bounded with relative
Ixl

bound less than one. Hence Corollary 2.4 follows from Theorem 2. 3 at
once.

Q.E.D.

3. PROOF OF THEOREM 2.1

LEMMA 3 . 1. - Suppose that k (x, ç) satisfies (2 . 1 ) for all 03B1~ (0, ... , 0)
and 03B2. Let 03B6 be a non-negative constant. Then there exists a positive constant
d = d (Ç) such that

are valid for [K (X, Dx), x&#x3E;03B6/2] denotes the commutator of
operators K (X, Dx) x &#x3E;~/2.

Annales de Henri Poincaré - Physique théorique



247ON THE RELATIVISTIC HAMILTONIAN

Proof - We set

Then we get by analogy with arguments in chapter 2 of [11] ]

It is easy to see

where -) j . Let l 1 and l 2 be inte g ers such that l1&#x3E;n+|03B6 2-1|
and l2 &#x3E; n. Then taking the integration by parts,

holds. So we get

with a constant Co from the assumption (2 .1 ) in the same way to the
proof of (2. 6). Similarly we obtain

for all a and P with constants p.

Next we set

Then we have

- 0 . denotes the product of operators. Then we obtain from (3 . 4)

for all a and 03B2 with constants in the same way to the proof of (3 . 4).
We note that

Vol. 60, n° 2-1994.
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holds from (3 . 3) and (3.6). So applying the Calderon-Vaillancourt theo-
rem in [2] to R (X, Dx), we get Lemma 3 . 1.

Q.E.D.

Theorem 2 . 1. - For the sake of simplicity we denote C~ (Rn)
by ~. Let d= d(m) be the constant determined in Lemma 3.1. We can
choose a constant M &#x3E; 0 satisfying

because of the assumption (1. 5). We fix this M. Set

with domain g. It follows from the assumptions in Theorem 2.1 and
(3 . 8) that T + 3 Mx&#x3E;m~2 Mx&#x3E;m on  holds and T + 3 Mx&#x3E;m with
domain  is essentially self-adjoint. Let N be the self-adjoint operator
defined by the closure of T + 3 M ~ x ~m. Then

is valid and  is a core for N.

We will prove

and

( . , . ) implies the inner product in L2 (Rn). Then Corollary 1.1 in [6] shows
that T is essentially self-adjoint, which completes the proof.
We will first prove (3 .11 ). Since each 03A6(x) and VM is

in we can easily have

We denote by Re ( . ) and Im ( . ) the real part and the imaginary part of
complex number respectively. Then noting N f = T f + 3 M(~)~/, we get
by (3. 13)

It is easy to see from the assumption (2. 3) and (3 . 8)

Annales de l’Institut Henri Poincare - Physique ’ theorique ’
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Hence applying Lemma 3.1 to (3.14), we obtain by (3 . 8)

which shows (3 .11 ).
Next we will prove (3 . 12). Using N f = T f + 3 

and C (x), V (x) E we have

Apply the equality

to the above. Then since K (X, Dx) is assumed to be symmetric on ~,

is valid. Hence we obtain by Lemma 3.1

Here we used (3 .10) for the last inequality. Thus (3 .12) could be proved.
This completes the proof.

Q.E.D.

Remark 3 . 1. - We can easily see in the proof of Theorem 2. 1 from
the Calderon-Vaillancourt theorem that if (3 . 7) holds for I a.1 ~ 3 n and
I (3 I _ 3 n, (3 .1 ) is valid. Hence as was stated in Remark 2 . 2, we can
weaken the assumption in Theorem 2.1 that (2 .1 ) hold for all

a ~ (o, ..., 0) and P. This can be easily verified by following the proof of
Theorem 2.1.

Vol. 60, n° 2-1994.
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4. PROOF OF THEOREM 2.3

We denote C~0 (R n) by  as in section 3. It is easy to see 
on /7. cD (x) was assumed to be Ho-bounded with relative bound less than
one. So it follows from Theorem X . 18 in [ 13] is form-bounded
with the same relative bound with respect to Ho. That is, there exists a
constant ~0 such that

are valid for allf(x)E. Hence we see

We will show that Ho + 0 (x) + b + W (x) with domain  are essentially
self-adjoint for all W (x) being in with a. e. Then the proof
of Theorem 2 . 3 can be completed by Theorem 2 . 1. We will prove essential
self-adjointness of Ho + C (x) + b + W (x) by analogy with arguments in the
proof of Theorem X . 29 in [13] where Schrödinger operators are studied.
There we will use the Kato-type inequality obtained in [8].

Let W(;c)~0 a. e. be in Noting (4 . 1 ), it follows from
Theorem X . 26 in [ 13] that iff with domain is

essentially self-adjoint, the range of ~, + Ho + ~ (x) + b + W (x) is dense in
L2 for a constant ~&#x3E;0.
We may assume without the loss of generality. Let ~, &#x3E; 0 be a

constant and u (x) be in L2 such that

hold for (4 . 2) indicates that

holds in a distribution sense. Since u (x) is in L2 is in

Ho u (x) is in Hence we get from Theorem 4 . 1 in [8] the distribu-
tion inequality

where sgn u (x) is a bounded measurable function defined by u (x) ~ I
for a point x such that u (x) ~ 0 and zero for a point x such that M(~-)=0.

is the complex conjugate of u (x). (4 . 3) means that

hold for with/(~0. Inserting 
into (4. 3),

Annales de l’Institut Henri Poincaré - Physique theorique



251ON THE RELATIVISTIC HAMILTONIAN

is obtained. Here we used and a. e. for the last
inequality.
Now

follow from Ho-boundedness for all /(x)e~ where C1 is a

constant. It is easy to see that the same inequalities remain valid for
belongs to ~’. ~’ is the dual space of ~. It

is also easy to see (À + Ho) I u (x) I E ~’. Hence we obtain by (4 . 4)

for on Rn be an arbitrary function
in Y and set cp (x) _ (~, + Ho) -1 ~r (x). Then belongs to Y. 
on R2n follows from (3 . 3) and (3 .4) in [8] or Theorems XIII. 52, 54 and
the example on page 220 in [14]. So inserting this into (4 . 5) as/(;c),
we get

Now C (x) is assumed to be Ho-bounded with relative bound less than
one. So there exist constants 0 _ a’  1 and 0 _ b’ such that

are valid for all f (x) E C. We can easily see that these inequalities remain
valid for Consequently we get for all 

which also remain valid for all is a bounded
operator from L2 to L2 and its operator norm is bounded by a less constant

than (a’+b’ 03BB). Therefore we see that {03A6(x)(03BB+H0)-1}*|u(x)| belongs t o

L2 and

is valid, because u (x) belongs to L2. Moreover (4 . 6) indicates

Vol. 60, n° 2-1994.
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as the inequality between functions, is arbitrary. Hence
we get by (4 . 7) and (4 . 8)

This shows a.e. when ~, &#x3E; 0 is large. Thus we see that if ~, &#x3E; 0 is

large, the range of ~, + Ho + ~ (x) + W (x) is dense in L2. This completes
the proof of Theorem 2 . 3.

[1] F. A. BEREZIN and M. A. SHUBIN, The Schrödinger Equation, Kluwer Academic Publish-
ers, Dordrecht, Boston and London, 1991.

[2] A. P. CALDERÓN and R. VAILLANCOURT, On the Boundedness of Pseudo-Differential
Operators, J. Math. Soc., Japan, Vol. 23, 1971, pp. 374-378.

[3] P. R. CHERNOFF, Schrödinger and Dirac Operators with Singular Potentials and Hyper-
bolic Equations, Pacific J. Math., Vol. 72, 1977, pp. 361-382.

[4] I. DAUBECHIES, One Electron Molecules with Relativistic Kinetic Energy: Properties of
the Discrete Spectrum, Commun. Math. Phys., Vol. 94, 1984, pp. 523-535.

[5] M. S. P. EASTHAM, W. D. EVANS and J. B. McLEOD, The Essential Self-Adjointness of
Schrödinger-Type Operators, Arch. Rational Mech. Anal., Vol. 60, 1976, pp. 185-204.

[6] W. G. FARIS and R. B. LAVINE, Commutators and Self-Adjointness of Hamiltonian
Operators, Commun. Math. Phys., Vol. 35, 1974, pp. 39-48.

[7] I. W. HERBST, Spectral theory of the operator (p2+m2)1/2-Ze2/r, Ibid., Vol. 53, 1977,
pp. 285-294.

[8] T. ICHINOSE, Essential Selfadjointness of the Weyl Quantized Relativistic Hamiltonian,
Ann. Inst. Henri Poincaré, Phys. Théor., Vol. 51, 1989, pp. 265-298.

[9] T. ICHINOSE and T. TSUCHIDA, On Kato’s Inequality for the Weyl Quantized Relativistic
Hamiltonian, Manuscripta Math., Vol. 76, 1992, pp. 269-280.

[10] W. ICHINOSE, Remarks on Self-Adjointness of Operators in Quantum Mechanics and
h-dependency of Solutions for Their Cauchy Problem, Preprint.

[11] H. KUMANO-GO, Pseudo-Differential Operators, M.I.T. Press, Cambridge, 1981.
[12] M. NAGASE and T. UMEDA, On the Essential Self-Adjointness of Pseudo-Differential

Operators, Proc. Japan Acad. Série A, Vol. 64, 1988, pp. 94-97.
[13] M. REED and B. SIMON, Methods of Modern Mathematical Physics II, Fourier Analysis,

Self-Adjointness, Academic Press, New York and London, 1975.
[14] M. REED and B. SIMON, Methods of Modern Mathematical Physics IV, Analysis of

Operators, Academic Press, New York and London, 1978.
[15] M. A. SHUBIN, Pseudodifferential Operators and Spectral Theory, Springer-Verlag, Berlin

and Heidelberg, 1987.
[16] R. A. WEDER, Spectral Analysis of Pseudodifferential Operators, J. Functional Anal.,

Vol. 20, 1975, pp. 319-337.

(Manuscript received July 12, 1993;
Revised version received September 2, 1993.)

Annales de l’Institut Henri Poincare - Physique theorique


