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Spectral properties of the spin-boson Hamiltonian

Matthias HÜBNER Herbert SPOHN

Theoretische Physik, Ludwig-Maximilians-Universitat,
Theresienstra03B2e 37, D-80333 Munchen, Germany

Ann. Inst. Henri Poincare,

Vol. 62, n° 3, 1995, Physique theorique

ABSTRACT. - We consider a two level atom coupled to the radiation
field. Using a Mourre type estimate, we provide a complete spectral
characterization of the spin-boson Hamiltonian for sufficiently small, but
nonzero coupling. In particular, the singular continuous spectrum is empty
and the point spectrum consists only of the ground state energy. Technically
we prove an extension of the Mourre estimate to a conjugate operator
which is the generator of an isometry semigroup only. We illustrate such a
technique for the Friedrichs model and apply it also to the rotating wave
approximation of the spin-boson model.

Nous considerons un atome a deux niveaux couple au champ
de rayonnement. A l’aide des techniques de Mourre, nous donnons une
caracterisation complete du spectre d’un hamiltonien couplant bosons et
spins en regime de couplage faible non nul. En particulier, Ie spectre
singulier continu est vide et Ie spectre ponctuel se reduit a l’énergie de
l’état fondamental. Nous etendons la technique de Mourre a un operateur
conjugue qui n’ est que Ie generateur d’un semi-groupe d’ isometries. Nous
illustrons cette extension sur Ie modele de Friedrichs et nous Fappliquons
aussi a 1’ approximation des ondes toumantes du modele de spin-boson.
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1. INTRODUCTION

Atoms decay to their ground state through the emission of radiation.
The energies involved in such a process are small compared to the rest

energy of an electron. Thus to a high level of precision we may use
nonrelativistic quantum mechanics as our theoretical description of an atom

coupled to the radiation field. Since the coupling constant is in fact small,
perturbation theory provides us with an accurate physical picture of the
various radiation processes. To date atomic physics has pushed the theory
to a high level of sophistication and we have nothing to add here except for
a point of principle: such an everyday process as radiative decay should be
understood theoretically on a nonperturbative level. Given that the problem
is being posed since over sixty years, surprisingly little work has been

done in this direction. In our paper we will make only a small step by
treating a simplified atom with two energy levels. We hope that our methods
eventually generalize to more realistic atoms.

Let us imagine that the electron is tightly bound to an infinitely heavy
nucleus. We can then use the dipole approximation where the vector

potential at the actual position of the electron is replaced by the one
at the origin (the location of the nucleus). After a canonical transformation
the Hamiltonian reads

Here x, p are the position and momentum of the electron, V is an external

potential, a* ( I~, i ) and a ( l~, i ) are the creation and annihilation operators
for the i-th transverse component of the vector potential with commutation
relations [a (A;, i), a* (~, z’)] = 1~’), cv (1~) _ ~ l~ ~ I is the photon
dispersion relation, and ei ( 1~ ) are the polarization vectors with I~ / ~ l~ ( , e 1 ( 1~ ) ,
e2 (I~) forming a left-handed dreibein. In order to have a well defined theory,
we also introduced a cut-off function at high frequencies, p ( 1~ ) . Now, to
simplify matters, we take only two levels of the bare atom Hamiltonian,
p2/2m+V(x), into account. They have an energy difference  and
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291SPECTRAL PROPERTIES OF THE SPIN-BOSON HAMILTONIAN

eigenfunctions ~1 (~), ~Z (~). Projecting H onto the subspace spanned
by ~1, ’Ø2 and under suitable symmetry conditions for ~1, ’Ø2 we obtain
the spin-boson Hamiltonian

acting on the Hilbert space CZ ~ .~ with ~ the symmetric Fock space
over LZ (R3, d3 k). az are the Pauli spin 1/2 matrices. is the

energy of the bare atom and a~ corresponds to coupling its position. For
notational simplicity the coupling constant a is absorbed into A. The spin-
boson Hamiltonian is also a reasonable model for various systems turning
up in solid state physics [1].

We require that J  00. By completing the square we
obtain

To have the energy bounded from below we thus need

J d3 k ~ a (k) ~Z~cv (l~)  oo. H is then self-adjoint on its natural

domain and bounded from below. There is a more subtle point here which
has been investigated in considerable detail [2], [3]. It may happen that
the physical ground state has an infinite number of bosons and therefore
lies no longer in .F. H acting on .~’ has then no ground state.

If we strengthen to

then, provided ~ ~ 0, H has a unique ground state C2 ® .F.

To return to radiative decay, on physical grounds we expect that if

initially the atom is in an excited state, then after a transient period there
will be some photons travelling outwards away from the atom and the
atom together with the radiation field is in its coupled ground state ~o
To verify such a picture one has to study the long time behaviour of the
solution of the time-dependent Schrodinger equation. This is a problem in
scattering theory which we discuss separately [4], [5]. Here we investigate
only spectral properties of H. Our ultimate goal is

Vol. 62, n° 3-1995.
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Let us reintroduce the coupling constant as a ~ ( l~ ) . In this paper we will
need a further assoumption which in essence implies that the continum edge
is strictly above Eo. We then prove the conjecture provided 0  a  cxo

with a constant cxo depending on  and A.

The plan of our paper is as follows: In Section 2 we state the main
results. In Section 3 we prove a generalization of Mourre’s theorem. Mourre
considers the commutator [H, i A] with the conjugate operator A being self-
adjoint. We need here the generalization to the case where i A generates
only a strongly continuous semigroup of isometries. To explain how the
method works, we apply it to the Friedrichs model as a prototypical but
simple example (Section 4). In Section 5 we provide the proofs for the
spin-boson Hamiltonian. In the final Section 6 we point out that with our
technique the spectrum of ( 1.2) in the rotating wave approximation can be
handled fairly exhaustively. We also refer to [4], where we explain in detail
related work on radiative decay, in particular scattering theory, the weak
coupling limit, and analytic dilation.

2. SUMMARY OF RESULTS

In solid state physics applications of ( 1.2) W is an effective dispersion
relation. Therefore it is natural to keep cv and A general. We refrain however
from stating the minimal assumptions necessary for our mathematics. The
spatial dimension, v, of the Bose field plays no particular role and is left
arbitrary. The formal Hamiltonian under investigation is then

acting on C2 0 J~. a* (1~), a (l~) are a Bose field over Rv with commutation
relations [~(~), a* ( l~’ ) ~ = ~(~ 2014 ~~). I denotes the identity operator on

Annales de Poincaré - Physique theorique
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Hilbert spaces. To have an explicit coupling constant we sometimes write
03B103BB instead of A. Note that one could substitute 03BB by |03BB I through the
canonical gauge transformation a (k) ’-~ [I A (k) ~ 1 ~ (k)~ a (k). We first
state our assumptions on the dispersion relation c~.

ASSUMPTION AI. - n; : is spherically symmetric (only a
function with

wand are absolutely continuous as functions of w’ satisfies a

Lipschitz condition on every compact subset of and

The most important consequence of Assumption Al is that the level

sets f k E == have measure zero. We note that the

relativistic dispersion w (k) = k2 + rn2 and its limiting cases w (~) = ~ ~
w (k) = k2~2 m satisfy all conditions.

The coupling function 03BB satisfies

ASSUMPTION A2. - A : R’~ 2014~ C with

and

In the notation of [6], p. 302 and 309, let

on .F with domain of self-adjointness D (H B). Then H is essentially
self-adjoint on any core of I ~ HB and self-adjoint on C2 Q9 
For convenience of the reader we reproduce the well-known proof in
Appendix I. For the Mourre estimate and the virial theorem below, we
need a bound on the number of bosons in 03C8 for any finite energy state

E D (H). While this sounds like a technical requirement, the deeper
reason is that one needs a control on the number of bosons uniformly in
time. If bosons can have arbitrarily small energies, cv (0) = 0, we simply
do not know how to achieve such a bound. We distinguish two cases

Vol. 62, n° 3-1995.
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(i) excitation gap. We require that

Bounded energy implies then a corresponding bound on the number

NB == dr (I ) of bosons. Also, in a functional integral representation of
e-~H, the effective interaction decays exponentially. This implies that H
has a spectral gap [2].

(ii) cut-off in N B. Let P N = P (N B  N) be the projection onto the
subspace of ~" with number of bosons  N. By a slight abuse of notation,
we will denote and I 0 P N on Cn 0 ~ by the same symbol
P~ N . We define then the cut-off Hamiltonian

Sandwiching an operator between two equal projections and restricting it

to the range of the projection is called a compression. We will use this

suggestive notion (apparently due to Halmos [7], Chapter 23) throughout.
In the context of photons, the compressed H has the physically correct

dispersion relation w (l~) _ ~ l~ ~ but limits their maximal number to be N.
We will prove in [5] that HN has a spectral gap.
The Mourre estimate below employs the conjugate operator

It corresponds to the radial derivative on momentum space, multiplied and

symmetrized with the group velocity.

ASSUMPTION A3. - The coupling function 03BB satisfies

We state our main results in the form of three theorems.

THEOREM 1. - Let Assumptions Al -A3 hold. Let the coupling function be of
the form 03B103BB and let  i: 0. If 03C9 (o) &#x3E; 0, then there exists an ao (depending
on 03BB and /1) such that, for 0  cx  ao, H has only one eigenvector, the

ground state, and otherwise purely absolutely continuous spectrum.

THEOREM 2. - Let Assumptions Al -A3 hold. Let the coupling function be

of the form cx~ and 0. There exists an ao (depending only on ~
and but not on N) such that, for 0  a  ao, P N H P N has only one
eigenvector, the ground state, and otherwise purely absolutely continuous

spectrum.

Annales de l’Institut Henri Poincare - Physique theorique
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To our knowledge Theorems 1 and 2 constitute the first complete spectral
characterization of a (simplified) atom coupled to the radiation field,
regarding the dipole approximation with quadratic external potential [8], [9]
as an exception. If satisfied with a less ambitious results, namely a finite
number of eigenvalues, we can prove a more general and explicit theorem.
For this purpose we introduce an obvious generalization of the spin-boson
Hamiltonian as

acting on Cn ® ~’. Here S = S* , K are normal n x n matrices and we

use the shorthand a* (a) = / dv 1~ A (~) a* (&#x26;).

THEOREM 3. - Let Assumptions hold and let

(i) If c~ (0) &#x3E; 0, then H has no singular continuous spectrum and the
number of eigenvalues is bounded by Co.

(ii) has no singular continuous spectrum and the number of
eigenvalues is bounded by Co.

3. A GENERALIZATION OF MOURRE’S THEOREM

Let H be a self-adjoint operator on the Hilbert space ?-~ with inner

product ( .1. ). Its spectral projection onto the open interval (E - 8, E + 8)
will be denoted by 8) and the projection operators onto the pure
point (p.p.), absolutely continuous (a.c.), and singular continuous (s.c.)
subspaces will be denoted by PPP 7~ and PS~ ?~, respectively. Those
subspaces are mutually orthogonal and span the whole Hilbert space, i.e.

Ppp + Pa~ + I.

We consider a strongly continuous one parameter semigroup U (t) of
isometries on the Hilbert space 7~ i.e. U : [0, oo) 2014~ B (?-~) is a map into
the bounded linear operators on ?-~ such that

V3l.62,n° 3-1995.
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Such a semigroup has a closed and densely defined generator, which
is denoted by ~4 throughout this paper, such that U (t) = exp (-~),
t &#x3E; 0. We remark that the symbol ~4 of the generator corresponds to
(and was motivated by) Definition (4.18) in [ 10] . Note however that the

operator A = will not be self-adjoint in general, unlike the situation
in Chapter 4 of [10]. This is also reflected in the nonsurjectivity of U (t) for
t &#x3E; 0, a property of those isometry semigroups which cannot be extended
to unitary groups without enlarging the Hilbert space. Because of

we have strong continuity of the adjoint semigroup and on D (A) we have

and U* (t) ~4 (~ 2014~ ~4 ~. Therefore, if ~4* denotes the generator of the

adjoint semigroup U* (t), then D (~4) c D (~4*) and ~4* extends 2014A
If ~4 is an isometry semigroup generator such that D (~4) n D (H) is

dense in 7~, then [~4, denotes the sesquilinear form given by

If this form is symmetric, bounded below and closable, then [~7~ denotes
the self-adjoint operator associated to its closure.

DEFINITION 4. - The generator A of an isometry semigroup is called a
conjugate operator for H at a point E E R iff the following conditions hold:

c) The form [~4, H~ is bounded below and closable. The domain of its
self-adjoint closure [~4, contains D ( H ) .

a~ The form defined on D (.4) n D (H) by [~L, [~L, is bounded as

a map from ~-~C+2 1= ~ (H) (with scalar product ~ ~ ~ ~ ) -f- ~ H ~ ~ H ~ ~ )
to its dual 7~-2.

Annales de Poincaré - Physique theorique
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e) There exist &#x3E; 0 and a compact operator C such that

An inequality as (3.5) is called a Mourre estimate. Starting from an estimate
of this form, Mourre [ 11 ], [ 12] proves spectral properties of H in the open
set ( E - b, E -~- b ) . (For an introduction to Mourre techniques we refer to [ 10],
Chapter 4.) The larger the interval around E, the stronger are the assertions
of Mourre’s theorem. Because of this, we call an inequality of the form
(3.5) with 8 == +00 a strong Mourre estimate. In the following sections, we
will prove strong Mourre estimates yielding information about the global
structure of the spectrum for several Hamiltonians, including (2.1 ).
Mourre required A to generate a unitary group. This is too restrictive for

our purposes and we have to generalize the Mourre theorem to generators
of one-parameter isometry semigroups.

THEOREM 5. - Let H self-adjoint operator which conjugate
operator at E E R with the estimate (3.5). Then:

1. The point spectrum (E - b, E + 8) 

Out proof follows Mourre’ s paper [ 11 ] . We provide the details up to the
virial theorem. The spectrum of a generator of a contraction semi group
is generally contained in a half plane, contrary to the unitary group
case, where the spectrum of its generator is contained in the imaginary
axis. Consequently, we can take resolvents only in the left half plane of
the complex numbers, being always in the resolvent set of a contraction

semi group generator. This is the main additional ingredient of our proof as
compared to [ 11 ] . Because of the geometric intuition behind the technical
steps, we will emphasize the semigroup itself rather than its generator.
We divide the proof of Part 1 of Theorem 5 into four propositions and

start to consider what happens if D (~4) n D (H) is not explicitly known.
The first proposition states that an appropriate core suffices.

PROPOSITION 6. - Let H be self-adjoint and A be the generator of an
isometry semigroup U (t) satisfying co   and the following
conditions c’).

c’) There exists a set ? G D (.4) n D (H) such that

Vol. 62, n ° 3-1995.
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(iii) the form ~A, H~ is bounded form below and closable, and the
associated self-adjoint operator ~A, satisfies

Hence ’ the form [~4, closable and the associated self adjoint operator
satisfies

Proof. - We only need to check for   E D (A) n D (H)

As a general fact (true on Banach spaces), the composition TB of a
bounded and everywhere defined operator B and a closed operator T with
D (T) c range (B) is closed and consequently, by the closed graph theorem,
bounded. Thus, the operator (t) (H + are bounded by hypothesis
b). For each 03C8 E H, we have by b) sup ~HU (t) (H +  00

0tl

and by the uniform boundedness principle this operator family is uniformly
bounded by some finite constant,

Here HII is uniformly bounded in 0  t  1, so this family of vectors
converges weakly to when t 2014~ 0. For the summand in the third line

of (3.8) we used that the scalar product of a strongly convergent sequence
with a weakly convergent sequence converges.

Annales de l’Institut Henri Poincaré - Physique theorique



299SPECTRAL PROPERTIES OF THE SPIN-BOSON HAMILTONIAN

S is a core for H. Thus there exist sequences E s for each

~ E ?nC , ~ E D ( H ) such that

By the uniform estimate (3.7)

The derivative

exists for 0  t  1 and the mean value theorem implies

Letting first n ~ oo and then t ~ 0 leads to

and

is uniformly bounded and converges weakly to [A, ’ljJ, hence

Notice that we proved, as a byproduct

PROPOSITION 7. - Let A, H satisfy conditions a)-c). Then U (t) acts as a
strongly continuous semigroup of bounded operators on the Hilbert space
D (H) _ ~‘~C+2 with the graph norm. (H - z)-1 leaves D (A) invariant
for all z ~ ~ (H) .
Vol. 62, n ° 3-1995.
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Proo, f. - For this we need a much stronger version of (3.16), namely
for every ~ E D (H)

(3.17) implies (3.16) by bracketing from the left with ( U (1) ~ ~ I and

applying isometry U* (1) U (1) = 1. Similarly as in Proposition 6, we
have for ~, ~ E D (.4) n D (H)

Additionally to above we used here Lemma ( 1.3) in [ 13] to evaluate

the backwards differential uotient and the fact i7* M D (A) c

and by the mean value theorem again

This implies, first for 03C8n and, after taking limits, for 03C8

Henri Poincaré - Physique theorique
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leading to strong continuity of the semigroup U (t) on D (H)

Now (3.20) leads to

The first summand becomes arbitrarily small for large 7~, the second is

small because of (3.22) and the third is small because of strong continuity,
proving (3.17).

Let now a E D (~4), we prove that U (t) (H-z)-1 a is differentiable. For
this it is sufficient to prove that (H - z) U (t) (H - z)-1 a is differentiable,
for which in turn it is sufficient to prove that (H - z) U (t) (H - z)-1 a
is differentiable, for which in turn it is sufficient to prove that

((H - z) U (t) - U (t) (H - z)) (H - z)-1 a is differentiable. (This is

the only place where we use a E D (~4).) (H - a E D (H)
and (3.17) implies

PROPOSITION 8. - Let A, H satisfy conditions a)-c). Then (A -E- ~)-1
D (H) C D (H) for sufficiently large real ~. (H -~ i) ~ (A -~ ~)-1 (H 
converges strongly to I as ~ ~ +00.

Proof. - Equation (3.22) says that U (t) acts as a strongly continuous
semigroup on the Hilbert space D ( H ) _ ~C+2 with its appropriate norm.
Now standard semigroup theorems imply that II U (t)~2,2 ::s; M eat for

certain constants M, a and all t 2 0. Then (A -I- ~) -1 is a bounded,

Vol. 62, n ° 3-1995 .
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injective and closed operator from H+2 to itself for Re 03BB &#x3E; a ([13],
Proposition 1.18 and Theorem 2.8). For all ~ E D (~4) n D (H), we have
(H + i) ~ (A + ~)-1 ~ _ (H + i) ~ - (H + i) (A + ~)-1 A ~ ---&#x3E; (H + i) ~
as A -~ +00 by the Hille-Yosida-Phillips theorem [13], Theorem 2.21. By
the same theorem (H-I-i) ~ (A-I-~)-1 (H-~i)-1 are uniformly bounded for
large A. This implies strong convergence of (H + i) a (~4 + ~)-1 (H + i)-1
to I on all of H. 0

PROPOSITION 9 (The Virial Theorem). - Let A, H satisfy conditions a)-c).
Then 

-

2. If 03C8 is an eigenvector of H, then

Proof. - Part b) of Definition 4 implies that U* (t) acts as a semigroup
of operators on 7~-2 - By the same argument as in Proposition 6, U* (t)
is uniformly bounded on compact t intervals. U* (t) is weakly continuous
on x+2 :

By a complicated argument involving the Krein-Smullyan theorem, U* (t)
is then also strongly continuous on ~-l+Z ([13], Proposition 1.23). This
implies (~L* + ~)-1 D (H) c D (H) for large A and justifies, together with
the foregoing Propositions, the following computation.
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Since the commutator is H-bounded, the operator converges strongly to
(A, on D (H), which can be seen by factoring the operator as

Now, if ’Ij; is an eigenvector of H, then ~ E D (H) and == E’Ij; and
we obtain the virial theorem,

LEMMA 10. - Let the assumptions of Proposition 9 hold. In addition, let
the commutator be bounded from below as a quadratic form,

with a &#x3E; 0 and C a positive ’ self adjoint operator of trace ’ class. Then

(dim Ppp equals the number of eigenvalues, counted with their multiplicity.)

Proof. - We use the virial theorem which states that

for every eigenvector of H. Then

We return to the

Proof of Part 1 of Theorem 5. - Let the Hamiltonian H and the conjugate
operator ~4 obey condition a)-c) and e) at the energy E. Suppose that the

3-1995.


