
ANNALES DE L’I. H. P., SECTION A

TADAYOSHI ADACHI
Propagation estimates for N-body Stark hamiltonians
Annales de l’I. H. P., section A, tome 62, no 4 (1995), p. 409-428
<http://www.numdam.org/item?id=AIHPA_1995__62_4_409_0>

© Gauthier-Villars, 1995, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1995__62_4_409_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


409

Propagation estimates for

N-body Stark Hamiltonians

Tadayoshi ADACHI

Department of Mathematical Sciences, University of Tokyo,
3-8-1, Komaba, Meguro-ku, Tokyo 153, Japan.

Ann. Henri Poincaré, ,

Vol. 62, n° 4, 1995, Physique theorique

ABSTRACT. - We prove some propagation estimates for N-body Stark
Hamiltonians. These estimates imply that p - Et = o (t) and x - Et2 /2 =
o (t2 ) along the time evolution.

Nous prouvons des estimations de propagation pour Ie

Hamiltonians de Stark a N-corps.
Ces estimations entrainent que p - Et == o (t) et x - Et2 /2 = o (t2 )

durant 1’ evolution temporelle.

1. INTRODUCTION

In this paper, we establish some propagation estimates for N-body Stark
Hamiltonians.

We consider a system of N particles moving in a given constant electric
field £ E Rd, ~ ~ 0. Let ej and rj E Rd, 1  j  N, denote the mass,
charge and position vector of the j-th particle, respectively. The N particles
under consideration are supposed to interact with one another through the
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410 T. ADACHI

pair potentials Th~ (r~ - rk), 1  j  ~ ~ N. Then the total Hamiltonian
for such a system is described by

d

where ~ . ~ == E Rd and the interaction V is given as
j=l

the sum of the pair potentials

As usual, we consider the Hamiltonian H in the center-of-mass frame.
N

We introduce the metric (r, f) == ¿ mj fj for r == (rl, ..., rN) and
.7=1

r = (ri,..., E We use the notation Irl == (r, r~1~2. Let X and
Xcm be the configuration spaces equipped with the metric (-, ’), which
are defined by

These two subspaces are mutually orthogonal. We denote by 7r : 
X and X~m the orthogonal projections onto X and

respectively. For r E RdxN, we write and x~m = 

respectively. Let E E X and Ecm ~ Xcm be defined by

respectively. Then the total Hamiltonian H is decomposed into H =
H 0 Id ~-- Id 0 where Id is the identity operator, H is defined by

Tern denotes the free Hamiltonian Tern = -Ocm/2 - xcm) acting
on L2 and A (resp. is the Laplace-Beltrami operator on X
(resp. We assume that 0. This is equivalent to saying that

for at least one pair ( j, ~). Then H is called an N-body
Stark Hamiltonian in the center-of-mass frame.
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411PROPAGATION ESTIMATES FOR N-BODY STARK HAMILTONIANS

A non-empty subset of the set {!,..., N} is called a cluster. Let C~,
1 ~ .7 ::; m, be clusters. If Cj == {1,..., N~ and Cy n C~ = 0 for
l~~~~77~,~={Ci,..., is called a cluster decomposition. We
denote by # (a) the number of clusters in a. We denote by ~4 the set of
cluster decompositions and set ,~l = ~ a E ~4 : #(a) ~ 2}. We let a, b E ~4.
If b is obtained as a refinement of a, that is, if each cluster in b is a subset
of a cluster in a, we say b C a, and its negation is denoted by a. We

note that a C a is regarded as a refinement of a itself. If, in particular, b is
a strict refinement of a, that is, if b C a and a, this relation is denoted

by b C a. We denote by a == ( j, 1~) the (N - 1 )-cluster decomposition
{~~),(1),...~)~..~~)~..(7V)}.
Next we define the two subspaces X a and Xa of X as

We note that xa is the configuration space for the relative position of j-th
and particles. Hence we can write Ya (xq) - V~~ (rj - These

spaces are mutually orthogonal and span the total space  = X a (B Xa,
so that L2 (X ) is decomposed as the tensor product L2 (X ) = LZ 0
L2 (Xa ) . We also denote by X ~ X a and X -~ Xa the
orthogonal projections onto X a and Xa, respectively, and write xa = 03C0a x
and xa - 03C0a x for a generic point x E X. The intercluster interaction Ia
is defined by

and the cluster Hamiltonian

governs the motion of the system broken into non-interacting clusters of
particles. Let Ea = 7r" E and Ea - ~a E. Then the operator Ha acting
on L2 (X ) is decomposed into

where Ha is the subsystem Hamiltonian defined by
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412 T. ADACHI

Ta is the free Hamiltonian defined by

and Da (resp. Da) is the Laplace-Beltrami operator on (resp. Xa). By
choosing the coordinates system of X, which is denoted by x = xa),
appropriately, we can write 0394a = |~a|2 and 0 a = |~a|2, where
V = = and V~ == ~xa = and the gradients on X a and
Xa, respectively. We note that we denote by xa (resp. xa) a vector in X"
(resp. Xa) as well as the coordinates system of X a (resp. Xa). We write
p == -i B7, ~°~ == -2 ~a and pa = 

We now state the precise assumption on the pair potentials. Let c be
a maximal element of the set {a E ,,4 : Ea == 0} with respect to the
relation C . As is easily seen, such a cluster decomposition uniquely exists
and it follows that E~ = 0 if 0152 C c, and 0 if c. Thus

the potential Ya with cx ~ c (resp. a C c) describes the pair interaction
between two particles with ek/mk (resp. ej/mj = If, in

particular, for any j ; I~, then c becomes the N-cluster
decomposition. We make different assumptions on Va according as c

or 0152 C c. We assume that Tla (xa) E (xa) is a real-valued function
and has the decay property

with p + M &#x3E; 1.

Under this assumption, all the Hamiltonians defined above are essentially
self-adjoint on Co. We denote their closures by the same notations.

Throughout the whole exposition, the notations c, p’, p and  are used with
the meanings described above. We make some remarks about potentials. For
a C c, if p’ &#x3E; 1 (resp. 0  p’  1), Va is called a short-range (resp. long-
range) potential. For c, if p &#x3E; 1/2 (resp. 0  p ~ 1/2), V~ is called
a short-range (resp. long-range) potential. If we consider the problem of
the asymptotic completeness for long-range N-body Stark Hamiltonians, we
should study the Dollard-type (resp. Graf-type) modified wave operators
under the assumptions (V. 1) and (V.2) [resp. (V.1) and (V.3)] (cf [A],
[ATl-2], [Gr2], [JO], [JY], [HMS2] and [Wl-2]).
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In this paper, we denote and (’, ’) the norm and the inner
product on L2 (X), respectively. Abusing notations, we also denote by
II . II the norm of bounded operators on LZ (X). We let f E Co (R).
Propagation estimates are integral or pointwise estimates for large |t|I

on for some time-dependent operator Bt. Integral
estimates of the form

play a basic role for the proof of the asymptotic completeness for N-body
Hamiltonians (see [D], [Gr1], [SS] and [Z] in the case without constant
electric fields, and [A] and [ATl-2] in the case with Stark effect). In

these estimates, Bt can be a bounded pseudodifferential operator or a more
general operator. We study here pointwise estimates of the form

for some s &#x3E; 0 and k E R. For the case without constant electric fields,
such estimates has been obtained by Skibsted [Sk] and Gerard [G]. In this

paper, we obtain some pointwise propagation estimates for N-body Stark
Hamiltonians.

We now formulate the results obtained in this paper. We use the following
convention for smooth cut-off functions F with 0  F  1, which is often
used throughout the discussion below. For sufficiently small 8 &#x3E; 0, we
define

and * F s  d2) = F (s ~ i F (5  d2). The choice " of 03B4 i &#x3E; 0 does

not matter to the argument below, but we sometimes write Fb for F when
we want to clarify the dependence " on 03B4 # &#x3E; 0.

THEOREM 1.1. - Suppose that V satisfies (V.1), and ’ (V.2) or (V.3). Let
e &#x3E; 0 and s &#x3E; s’ &#x3E; 0. Then the following estimates 1:

This result implies that = o (t) and = o (t2) along the
time evolution. In particular, ( 1.4) implies that the particles asymptotically
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concentrate in any conical neighborhood of E, and this fact has played
an important role for the proof of the asymptotic completeness for long-
range N-body Stark Hamiltonians given by [A], [ATI-2] and [HMS2]. The
following theorem is a refinement of the above properties. In particular,
under the assumption that (V.2) with 0  p  1/2 is satisfied, we obtain
the difference between the growth order in t of the intercluster motion
(xc, Pc) and the total motion (x, p).
THEOREM 1.2. - Suppose that V satisfies (V.1), and (V.2) or (V.3). Let

= p + 1/2. = and = (V.2)
with 0  p  1/2 is satisfied, = 1, and

x2 (t) = (V.2) with 03C1 = 1/2 is satisfied, and = 1,

xl (t) = 1 and X2 (t) = t if (V.2) with p &#x3E; 1/2 or (V.3) is satisfied. Let
0  ê  Then the following estimates hold for t ~ 1:

Moreover, (V.1 ) and (V.2) with 0  /9 ~ 1/2, the intercluster
velocity pc and position x~ satisfy the following estimates for t &#x3E; 1:

Comparing ( 1.6) with ( 1. 8), we may conclude 

E/2|  (H) (x)-s/211 == p (x2 (t)). However, since the
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innercluster motion associated with the cluster decomposition c is
not influenced by the constant electric field E, we may expect that

E/2~ ~ ~) e-~cx f ~g) (x)-S/z~~ - OM. If V satisfies
(V.1) and (V.2) with 0  p S 1/2, (1.6) may be a weak estimate, but it
seems to have the advantage that the form of x2 (t) depends on p only
and do not depend on p’. In this case, to obtain the stronger estimate than
(1.6), we will need a more detailed analysis for the innercluster motion
associated with the cluster decomposition c.

COROLLARY 1.3. - Suppose that V satisfies (V.1) and (V.2) with
0  p  1/2. Let and be as in Theorem 1.2. Let
0  T  so (p). Then the following estmates hold for C &#x3E; 0 1:

We now consider only the case when c is N-cluster decomposition. The
following theorem implies pt - Et2/2 is a better approximation of x than
Et2/2 along the time evolution. The corresponding integral estimate has
been obtained in [A], which may be used the (modified) wave operators.

THEOREM 1.4. - Suppose that V satisfies (V.1), and (V.2) or (V3). Let
so (p) and Xl (t) be as in Theorem 1.2. Then the following estimates hold
for any &#x3E; 2 ~,~~ so (p) 1:

The similar estimates may be obtained for the propagator Uc (t) generated
by the time-dependent Hamiltonian

Vol. 62, nO 4-1995.
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Then we may apply these estimates, in particular ( 1.5) and ( 1.6), to prove
the asymptotic completeness of N-body Stark Hamiltonians. We may also
use these estimates to prove the existence of the time-delay operator for

two-body Stark Hamiltonians, which was shown by Robert and Wang [RW].

Throughout this paper, we consider the case that V satisfies (V.1) and
(V.2) with 0  p  1/2 only for simplification. Other cases can be treated
similarly.
The plan of this paper is as follows: In section 2, we collect the

known results to be used in later sections. In sections 3 and 4, we prove
Theorems 1.1-1.4.

2. KNOWN RESULTS

In this section, we collect the known results to be used in later sections.

First, we recall the spectral properties of N-body Stark Hamiltonians, which
has been studied by Herbst-Møller-Skibsted [HMS 1 ] . We use the following
notations throughout this paper. Let w = be the direction of E.

We denote the coordinate z E R by z = ~x, w), so that H is written as
H = -A/2 - + V. Let A = (w, p) = -z We should note that

are bounded.

THEOREM 2.1. - Suppose that V satisfies (V.1), and (V .2) or (V 3). Then

( 1 ) H has no bound states.

(2) Let R &#x3E; 0 be fixed and let II : X -~ X be an orthogonal projection
such that IIE ~ 0. Then

uniformly in 03BB E R. In particular, for cx ~ c,

Annales de l’Institut Henri Poincaré - Physique theorique
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(3) Let 0  7  (/. Then one , can take 8 1 &#x3E; 0 so small (uniformly
in 03BB ~

We should make some remarks. First, (2.1 ) has been obtained in [HMS 1 ],
and (2.2) may be obtained in the same way. Second, we should note that
we can make 03C3 and 03C3’ very close to But we do not know whether
this property holds or not in the case when the potentials have some
singularities (also see [HMS 1 ] ).
Next we recall the almost analytic extension method due to Helffer and

Sjostrand [HeSj], which is useful in analyzing operators given by functions
of self-adjoint operators. For two operators B1 and B2, we define

For mER, let be the set of functions f E (R) such that

If f E Fm with m ~ R, then there exists / E such that

f (s) = for s E R, supp /(() C {(~ C : 11m (I ~ d(1 + 
for some d &#x3E; 0 and

Such a function f (() is called an almost analytic extension of f . Let B be a
self-adjoint operator. If f E with m &#x3E; 0, then f (B) is represented by

For f E with mER, we have the following formulas of the asymptotic
expansion of the commutator:

Vol. 62, n ° 4-1995.
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RM is bounded if there exists k such that m + k  M and adMB
(B + i)-k is bounded. Similarly, jR~ is bounded if there exists k such that
m + lc  M and (B + i)-k adMB (Bl) is bounded. For the proof, see [G].
We use the above formulas frequently.

Next, we state the maximal and minimal acceleration bounds, which
has played a basic role in the proof of the asymptotic completeness for
long-range N-body Stark Hamiltonians (see [A], [ATI-2] and [HMS2]).
These estimates can be obtained by using Skibsted’s abstract theory with
slightly modification and Theorem 2.1 (3) (see [A]). To explain the results,
we introduce some notations. We denote by D the Heisenberg derivative:

DEFINITION 2.2. - For given 03B2, 03B1 ~ 0 and E &#x3E; 0, we

function ~03B1,~(y) = F(y ~ -C) that 
d dy ~03B1,~(y) ~ 

0 and

~) + ~ j- (~) = X~ Coo (R) 2 0,

~) == t) E RxR+. ~

(~) = ( ~- ) (?/, ~) E N.

ASSUMPTION 2.3. - Let N with 2, ~ ~ 1, /30 &#x3E; 0,
1/2 &#x3E; 0152O &#x3E; 1, /. /2 E Co (R), /2 be real-valued with /2 / == /,

and ~4 (~),~ be self-adjoint operators on L~ (X). Assume that the operators
~ (~) have a common domain D, D (~) n D is dense in P (~), B &#x3E; Id,
and with ~ = ~ (1) that E B (L~ (X)). Assume moreover

(1) With (j~) = ~ and 1 ~ ~ ~ ~o the form (~f) =
i [z"’~ (~f), ~ (~)] on D (~f) n P extends to a symmetric operator
with domain P(~).

(2) If A is unbounded, sup|s|1~H ei A(t)s 03C8~  00 for any 03C8 E D(H)
and t ~ 1.

(3) For any ~1~2 ~ 1, ~i) - ~(~2) is bounded, and the derivative

d dt A(t) exists in B(L2(X)). For n ~ n0 - 1 and t 2 1, the form

Annales de l’Institut Henri Poincaré - Physique théorique
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= i (-~)Y on 1) extends

to a bounded self-adjoint operator on LZ (X).

(4) For n ~ no, and are

continuous B (X) ) -valued functions 1.

(5) (a) (~(~)) - 0(1) in (X )) as oo. (b) For

n  no, (t)J (H - = 0 (1) in B (LZ (X)) as oo.

(c) For n ~ no, (H) (H - = 0 (1) in B (LZ (X)) as t --t oo.
(6) q ({30, 8) for some 6 &#x3E; 0: There exists a bounded operator .61 (t)

on LZ (X) such that

and, with o’o = max{m E Nm  the following estimate holds for

({3, a) == (0, 1),..., (0, ao), (,C3o, ao): For (y, t), there exists C &#x3E; 0

such that with (() == (~~, (A (t), t))1~2 f (H) B-a/2 ~’

(7) ao + 3/2  /30 + no and ao + 3/2  no.

(8) For any g E Co (R) and 1  n  no, the form (g (H)) =
(g (H)), A (t)~ on D extends to a bounded operator on 

Moreover (~f+~) (g (H)) and (g (H)) (H+i) are continuous
B (LZ (X))-valued functions of t &#x3E; 1, and 0 (1) as t -&#x3E; oo.

(9) For 1  n  no, is a continuous 

valued function of t E R.

(10) For any real s with 0  s  no, is a

continuous B (LZ (X))-valued function of t E R.
The following lemma is an extension of Corollary 2.5 of [Sk] for the

N-body Stark Hamiltonian H. We recall that H is not bounded from below.
For the proof, see [A].

LEMMA 2.4. - Suppose that Assumption 2.3 is satisfied. Then for
(/3, Q) == (0, 1), ..., (0, (/30, ao), any 7 &#x3E; 0 and 0  ~  1,

Vol. 62, nO 4-1995.
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PROPOSITION 2.5. - Suppose that V satisfies (V. 1), and (V.2) or (V.3).
Let f E Co (R) and s &#x3E; l ~ 0. Then there exists M &#x3E; 4 such that the

following estimate holds for t &#x3E; 1:

Proof. - We follow the proof of Theorem 3.4 of [Sk]. We take any
~o~4 and set ao = 2, ,Cjo = = vt - (x)1~2 and B = 
It can be verified that Assumption 2.3 (1)-(5) and (7) are satisfied. We also
see that (6) holds, using the fact that for any f2 ~ C~0 (R) there exists
vo &#x3E; 0 such that for v &#x3E; v~

We now verify that Assumption 2.3 (8)-( 10) are satisfied. We prove (8)
only. (9) and ( 10) can be proved similarly. Integrating the derivatives, we
have by induction

Using this formula and noting (t)~ (H + = 0 ((L)) 0 (1), we
have for n E N

Assumption 2.3 (8) follows from this estimate. Therefore, we have the

proposition. 0

LEMMA 2.6. - Suppose that V satisfies (V.1 ), and (V .2) or (V.3). Let

f E Co (R). Let 03C3 and 03C3’ be as in Theorem 2.1. Then the following
estimate holds for t ~ 1:

Annales de l’Institut Henri Poincaré - Physique theorique
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Proof - The lemma can be proved as in the proof of Lemma 5.5 of [A]
(also see Example 1 in section 3 of [Sk]). D

PROPOSITION 2.7. - Suppose that V satisfies (V. 1), and (V.2) or (V.3). Let
f E Co (R). Let o- and (7’ be as in Theorem 2.1, and 0  s’  s. Then

the following estimate holds for t 2: 1:

Proof. - The proof is similar to that of Theorem 5.4 of [A] (also see
Example 2 in section 3 of [Sk]). We prove (2.12) only. (2.13) can be proved
similarly. Fix 0  03C3"  o-. For ~" &#x3E; 0, take g0, 1, ~" (g, t) and let A(t)
be a multiplication by go,1, ~~~ (-t M, t) == -t M F (- M  -~"), where
M = M(x, t) == (~/2 - z/t2~I~2. Let A’ (t) = A - ~ t. B = ~x~~l+’~»2
for ~ &#x3E; 0. We take any no E N and set 0152O = no - 2 and {30 == 1.

Assumption 2.3 (7) holds automatically.

It can be verified that Assumption 2.3 ( 1 )-(5) are satisfied. As for (6), we
have only to verify the condition q (,Qo, 1) as follows: We compute

The first term is non-negative. As for the second, we observe that

Vol. 62, nO 4-1995.



422 T. ADACHI

Hence it suffices to show that for f, f2 ~ Co (R) such that f f2 = f,

since -(1 +Q:/t)  -1 for a &#x3E; 0. This can be shown by
commuting G1 == (-A’ (t)/t)1~2 F (A’ (t)/t  -e’) with 

(-t M, ))~/2(~) ~9~1~ , E ~A ~t)~ t~~1~2 as follows: We
note that by virtue of Proposition 2.5, there exists C &#x3E; 0 such that

Now we set G2 F (A (~ ~ -C) and 94 - G2 - G3. Then we have

Using the estimates ~A’ (t)/t, M-1~2 (goli,E" (-tM, t))1~2~ = 0(r3),
[A’(t)/t, f2(H)] = O (t-1) and [A’(t)/t, (g(1)03B2,03B1,~(A(t), t))1/2(1 -
F (A (t)/t ~ -7))] = 0 (t(03B1-7)/2), we have, by almost analytic extension
method, that G4~ = 0(~-~/2) F(~)/~ ~ -~"’) + O (t-°°) for
some 0  e"’  e’. Hence, we have

By Lemma 2.6, we have

By (2.14)-(2.16), we see that Assumption 2.3 (6) holds.
Assumption 2.3 (8)-( 10) can be verified as in the proof of Proposition 2.5.

Now we apply Lemma 2.4. Since g~, a, E (A (t), t) = g~, ~, ~ (-t M, t) for
any c &#x3E; 2~’, and ~" &#x3E; 0 is arbitrary, (2.12) is a consequence of Lemma 2.4
with 9’ = 1. D

In this paper, we call (2.7) and (2.12) the maximal and minimal
acceleration bounds, respectively.

3. PROOF OF THEOREM 1.1

In this section, we prove Theorem 1.1. First we show that ( 1.3) holds. We
= ~) F ( ~x~ lt2  M) 

where M &#x3E; 0 is as in Proposition 2.5, and 03C8 E L2 (X ) . We compute
for k ~ N

Annales de l’Institut Henri Poincaré - Physique theorique



423PROPAGATION ESTIMATES FOR N-BODY STARK HAMILTONIANS

Here we should note that (2.8), (2.10), (2.12) and (2.13) imply that for

any ~’ &#x3E; 0 and s &#x3E; s’ &#x3E; 0,

We also note that (H - V) (H + is bounded. Using (3.2) and (3.3),
and using the almost analytic extension method to control the commutators,
we estimate the both sides of (3.1) as follows:

Hence, taking &#x3E; 0 so small that C’ ~’~  ~2 ~, we have

Combining this estimate with the maximal acceleration bound (2.7), we
obtain ( 1. 3 ) .
Next we prove ( 1.4). We need the following proposition.

PROPOSITION 3.1. - Let ~ &#x3E; 0 and s &#x3E; s’ &#x3E; 0. Then there exists ~’ &#x3E; 0

such that the following estimate holds for t ~ 1:

Vol. 62, n 4-1995.
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Proof. - We should note that by virtue of the maximal acceleration bound
(2.7), there exists M &#x3E; 0 such that the following estimate holds:

Here we write ((~) = F(e ~ E~2~  M) F (~p~t - E~
~x~-s~z ~ with ’Ø E where F’ (e  s  M) ~ 0

for e  s  e + 8. We compute for kEN

We note that the Heisenberg derivatives of x - Et2/2, F (6-  
E/2| ~ M) and F(|p/t - E| ~ é’) are as follows:

for some 0  e"  e’. Here we used the almost analytic extension

method and pseudodifferential calculus to obtain (3.7). Noting that

F’(c  ~ ~ M) ~ 0 for 6; ~ ~  ~ -~- 6, and using (1.3) and

(3.4)-(3.7), ~t (~~~~ - E~/2~(~p) can be estimated as follows: For
0  s’  s  2 (k - 1),

Annales de l’Institut Henri Poincaré - Physique theorique


