MASAHITO OHTA

Blow-up solutions and strong instability of standing waves for the generalized Davey-Stewartson system in \mathbb{R}^2

<http://www.numdam.org/item?id=AIHPA_1995__63_1_111_0>
Blow-up solutions and strong instability of standing waves for the generalized Davey-Stewartson system in \mathbb{R}^2

by

Masahito OHTA

Department of Mathematical Sciences,
University of Tokyo,
Hongo, Tokyo 113, Japan.

ABSTRACT. – We study the instability of standing wave $e^{iwt} \varphi_{\omega}(x)$ for the equation

$$iu_t + \Delta u + a|u|^{p-1}u + E_1(|u|^2)u = 0$$

in \mathbb{R}^2, where φ_{ω} is a ground state. We prove that if $a(p - 3) > 0$, then there exist blow-up solutions of (*) arbitrarily close to the standing wave.

RÉSUMÉ. – Nous étudions l’instabilité de l’onde stationnaire $e^{iwt} \varphi_{\omega}(x)$ pour l’équation

$$iu_t + \Delta u + a|u|^{p-1}u + E_1(|u|^2)u = 0$$

dans \mathbb{R}^2, où φ_{ω} est un état fondamental. Nous prouvons que si $a(p - 3) > 0$, il existe solutions de (*) explosant en temps fini, arbitrairement voisine de l’onde stationnaire.

1. INTRODUCTION AND RESULT

We consider the instability of standing waves for the following equation:

$$iu_t + \Delta u + a|u|^{p-1}u + E_1(|u|^2)u = 0, \quad t \geq 0, \quad x \in \mathbb{R}^n, \quad (1.1)$$

where $a \in \mathbb{R}$, $1 < p < 2^* - 1$, $n = 2$ or 3, and E_1 is the singular integral operator with symbol $\sigma_1(\xi) = \xi_1^2/|\xi|^2$, $\xi = (\xi_1, \ldots, \xi_n) \in \mathbb{R}^n$. Equation
(1.1), for \(n = 2 \) and \(p = 3 \), describes the evolution of weakly nonlinear water waves that travel predominantly in one direction (see [3], [4] and [2]). By a standing wave, we mean a solution of (1.1) with the form

\[u_\omega(t, x) = e^{ixt} \varphi_\omega(x), \]

where \(\omega > 0 \) and \(\varphi_\omega \) is a ground state (least action solution) of the problem:

\[
\begin{align*}
-\Delta \psi + \omega \psi - a|\psi|^{p-1}\psi - E_1(|\psi|^2) \psi &= 0, \\
\psi &\in H^1(\mathbb{R}^n), \\
\psi &\neq 0.
\end{align*}
\]

Here the action \(S_\omega \) of (1.2) is defined by

\[S_\omega(v) = \frac{1}{2} \| \nabla v \|^2 + \frac{\omega}{2} \| v \|^2 - \frac{a}{p+1} \| v \|_{p+1}^{p+1} - \frac{1}{4} B_1(|v|^2), \]

where \(B_1(|v|^2) = \int |v|^2 E_1(|v|^2) \, dx \). We denote by \(G_\omega \) the set of all ground states for (1.2).

Definition 1.1. For \(\Omega \subset H^1(\mathbb{R}^n) \), we say that the set \(\Omega \) is stable if for any \(\epsilon > 0 \) there exists \(\delta > 0 \) such that if \(u_0 \in H^1(\mathbb{R}^n) \) satisfies

\[\inf_{\varphi \in \Omega} \| u_0 - \varphi \|_{H^1} < \delta, \]

then the solution \(u(t) \) of (1.1) with \(u(0) = u_0 \) satisfies

\[\sup_{0 \leq t < \infty} \inf_{\varphi \in \Omega} \| u(t) - \varphi \|_{H^1} < \epsilon. \]

Otherwise, \(\Omega \) is said to be unstable. Moreover, for \(\varphi_\omega \in G_\omega \), we say that the standing wave \(u_\omega(t) = e^{ixt} \varphi_\omega \) is unstable if \(\{ e^{i\theta} \varphi_\omega(\cdot + y) : \theta \in \mathbb{R}, y \in \mathbb{R}^n \} \) is unstable. Furthermore, we say that \(u_\omega \) is strongly unstable if for any \(\epsilon > 0 \) there exists \(u_0 \in H^1(\mathbb{R}^n) \) such that \(\| u_0 - \varphi_\omega \|_{H^1} < \epsilon \) and the solution \(u(t) \) of (1.1) with \(u(0) = u_0 \) blows up in a finite time.

For the standing wave \(u_\omega(t) = e^{ixt} \varphi_\omega \) with \(\varphi_\omega \in G_\omega \) of (1.1), Cipolatti [2] proved that if \(a(p - 3) \geq 0 \), and \(n = 2 \) or \(3 \), then \(u_\omega \) is unstable for any \(\omega \in (0, \infty) \), and that if \(n = 2, p = 3 \) and \(a > -1 \), then \(u_\omega \) is strongly unstable for any \(\omega \in (0, \infty) \). After that, the author [5] proved that if \(a > 0 \), \(p \geq 1 + 4/n \), and \(n = 2 \) or \(3 \), then \(u_\omega \) is unstable for any \(\omega \in (0, \infty) \), and that if \(n = 3, a > 0 \) and \(1 < p < 7/3 \), then there exists a positive constant \(\omega_0 = \omega_0(a, p) \) such that \(u_\omega \) is unstable for any \(\omega \in (\omega_0, \infty) \). Moreover, the author [6] proved that if \(n = 3, a > 0 \) and \(7/3 < p < 5 \), or \(a < 0 \) and \(1 < p < 3 \), then \(u_\omega \) is strongly unstable for any \(\omega \in (0, \infty) \). On the other hand, when \(n = 2 \) and \(a(p - 3) < 0 \), the author [6] showed the existence of stable standing waves of (1.1).

Our result in this paper is the following.
Theorem 1.2. – Assume that \(n = 2 \) and \(a (p-3) > 0 \), or \(n = 3, a > 0 \) and \(p = 7/3 \). Then, for any \(\omega \in (0, \infty) \), the standing wave \(u_\omega(t) = e^{i\omega t} \varphi_\omega \) with \(\varphi_\omega \in G_\omega \) is strongly unstable in the sense of Definition 1.1.

Remark 1.3. – As stated above, we showed in [6] that if \(n = 3, a > 0 \) and \(7/3 < p < 5 \) or \(a < 0 \) and \(1 < p < 3 \), then \(u_\omega \) is strongly unstable for any \(\omega \in (0, \infty) \), by extending the method of Berestycki and Cazenave [1] to an anisotropic case \((1.1) \) contains an anisotropic nonlinearity \(E_1(|u|^2)u \). Following Berestycki and Cazenave [1], we consider the same minimization problem as in [6] (see Proposition 2.1 below). In the case of Theorem 1.2, we need some devices to obtain that its minimizing sequence is bounded in \(H^1(\mathbb{R}^n) \), and is not vanishing in \(L^q(\mathbb{R}^n) \) for some \(2 < q < 2^* \), although it is easy in the case of [6] (see Proposition 2.2 below, and Lemma 4.2 in [6]). In particular, in order to show that the minimizing sequence is not vanishing in \(L^{p+1}(\mathbb{R}^2) \) when \(n = 2, a > 0 \) and \(p > 3 \), we need an estimate for the critical value of minimization problem (see Lemma 2.3 below).

In what follows, we omit the integral variables with respect to the spatial variable \(x \), and we omit the integral region when it is the whole space \(\mathbb{R}^n \). We denote the norms of \(L^q(\mathbb{R}^n) \) and \(H^1(\mathbb{R}^n) \) by \(\cdot \|_{L^q} \) and \(\cdot \|_{H^1} \), respectively. We put \(\lambda^\lambda(x) = \lambda^{n/2} \nu(\lambda x), \lambda > 0 \).

2. PROOF OF THEOREM 1.2

In this section, we give the proof of Theorem 1.2. We prove the case when \(n = 2 \) and \(a (p-3) > 0 \) only. The case when \(n = 3, a > 0 \) and \(p = 7/3 \) can be proved analogously to the case when \(n = 2, a > 0 \) and \(p > 3 \). Thus, we assume that \(n = 2, a > 0 \) throughout this section. Moreover, since we fix the parameter \(\omega \), we drop the subscript \(\omega \). Thus, we write \(\varphi \) for \(\varphi_\omega \), \(S \) for \(S_\omega \), and so on. We put

\[
P(v) = |\nabla v|^2 - \frac{p-1}{p+1} a|v|^{p+1} - \frac{1}{2} B_1(|v|^2). \tag{2.1}
\]

We note that \(P(v) = \partial_\lambda S(v^\lambda)|_{\lambda=1} \). We first prove a key proposition to obtain Theorem 1.2.

Proposition 2.1. – Assume that \(n = 2 \) and \(a (p-3) > 0 \). Then, \(\varphi \) is a ground state of \((1.2) \) if and only if \(\varphi \in M \) and \(m = S(\varphi) \), where

\[
m = \inf \{ S(v) : v \in M \},
\]

\[
M = \{ v \in H^1(\mathbb{R}^2) : v \neq 0, P(v) = 0 \}. \tag{2.2}
\]
In order to obtain a minimizer for (2.2), we consider the following minimization problem (2.3), instead of (2.2):

\[m_1 = \inf \{ S^1(v) : v \in H^1(\mathbb{R}^2), v \neq 0, P(v) \leq 0 \}, \quad (2.3) \]

where

\[S^1(v) = S(v) - \frac{1}{2} P(v) = \frac{\omega}{2} |v|^2_2 + \gamma |v|^{p+1}_{p+1}, \quad \gamma = \frac{a(p-3)}{2(p+1)} > 0. \]

If \(P(v) < 0 \), then we have

\[P(\lambda v) = \lambda^2 |\nabla v|^2 + \frac{p-1}{p+1} a \lambda^{p+1} |v|^{p+1}_{p+1} - \frac{1}{2} \lambda^4 B_1(|v|^2) > 0 \]

for sufficiently small \(\lambda > 0 \), so there exists a \(\lambda_0 \in (0, 1) \) such that \(P(\lambda_0 v) = 0 \). Moreover, since we get

\[S^1(\lambda_0 v) = \frac{\omega}{2} \lambda_0^2 |v|^2_2 + \gamma \lambda_0^{p+1} |v|^{p+1}_{p+1} < S^1(v), \]

we obtain that

\[m_1 = \inf \{ S^1(v) : v \in H^1(\mathbb{R}^2), v \neq 0, P(v) = 0 \} = m. \quad (2.4) \]

Proposition 2.2. – The minimization problem (2.3) is attained at some \(w \in M \).

Before giving the proof of Proposition 2.2, we prepare one lemma. We use Lemma 2.3 to show that a minimizing sequence for (2.3) is not vanishing in \(L^{p+1}(\mathbb{R}^2) \) when \(a > 0 \) and \(p > 3 \).

Lemma 2.3. – Let \(a > 0 \) and \(p > 3 \). Then, we have \(m_1 < \omega \mu_0/2 \), where

\[\mu_0 = \inf \left\{ |v|^2_2 : v \in H^1(\mathbb{R}^2), v \neq 0, E_0(v) \equiv \frac{1}{2} |\nabla v|^2 - \frac{1}{4} B_1(|v|^2) \leq 0 \right\}. \]

Proof. – From Proposition 2.1 in [6], there exists a function \(Q \in H^1(\mathbb{R}^2) \) such that \(Q \neq 0 \), \(|Q|^2_2 = \mu_0 \) and \(E_0(Q) = 0 \). For \(0 < \delta < 1 \) and \(\lambda > 0 \), we have by \(E_0(Q) = 0 \)

\[P(\delta Q^\lambda) = \delta^2 \lambda^2 |\nabla Q|^2_2 - \frac{p-1}{p+1} a \delta^{p+1} \lambda^{p-1} |Q|^{p+1}_{p+1} - \frac{1}{2} \delta^4 \lambda^2 B_1(|Q|^2) \]

\[= \delta^2 \lambda^2 (1 - \delta^2) |\nabla Q|^2_2 - \frac{p-1}{p+1} a \delta^{p+1} \lambda^{p-1} |Q|^{p+1}_{p+1}. \]
If we take $0 < \delta < 1$ and $\lambda > 0$ such that $P(\delta Q^\lambda) = 0$, then we have

$$\lambda = C(a, p, Q) \delta^{(1-p)/(p-3)} (1 - \delta)^{(1-p)/(p-3)}$$

and

$$S^1(\delta Q^\lambda) = \frac{\omega}{2} \delta^2 |Q|_2^2 + \gamma \delta^{p+1} \lambda^{p-1} |Q|_{p+1}^{p+1}$$

$$= \frac{\omega}{2} \delta^2 |Q|_2^2 + \frac{p-3}{2(p-1)} \delta^2 \lambda^2 (1 - \delta^2) |\nabla Q|_2^2.$$

Thus, if we take δ sufficiently close to 1, then we have $S^1(\delta Q^\lambda) < \omega |Q|_2^2/2$. Hence, from the definition of m_1, we obtain that $m_1 < \omega |Q|_2^2/2 = \omega \mu_0/2$.

Remark 2.4. - It is important to note that m_1 is strictly less than $\omega \mu_0/2$ in Lemma 2.3. This fact plays an essential role in the proof of Proposition 2.2.

Proof of Proposition 2.2. - Let $\{v_j\}$ be a minimizing sequence for (2.3). Since $\gamma > 0$, $\{v_j\}$ is bounded in $L^2(\mathbb{R}^2) \cap L^{p+1}(\mathbb{R}^2)$.

First, we show that $\{v_j\}$ is bounded in $H^1(\mathbb{R}^2)$. When $a > 0$ and $p > 3$, we see that $\{v_j\}$ is bounded in $L^4(\mathbb{R}^2)$, $B_1(|v_j|) \leq |v_j|_4$ and $P(v_j) \leq 0$, so that we have $\sup_j |\nabla v_j|_2^2 < \infty$. When $a < 0$ and $1 < p < 3$, we have from $P(v_j) \leq 0$

$$|\nabla v_j|_2^2 \leq |\nabla v_j|_2^2 + \frac{p-1}{p+1} |a| |v_j|_p^{p+1} \leq \frac{1}{2} B_1(|v_j|_2)$$

$$\leq \frac{1}{2} |v_j|_4^4 \leq C_1 |v_j|_p^{p+1} |\nabla v_j|_2^{3-p}$$

for some $C_1 > 0$. Here we have used the Gagliardo-Nirenberg inequality. Since $\{v_j\}$ is bounded in $L^{p+1}(\mathbb{R}^2)$, we have $|\nabla v_j|_2^2 \leq C_2 |\nabla v_j|_2^{3-p}$ for some $C_2 > 0$, so that we have $|\nabla v_j|_2^{p-1} \leq C_2$.

Next, we show that $\liminf_{j \to \infty} |v_j|_p^{p+1} > 0$ when $a > 0$ and $p > 3$. In fact, suppose that $|v_j|_p^{p+1} \to 0$. Then, since we have

$$B_1(|v_j|_2^2) \leq |v_j|_4^4 \leq |v_j|_2^{2(p-3)/(p-1)} |v_j|_p^{2(p+1)/(p-1)}$$

and $\{v_j\}$ is bounded in $L^2(\mathbb{R}^2)$, we have $B_1(|v_j|_2^2) \to 0$, and from $P(v_j) \leq 0$ we have $|\nabla v_j|_2 \to 0$. From the fact that $P(v_j) \leq 0$, Proposition 2.1 in [6] and the Gagliardo-Nirenberg inequality, we have

$$|\nabla v_j|_2^2 \leq \frac{p-1}{p+1} a |v_j|_p^{p+1} + \frac{1}{2} B_1(|v_j|_2^2)$$

$$\leq \frac{p-1}{p+1} a C_3 |v_j|_2^2 |\nabla v_j|_2^{p-1} + \frac{1}{\mu_0} |v_j|_2^2 |\nabla v_j|_2^2$$

$$\leq C_4 |\nabla v_j|_2^{p-1} + \frac{1}{\mu_0} |v_j|_2^2 |\nabla v_j|_2^2.$$
for some positive constants C_3 and C_4, so that we have
\[1 \leq C_4 |\nabla v_j|^p - \frac{3}{p^2} + \frac{1}{\mu_0} |v_j|^2. \]
It follows from $|\nabla v_j|_2 \to 0$ that $\mu_0 \leq \liminf_{j \to \infty} |v_j|^2$. Since $S^1(v_j) \to m_1$, we have $\omega_0 \mu_0 / 2 \leq m_1$. However, this contradicts Lemma 2.3. Therefore, we obtain that $\liminf_{j \to \infty} |v_j|^{p+1}_{p+1} > 0$ in the case of $a > 0$ and $p > 3$.

Next, we show that $\liminf_{j \to \infty} |v_j|^{4}_{4} > 0$ when $a < 0$ and $1 < p < 3$. In fact, suppose that $|v_j|^{4}_{4} \to 0$. Then, from $P(v_j) \leq 0$ we have $|\nabla v_j|_2 \to 0$. Again from $P(v_j) \leq 0$, we have
\[
|\nabla v_j|^2 + \frac{p-1}{p+1} |a| |v_j|^{p+1}_{p+1} \leq \frac{1}{2} B_1(|v_j|^2)
\]
\[
\leq \frac{1}{2} |v_j|^4 \leq \frac{p-1}{p+1} |a| |v_j|^{p+1}_{p+1} + C_5 |v_j|^5,
\]
so that we have
\[
|\nabla v_j|^2 \leq C_5 |v_j|^5 \leq C_6 |v_j|^2 |\nabla v_j|^2 \leq C_7 |\nabla v_j|^3
\]
for some positive constants C_5, C_6 and C_7. However, this contradicts $|\nabla v_j|_2 \to 0$. Therefore, we obtain that $\liminf_{j \to \infty} |v_j|^{4}_{4} > 0$ in the case of $a < 0$ and $1 < p < 3$.

From the above results, we can prove Proposition 2.2 in the same way as the proof of Lemma 4.2 in [6]. □

From (2.4) and Proposition 2.2, we obtain a minimizer of (2.2), that is, there exists a $w \in M$ such that $m = S(w)$.

Lemma 2.5. If $w \in M$ satisfies $m = S(w)$, then we have $S'(w) = 0$.

We can prove Lemma 2.5 similarly to the proof of Lemma 4.3 in [6]. Moreover, since we have $P(\psi) = 0$ for any solution ψ of (1.2), Proposition 2.1 follows from Proposition 2.2 and Lemma 2.5. Finally, we can prove Theorem 1.2 from Proposition 2.1 in the same way as the proof of Theorem 1.2 in [6].

ACKNOWLEDGEMENTS

The author would like to express his deep gratitude to Professor Yoshio Tsutsumi for his helpful advice. He would also like to thank the referee for his valuable comments.
REFERENCES

(Manuscript received June 9, 1994; Revised version received July 19, 1994.)