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ABSTRACT. - Let G = SL (n + 2, R) and P = a parabolic
subgroup of G such that N is isomorphic to the Heisenberg group Hn .
Let 1 0 e03BB 0 1 be a representation of P and 7r,B = IndGP ( 1 0 e03BB 0 1 ) the
induced representation of G acting on L2 ( Hn ) . In this paper we shall
obtain a condition on 03BB and 03C8 E s’ (H n) for which the matrix coefficients
(/? 7TA (~)~)L~(~) are square-integrale on a subgroup Hn x R

of G and = 1(1, for all
/ N A1

/ E 

Soit G = SL (n + 2, R) et P = un sous-

groupe parabolique de G tel que N soit isomorphe a Hn Ie

groupe de Heisenberg. Soit 10 e~‘ 0 1 une representation de P
et = IndGP ( 1 0 e03BB 0 1 ) la representation induite de G qui opere
sur L2 (Hn ) . Dans cet article on obtient une condition sur A et

pour que les coefficients de matrice f, 03C003BB(g)03C8~L2 (Hn)
soient de carre-integrables sur un sous-groupe de

= c / ~_ 1 (1, pour toute
/ 
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2 T. KAWAZOE

1. INTRODUCTION

Let G be a locally compact group and 7-í) a representation of G
where 7-í is a Hilbert space equipped with the norm and the inner

product (. , .)7-í. For a subset S of G with a measure ds on S we say that
1/; E 7-í is S -admissible for 7T if there exists a positive constant c such that

Then 1/; E 7-í is S -admissible for 7r if and only, if, as a functional on ~L,

Clearly, (2) implies (1). Conversely, we suppose (1) and define Tf : 7-í 2014~ C

by ~(~)-c~/(/,7r(~)~~(7r~)~,~~(~e~). Then the

Schwarz inequality yields that so Tf is a bounded
linear functional on 7~. Therefore, it follows from Riesz Representation
Theorem that there exists .f~ E ~l such that Tf (h) _ and

== Especially, Tf (f) _ (,fo, 
Thereby, + 0 and thus,
f = f’o. This proves (2). We call ( f. 7r(~)~) the wavelet transform
of f associated to (G, 7r, 6’, 1/;) and (3) the inversion formula of the
transform. Here we put Tf (8) == (f, 7r (s E 5’). If 7r is unitary, it

satisfies a partial covariance: T~~~l~ ~~,s;~-1 f (sl) = S)
and furthermore, if S is a subgroup of G, it is the covariance property:

We state some well-known examples of the wavelet transform in our
scheme. When S = G, ds a Haar measure of G, and 7-í) a square-
integrable representation of G, Dufio and Moore [DM] find a G-admissible
vector 1/; E 7-í: for example, Gabor transform and Grossmann-Morlet
transform correspond to a square-integrable representation of the Weyl-
Heisenberg group and the one-dimensional affine group respectively (cf.
[MW, § 3]), and a reproducing formula for a weighted Bergman space on
a bounded symmetric domain relates to a holomorphic discrete series of a
semisimple Lie group [B], [K]). For another example we refer to [VP].
Let (G, 77) be a semisimple symmetric pair and put S = K A == cr (G’/77),

G/H -+ G is a flat section, ds = and (7r, ~-~C) a square-integrable
representation of G mod H. Then we can find a H - invariant distribution

Annales de l’Institut Henri Poincaré - Physique theorique



3WAVELET TRANSFORM ON SL (n + 2. R)

vector 1/; E for which ( 1 ) and (2) hold. Recently this idea "square-
integrability mod H" was generalized to some other pairs ( G, H ) and
non-flat sections 03C3 : G/H -+ G: Ali, Antoine, and Gazeau [AAG] obtain
wavelet transforms associated to the Wigner representation of the Poincare
group ~+ ( 1, 1 ), and Torresani [T l, 2], Kalisa and Torresani [KT] do to
the Stone-von Neumann type representation of the affine Weyl-Heisenberg
group 

In this paper we shall investigate a transform associated to a principal
series representation of + 2, R) (n E N). To explain our goal we
look at an example by taking G = SL (2, R). The holomorphic discrete
series 03C0n (n &#x3E; 1/2, n E Z) is realized on Hn, here Hn is the Hilbert space
of holomorphic functions on the upper half plane C+ with inner product

(cjJ, ~2 = r (2 n - 1) / cjJ (x + z?/) ~ (x + iy) dy. Then each
C+

is square-integrable:

where c is independent of n (cf. [Su, § 10 and Prop. 7.18 in Chap. V]) and,
as stated above, the inversion formula follows as

where c == ( 2 n - 1) -I Let Hn be the Hilbert space of functions
on R+ with inner product (~, ~~H2 = 22n-l / ~ (t) ~ (t) t-2n+1 dt.

_ 
JR+

Then the inverse Fourier-Laplace transform .~’ gives an isometry of ~
onto Hn and, if we put = .~ o o (7r~, H~ ) and (7r~, ~)
are unitary equivalent (cf. [Sa, p. 20]). In particular, (3) and the inversion
formula hold by replacing 7rn and H~ with ~-n and Hn respectively. Here we
note that == ( 2 n - provided that 03A8 is K-invariant,
and therefore, by the integral formula under the Iwasawa decomposition
G = N AK we can deduce that

Vol. 65, n° 1-1996.



4 T. KAWAZOE

Now we consider the limiting case of n = 1/2: the limit of discrete series
H21/2)~ (1/2, 21/2). Obviously, (3) and (4) collapse when n goes

to 1 /2, because 
12 

= (2~ - 1 ) -1 ~!!~2 -~ oo when ~ ~ 1 / 2.
However, if we drop the K-invariance of 03A8 and assume that ~03A8~12  oo

for 03A8 G 21/2, we can deduce that

Observe that the wavelet transform ($, is nothing but the
affine wavelet transform obtained by Grossmann and Morlet (see § 5).
Moreover, recall that the limit of discrete series 71-1/2 is unitary
equivalent to an irreducible component of a reducible unitary principal
series of G, that is denoted by VI/2, 1/2 in [Su, p. 246]. Therefore, in this
context we can say that the affine wavelet transform corresponds to the
limit of discrete series or a reducible unitary principal series of 5’L (2, R).
Our aim is to generalize this correspondance and to find a transform

which associates to a principal series of 5’L (n + 2, R). Let P = M AN be
a parabolic subgroup of G such that ~V ~ Hn, the Heisenberg group, and
and 03C003BB = IndGP ( 1 0 e’B 0 1 ) the induced representation of G. We identify
N with R2n+1 to define L2 (N), S (N), and S’ (N). Then we shall find a
subgroup x R of G, 1/; E ?’ ( N ) , and a A for which

for all cp E S (N). Of course, since calculation is carried on a subgroup
N A of G, the whole results can be stated without using the 9L (n+2, R)-
scheme. However, to emphasise the correspondance of our transform and
a principal series of G, we dare to use the S’L (n + 2, R)-scheme. Most
of results in this paper can be generalized to the analytic continuation
of discrete series, inclusing the limiting case, and to a principal series of
semisimple Lie groups. They will appear in forthcoming papers.

2. HEISENBERG GROUP

Before starting the representation theory of G = 6’L (~+2~ R), we recall
the one of the Heisenberg group Hn, to which the subgroup N of G is
isomorphic (see § 3 below). We refer to the general references [F] and [G].

Annales de l’Institut Henri Poincaré - Physique théorique



5WAVELET TRANSFORM ON + 2. R)

Let Hn = {X = ( p, q, t);p,q ERn, t E R} denote the polarized
Heisenberg group with the group law:

n

where xy = 03A3xiyi for x = (xi), y = (yi) E Rn. We observe that

i=1

{(0, 0, t); t E R} is the center of Hn and the Lebesgue measure dqdpdt
is an bi-invariant measure dX on Hn. The Schrodinger representation

L 2 ( Rn ) ) of Hn with parameter h E is given by

Then each ph is irreducible unitary and, by Stone-von Neumann Theorem,
ph is, up to unitary equivalence, the only representation of Hn with the
central character 7r(0, 0, t) == e203C0ihtI for h E R"B{0}. We define for
ø ~ L1(Hn)

Then, for

where

Similarly for a (p, q) E L1 (R~ x R"z) = L1 (R2n) we define

where 03C10h (p, q) (p, q, 0). It is clear that 03C10h (a) makes sense as an
operator from S (R") to S’ (Rn) whenever cx E S’ (Rz~) (see [F, Theorem
(1.30)]). For 03C6 E Lz the Plancherel formula on is given as follows.

where ~ ~ . denotes the Hilbert-Schmidt norm.

Vol. 65, n° 1-1996.
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3. INDUCED REPRESENTATION OF SL (rt + 2 R)

Let G = SL (~+2, R) and g = .~ (~+2, R). According to the process
in [HI, § 6], we shall define a parabolic subalgebra p=m+a+n of g,
the parabolic subgroup P = MAN of G, and an induced representation

= IndGP ( 1 0 e03BB 0 1 ) of G.
Let g = 6 + aa + no be the Iwasawa decomposition of g such that

6=~o(~+2),
aa = {diagonal matrices in 0},
no = {lower triangular matrices in g with 0 on the diagonal}.

Let Zg (aa) = mo + a0. When n = 0, 1, we put m = mo, a = a 1 = ao,
and n = no, that is, p = m + a + n is a minimal parabolic subalgebra of
g. In the following, we may assume that n :&#x3E; 2. We define ei : ao -+ R

(1  i ~ n + 2) by for H = diag (h1, h2, ..., hh+2) E ao,
and put cxi = ei+1- ei (1  i  n + 1). The set of roots of (g, ao) positive
for no is given by E = {e~ 2014 ej; i &#x3E; j} and the subset consisting of simple
roots is Eo = {0152i; 1  z  n + 1}. For F = 2 ~ i  7z} we set

V ~
where ~F = {0152 E ~; 0} and ga is the root space corresponding
to 0152. Explicitly, they are of the forms :

where In is the n x n unit matrix. Let Zg (a) = m+a and put.p = m+a+n.
The set of roots of (g, a) positive for n is given by 03A3 ( a) == {03B1~; a E E}
where a’" = We set al = ~H E a; c~n+1 (H) = 0} and

/9 = ~ cx/2, that is,

We denote " by A, and ’ N the analytic subgroups of G corresponding
to m, a, o and ’ n respectively. We define M = Zk ( a) Mo, where Zx ( a)

de l’Institut Henri Poincaré - Physique theorique .



7WAVELET TRANSFORM ON SL (~a + 2. R)

is the centralizer of a in K == SO (n + 2), and put P = M AN. We denote
by B the Cartan involution of G given by B (g) =t g-1 (g E G) and put
N = B (H). Then it is easy to see that

whose complement has Haar measure 0,

where the identification is given by

We put dn = dX, da = where dA is the Lebesgue measure

on a normalized in such a way that J f da = J f (exp A) dA
(f E Cc(A)), and da1 = We normalize the Haar measure dm
on M and c!~ = d8 (n) on N as the following integral formula holds:

for f E C. (G) (see [H2, § 19]).
Let a~ denote the dual space of the complexification Oc of a. For

A E a~ we define, out of the representation 1 0 e~ 0 1 == 

of P = a representation of G denoted by

A dense subspace of the representation space is given by consisting
of continuous functions f on G such that

with norm = Moreover, G acts on as

f (g) = f g) G) and is unitary whenever 03BB E i a*.

We observe that, by restricting f E to N, is identified with

LZ (N, ~2~(~(~)) where g EGis decomposed under G = K MAN
as g = kmeH (9) n, and the action of G is given by

Vo!.65,n°l-t996.
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where g EGis decomposed under G = N MAN as g = 7z (g) (g) 7a.
We define S (N) = by the Schwartz class Then

it follows from Lemma 8.5.23, 27, and Theorem 8.2.1 in [War] that

S(N) is contained in from (12) that

E N A) is an operator We here define

( f, g)Lz ~-,~;~ = J for ,f, g E 7-la. Since this form is

nondegenerate and G-invariant on 7-í-X x (c/: [Wal, 8.3.11]), we see that
is an operator on S’ (N). Especially, Tf (8) == (/, 7r~ (s) ~n.~

(s E N A) satisfies the covariance property: T,;--~,5z~ f = Tf (sz 1 sl)
s2 ~ S).

4. MAIN THEOREM

Let P = and A1 C A be the subgroups of G = SL (n + 2, R)
introduced in paragraph 3. We suppose that a (p; q) E ~S’ (RZ") and

/3 (t) E L1 (R) satisfy the following condition: there exists 03B3 : R -+ R
such that

where is an operator from to S’ (R n) (see § 2), I is the
identity operator, and is the inverse Fourier transform on R. When

G == SL (2, R), we ignore the function 0152. we set

THEOREM 4.1. - Let 03C803B1, 03B2 be as above and suppose 03BB|a1 1 = ( n -I- 1 ) cx i / 2.
Then, ~a, ,~ E s’ (N) is N Al-admissible for 7r,B, that is, there exists a

positive constant c = such that

Annales de l’Institut Henri Poincaré - Physique theorique "
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Proof. - We first observe from (8) and (9) that for f E S (N)

Since A1 = {as = E R}, (A + = (7a + and

al (n + 2) s, it follows from (10) and (11) that

and thereby, from (7), ( 11 ), and ( 14) that

Vol. 65, n° 1-1996.
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Then, we can deduce from ( 13) (i) and (ii) that

where c" = 1~(ra + 2) and thus,

5. EXAMPLES

We conclude with some examples of ~,/3(p? q, t) = a (p, 
satisfying the condition ( 13) (i) and (ii). In the case of SL (2, R), as said
before, the function q ) is ignored, so the condition ( 13 ) (ii) only
lives out with ’Y == 1:

This condition is noting but the admissible condition for the affine

wavelet transform on Lz (R). Actually, when G = SL (2, R), the wavelet
transform in (2) is of the form:

and hence, if we set a == it coincides with the affine wavelet transform

on L2 (R). This is quite natural because N A1 is isomorphic to the affine
group "ab + b" (cf. [HW], 3.3).

Annales de l’Institut Henri Poincaré - Physique theorique
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We now suppose that n &#x3E; 1, and we give some examples of

0152 (p, q) E S’ (R2n) satisfying (13) (i) and obtain the function : R 2014~ R.
(a) If a (p, q) == 8 (p - p0) 03B4 (q - go) for some po. q0 ~ R", it easily see

that ph (a) f (x) = e203C0iq0x y and (0152) (Rn) == 
Therefore, a (p, q) satisfies (13) (i) with ~y == 1 and hence the condition

on /? is the same as in (15).

o;(p, q) = where == 1. Since J 
b (:c), it follows that p° (~) f (x) - 2"ao(-2~)/((l - 2 ja) :c)
and Therefore, q)
satisfies (13) (i) with ~ (h) == 22’~ 11 - 2 and (13) (ii) is of the form:

(c) If a (p, q) = where |03B11| == 1, then 03C10h(03B1)f(x) = 
2 n .~’ [~~ . /] ((1 - 2 h ) ~ ) where a 1 ( s ) = al ( 2 hx), so the function
and the condition on ,Q are the same as in (b).

= then from the

formula for the distribution Fourier transform of the Gaussian functions

(cf. [F, Theorem 2 in Appendix A] ) it follows that ph ( a ) f (x ) ==

= 

Therefore, a ( p, q ) satisfies ( 13 ) (i) with ~(~) = and hence ( 13 )
(ii) is given by

(e) We now consider the Gaussian functions:

where A, B, and C denote n x n real matrices. We set D =t A + 7/2. If
C = 0 and D is invertible, it follows as in (b) that

Vol. 65, n° 1-1996.
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On the other hand, if C is invertible and symmetric, and B =t D,
it follows as in (a~ that

where # ( C) is the number of positive eigenvalues of C minus the number
of negative eigenvalues.

Remark. - (1) We note that the process to obtain ph (cx) is exactly same
as the one used in the Weyl correspondence of pseudodifferential operators
(cf. [F, Chap. 2]). In fact the above calculation of ph (a) also follows from
Proposition (2.28) in [F] by generalizing the results for p1 to and by
arranging the isomorphism from the Heisenberg group to the polarized one.
Especially, in the case (e) the set of operators ~ (h)-1~2 ph (cx) corresponds
to the range of the metapletic representation of Sp (n, R) (see [F, Chap. 4
and Chap. 5]).

(2) We suppose that B = C = 0 and D is invertible in (e). Then 
admissible vectors 03C803B1,03B2 are M0 A’1-invariant, where Ai is the analytic
subgroup of G corresponding to a i = {77 E a; (e.+2 - ( H ) = 0}. In
general, if a (p, q) is a function of pq, then N A1-admissible vectors 
are M0 A’1-invariant, and moreover, if a (p, q) is an even function of pq
and 03B2(t) is even, then 03C803B1, 03B2 are M0 A’1-invariant.

(3) Examples in paragraph 5 don’t cover the results in [KT]. In order
to obtain their transforms in our S L (n + 2, R)-scheme we need deeper
analysis on 1/;. It will be done in a forthcoming paper.
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