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ABSTRACT. - Quantum twist maps are introduced as the representatives
of "kicked" quantum systems in the Heisenberg picture and their orbit
structures are related to the various spectral types of the corresponding
Floquet operators (T, 0). By means of geometrical RAGE methods a la
Enss and Veselic sufficient conditions for the absence of (Uy (T, 0)),
respectively 03C3cont (Uv (T, 0)) are derived.

For the example of  (t) = - id~d~ + V (?) . ~~ 8 (t - j T), defined
on L 1 ~ S 1, ~6’), the quasi-energy spectrum a (Uv ~T , 0)) as well as the
orbit structure of the twist map are determined for all V E C3 (6~) in case
of E Q, respectively for an irrational number of constant

type. (c) Elsevier, Paris

Key words: Quantum twist maps, quasi-energies of kicked rotor, RAGE methods.

RESUME. - On introduit les applications tordues quantiques en tant que
représentantes de systèmes frappes quantiques dans la representation de
Heisenberg et la structure de leurs orbites est reliée aux divers types
spectraux des opérateurs de Floquet correspondant Uv (T, 0). On derive
des conditions suffisantes pour l’ absence de (Uv (r , 0)), respectivement
03C3cont (Uv (0393, 0) ) au moyen de méthodes RAGE géométriques à la

* Address from January 1 st, 1997: Institut fur Reaktorsicherheit, Forschungszentrum
Karlsruhe, Postfach 3640, D-76201 Karlsruhe, Germany. E-mail: karner@irs.fak.de

Annales de l’lnstitut Henri Poincaré - Physique théorique - 0246-021 1

Vol. 68/98/02/@ Elsevier, Paris



140 G. KARNER

Enss et Veselic. Le spectre de quasi-énergie cr (U~, (F, 0)) ainsi que la

structure des orbites de 1’application tordue sont determines pour l’ exemple
H (t) _ -i d/d8 + V (8) . (t - j r)~ défini sur L2 (S1, d0) pour tout
V E C3 (S1) dans le cas r /21r E Q, respectivement T/2 ~r un nombre
irrationnel de type constant. @ Elsevier, Paris

1. QUANTUM TWIST MAPS

Quantum twist maps naturally emerge in the study of so-called "kicked"

quantum systems. The latter are quantum systems under time-periodic
external perturbations, which act in form of "b (t - n T)-pulses" (with the
Dirac 03B4-distribution and n ~ Z, T &#x3E; 0, see [ 1 ] for a review and references).

Quantum models of this kind are particularly suitable for numerical studies,
however, the number of analytic discussions of the subject is limited, [ 1-6]
for instance. Kicked quantum systems are often represented by a formal

time-periodic family {S) (t), t E R} of Hamiltonians with

For convenience, the operator Ho in (1.1) acts on H = .L2 ~ SZ, dx),
with n = [a, b], -00  a  b  oo, and is assumed self-adjoint with

cr(~o) == (Ho) and finitely generate eigenvalues ~m, m E .11~t. The

kick-potential W in general is a self-adjoint multiplication on H and
T := 203C003BD E R+ is the kick-period. (For other models see [3], [6].)

Although there exist no self-adjoint realizations of {S) (t) , t E R) on H,
the corresponding one-period propagator (the Floquet operator) is well-

defined and sometimes used as the mathematical expression for kicked

quantum systems:

(For a discussion of ( 1.1 ), (1.2) in terms of the so-called extended Hilbert

space formalism, see [7] and Section 2, for instance.)

To characterize the dynamics of the kicked quantum system in question,
one often studies the evolutions W (N T) :== (T, Wo of some

initial state Wo. In particular, numerical investigations of several models

[8, 9 and references, for example] have led to new and important insights.
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141DYNAMICS OF QUANTUM TWIST MAPS

In the present article, however, we shall concentrate on a different point
of view, usually referred as the Heisenberg picture of quantum mechanics
[10] in order to define a quantum twist map as an automorphism of the
observables, i.e. the selft-adjoint operators f (Ho ) and g (W) , generated by
Uw (T, 0) on the "quantum phase space" P such that

with [1 (Ho)]o := f (Ho) and [g (W)]o := g (W). Typically, W is some
bounded self-adjoint operator on 71 and g (W) is bounded as well. However,
f (Ho ) is assumed unbounded and the quantum phase space P (7-l) can be
imagined as a "strip" in S (71) x BS (71) with S (71) the space of self-adjoint
operators on 7-L and BS (71) the subspace of bounded self-adjoint operators
on 7-f. Thus, the notion of a quantum twist map seems justified since repeated
application Uw (T, 0) stretches and folds the orbits ( [ f (Ho)~,L; [g (W)]n )
defined by (1.3). (A more precise definition of "orbit" is given in Section 4).
The aim of this article is a simple characterization of the quantum

dynamics represented by Uw (T, 0). At first we formulate an abstract

"RAGE"-theorem for the Floquet operator Uw (T, 0) using the methods
devised by Enss and Veselic. From that result sufficient conditions on the
time evolution of W generated by Ho, which guarantee (T, 0)) =
ø, respectively (T, 0)) = 0. are deduced. Afterwards, in

Section 4, the notions of stable, strongly stable and unstable orbits of the
quantum twist maps (1.3) are introduced and related to spectral properties
of Uw (T, 0). Finally, in Section 5, the preceding findings are applied to
the model sketched by SJ (t) + V (9) . (t - j T).

2. AN ABSTRACT RAGE-THEOREM
IN EXTENDED HILBERT SPACE

This section prepares the ground for an application of results of Enss
and Veselic [11] to (T, 0). The deviation is necessary since the direct
treatment of (T, 0) a la Enss and Veselic runs into serious obstacles.
First of all, the periodic family (Sj (t), t E R} is not self-adjoint on 7~,
but equally disturbing is the fact that U,v (T, 0) cannot be represented
in strongly continuous Floquet form, since (t, 0+) = exp (-it Ho)
for all 0  t  T. Thus, if the Floquet representation ilw (t, 0) ==
P (t) exp (-it G) with P (T) = 0 would apply, G == Ho would follow.
(Nevertheless, UW (T, 0) is called Floquet operator).

Vol. 68, n° 2-1998.



142 G. KARNER

Therefore, another representation of the kicked quantum system is needed.
A convenient structure to describe the kicked quantum system is the

extended Hilbert space formalism. We briefly recall some of the results:
Introduce the extended Hilbert space Hex as the (closed) tensor product
~ := L2 ([0, T], dt) 0 L2 (H, dx), with norm

and corresponding scalar product (’~ ’)~. In this set-up the unperturbed
dynamics is represented by the self-adjoint, so-called Floquet Hamiltonian
Ko with

where

The operator Ko is obviously self-adjoint on Hex and its resolvent is

represented by the strongly convergent expansion

with l, (n, l) E N x £) the orthonormal basis of eigenfunctions to
Ho and 9 (z - En ) denoting Green’s function (For details see
Lemma 2.1 below.)
The ~-kicks enter the formalism via the domain properties of the time-

derivative. Formally, the with

i E H fixed, generates translations along with the jump condition
g (0) = exp(2014z~(:r))~(T). Thus, a singular time-derivative can be
introduced by the following self-adjoint operator on Hex:

Annales de l’lnstitut Henri Poincaré - Physique théorique



143DYNAMICS OF QUANTUM TWIST MAPS

:= 1 for all 03BD &#x3E; 0 and

Q (v) = 0 otherwise. Together with B 0 Ho that singular time-derivative
constitutes the Floquet Hamiltonian K,v for the kicked quantum system
as demonstrated in the sequel. As a preparatory step, we introduce several
intermediate operators:

(i) The minimal symmetric operator k on Hex is defined as

where ho is the symbolic differential operator defining | ~ Ho, i.e.

:== for all 03C8 E D (Ho). General principles [12, for instance]
imply that k* ~ - + for all § E 

(ii) The operator closure of K is denoted by K, with the former given by

Information about 2)1.. is collected in

LEMMA 2.1. - The closed symmetric operator K = K** defined in (2.5)
has deficiency indices equal to infinity and the defect space ker (I~* - z) is
spanned by the orthonormal system

with (E~, the eigenvalue, (n, l ~~~ eigenfunction) and

T) the normalization.

Proof. - From l~ G ~ G ~* we infer that .I~* is densely defined
and acts via (-z9/9~ + ho) as well. Therefore ~ = : K = ~* * .

It is obvious that S (z) G C 

The latter indeed represents an equality as seen from the following: The
kernel g (z - t, t~ of the resolvent - (z - ~n~)-1 is

Vol. 68, n° 2-1998.



144 G. KARNER

Assume that there exists some function W E ker (K* - z) such that
Then Z (z, T), = 0 for all (n, l) L

and we infer from (2.6), respectively the form of i (z, T) that

Hence, from (2.6) and (2.7) it follows that (-i (z - 1 (8 =
0) = 0, i.e. e where -it is defined on proper
functions vanishing at t = 0. That feature, together with the fact that every
ç E is represented ~~n, l, ~ ( . ) ~ ~2 ~~~ ~ ~n, l, yields
W E ran (K - z) in contradiction to the assumption W E ker (K* - z). D

Having prepared the prerequisites, we introduce a self-adjoint realization
I~W of the formal operator -i + h o + W (x) 6 ( t - T).
LEMMA 2.2. - Let W E 1) (Ho). Then the self-adjoint Floquet

Hamiltonian Kw on Hex is the operator closure of defined on
D n D w ) with .- + Ho ~.

Proof. - From Lemma 2.1 we infer Kw c ~*. Yet, integration by
parts assures that lin span ~ (z) is not contained in D (~W). Therefore,
the operator has deficiency indices (0, 0). Owing to W E D the

boundary conditions are compatible. D

According to Stone ’s theorem the Floquet Hamiltonian K vT! generates the
unitary one-parameter group Uw = {exp ( - 2 ,u and the following
statement connects the latter to (T, 0).
LEMMA 2.3. - Define Kwr as in Lemma 2.2. Then the monodromy operator
(T, 0) introduced in ( 1.2) and Uw are related according to

Proof - On account of Lemma 2.2 the Trotter product formula applies as

The decomposability of B 0 Ho and (2.4) allow the explicit computation of
the nth-term at the RHS of (2.8). In particular, at T = T we find on D (k w )

Annales de l’Institut Henri Poincaré - Physique théorique



145DYNAMICS OF QUANTUM TWIST MAPS

for all 03C8 E D (KW) and almost all (1 - n-1) T  t  T and therefore

in £2 Note that the "kick condition" 1b (0+ ) -

holds on the entire and the pointwise
limit n - oo of (2.8) exists due to dominated convergence. Thus, the
claim follows by closure and the extension to any number of kicks is

straightforward using the group properties of uwl. D

Remark that Lemma 2.3 demonstrates 0))
are closely related. For instance, if A E with eigenfunction(s)

we obtain an eigenvalue equation for Ui,, (T, 0) :

We shall need a sufficiently explicit representation of z ) -1.
Therefore recall Krein’s resolvent formula [ 12] as

for all z The numbers ( z, W ) are uniquely determined
by the domain properties of respectively Ko, and the choice

of the orthonormal set (z, ~)~ from Lemma 2.1. Note that

(z , W) l (z~ T) E ker (K’~ - z) for each fixed pair (m, k) .
To apply the Enss-Veselic results to the present situation, introduce a

family of orthogonal projections on Hex by

with Pn the finite-dimensional orthogonal projection onto the n-th
eigenspace of Ho. Evidently,

LEMMA 2.4. - Define KW as in Lemma 2.2 and PM (Ho) by (2.10). Then
PM (Ho ) (Kw - is compact for all 

Vol. 68, n 2-1998.
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On account of Krein’s formula (2.9) we only
have to deal with the operators [! 0 since

T), 0 for all (m, k) ~ M x K

and every 03C9 0. However, as

and both factors on the RHS are compact, the claim follows

immediately. Q

Lemma 2.4 allows the adaptation of the "abstract RAGE-Theorem" of
Enss and Veselic [11, Theorem 3.2] to characterize elements of Hpp (K w )
and Hcont (Kw), respectively. To this end we introduce the following
subspaces of 

Define J1~+ (P) as the set of W E ~e~ for which

(For (-k) E N introduce M (P) in the same way.) In addition, denote
by A4l (P) the sets with

Combining several of the Enss-Veselic [ 11 ] and above findings we formulate
the main result concerning the spectral decompositions of and

( T, 0).

THEOREM 2.5. - Define (T, 0) by ( 1.2), ~yY as in Lemma 2.2, P (Ho),
(P) and (P) by (2.10)-(2.12), respectively. Then -

Proof - Claims (i) and (ii) follow from [11, Theorem 2.3 and

Theorem 3.2] applied to Empty residual spectrum of UffT (T, 0) is

implied by unitary. (Here A E (Uw (T, 0)) if A is not an eigenvalue
and ran (A - Uw (T, 0)) is dense in H.) 0

Annales de l’lnstitut Henri Poincaré - Physique théorique
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3. AN ABSTRACT RAGE-THEOREM FOR Uw (T, 0)
Based on the results for KW and Uw (T, 0) in Theorem 2.5, we now

characterize point and continuous spectral subspaces of L~ (H) with respect
to (T, 0). To this end, define Hpp (Uw (T, 0)) as the closed linear

span of the eigenvectors of Uw (T, 0) and Hcont (T, 0)) as its

orthogonal complement with respect to H. Accordingly, (T, 0))
and (T, 0)) denote the corresponding orthogonal projections.
THEOREM 3.1. - Let W E n and define
(Ho) by (2.10). Then W (7) E (T, 0)) n and

lim n-l ~PM (Ho) Utv (T, 0)k W == 0 for all 

Proof - Lemma 2.3 guarantees that 03A6 E lin span = eigenfunction
to Kj:~-} ~ ~ (T) E lin span ~~/~~, = eigenfunction to (T, O)}.
Norm-closure in the sense of (2.1 ) and the expansion theorem provide
4Y E D n Hpp (KW) ~ 03A6 (T) E D (Ho) n Hpp (UW (T, 0)). Now
the first claim is deduced from the definition of the scalar product in (2.1)
and the t-continuity of 03A6 and 03A8.

A computation similar to Lemma 2.3 provides the existence of unitary
operators W (t, t - k T) on H such that

almost everywhere on 1r T and for all k; E Z. In particular, W (t, t-T) = s-
f exp (-i T Ho j / n) . exp (--i W) . exp (-i T Ho (n - j/n)} for

t~T E ( ( j - 1)/~, ~/~) with 1  j  n. In addition, we remark that
W (t, t - k T) = [W (t, i.e. the unitary family {W (t, t - k T) , t E
(0, T)} is strongly differentiable and for all W E D E Z, it follows
that is differentiable on (0, T).
From the assumption on W, (3.1) and Theorem 2.5, we infer for all

intervals I C [0, T]

which, together with the continuity of the norms, implies a.e. on 03C003C4 that

Remark that d U I W (., . - k:T~ ~ ~ ~ )II x)l~t =  /3
everywhere and if Q (M, i) &#x3E; 0 for some (M, i), then a (M, t) &#x3E; 0
for all M &#x3E; M is implied. However, the latter and (3.1 ) would yield
Vol. 68, n° 2-1998.
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da (M, = 00 for all ll~ &#x3E; in contradiction to the boundedness

of da (M = oo, ~ ) ~dt. Therefore, (3.1) must be valid fo all t E [0, T],
which proves the second claim of the theorem. D

COROLLARY 3.2. - E D (Ho). (7, 0)) implies
that .n-1 (T, M E N.

Proof - Assume ~~’__ol (Ho) (T, &#x3E; C &#x3E; 0

for some subsequence {nj, j E N} with oo, some M ~N

and note that every1/; E D (Ho) can be identified with W (T), W E
since there exists some ~ E D ~ (T ) = 1 such that

W :== 1/;e/J E Hence, from Theorem 3.1 we

conclude that (T, 0) ) ~ ~ 0 in contradiction to the assumption
of 03C8 E Hcont (UW (7, 0)) . D

Theorem 3.1 allows the determination of sufficient conditions for the

absence of (T, 0) ), respectively 03C3cont (UW (T, 0)). To this end,
rewrite powers of (T, 0) as

That relation follows from insertion of exp [ - i j THo] exp 7 Ho~ _ ~ I
into (T, and regrouping. Abbreviate the unperturbed evolution (i. e.
generated by Ho ) of the kick-potential W over (k - j)-periods by Wk-j.
Then there are the following characterizations of a (T, 0 ~ ) :

THEOREM 3.3. - Define (~, 0) by ( 1.1 ) and ( 1.2). Then

(i) If TL = w- lim exp ( -i is unitary for some
J

(unbounded) subsequence {kl E then (T , 0) is pure

singular.
(ii) If T :== w- lim exp (-i is unitary, then (7, 0)

is pure point.

Proof. - (i) Assume that (T, 0)) ~ 0. The spectral theorem
for unitaries, the Randon-Nikodym theorem and the Riemann-Lebesgue
lemma imply that (T, 03C9 0 on Hac (T, 0)). Note

that exp [-i kl T Em] ~ exp (-i 03BEm) for all Em ~ 03C3 (Ho ) . Hence

exp [-i ki T Ho~ exists and together with the assumption on

Annales de l’lnstitut Henri Poincaré - Physique théorique
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TL we deduce UW (T, s (s-liml~~ exp THo]) TL in cont-
radiction to Uw (T, 03C9 0 on (Uw (T, 0)), since the assumption
of weak convergence implies TL = s-lim as well.

(ii) As in (i) we infer T = s-lim exp (-i Wk_J). Set Ak :==

exp ( -i Wk- j) - T and with (3.2)
sup [ ) (I - PM (Ho ) ) ~«~ (T, 0)~ 

~)-p~(~))r~~ 
(3.3)

k

as well as ~(I - PM(H0))k03C8~H  0 uniformly in 
follow. Hence,

As

and

relations (3.3) to (3.5) imply

for all M &#x3E; M and all V; E 7-l. In particular, for all ~ E D (Ho)
Corollary 3.2 implies that (Uw (T, 0. Thus y E D (Ho) n

(Uw (T, 0)) is impossible. D

4. THE DYNAMICS OF QUANTUM TWIST MAPS

To derive detailed information about the twist maps (1.3), we

assume the following convenient properties: 
Vol. 68, n° 2-1998.
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(A 2) cr ( f (Ho ) ) is discrete and unbounded and (A 3) exp (-i W) D (Ho) c
D (Ho ) . In addition, we also assume that g (W) is bounded and everywhere
defined on H. Then the map (1.3) can be iterated without domain problems
and the following expressions are well-defined on D (Ho):

with [1 (Ho ) , UW (7, 0)] = f (Ho ) (T, 0) - ilw (7, 0) f (Ho).
In contrast to "classical" iterative maps, the question concerning the

choice of the proper topology arises for the operator map. In order to relate
quantum and classical maps, expectation values of quantum observables are
desirable. However, based on the findings in Chapters 4 and 5, we propose
the use of the strong topology in the study of (4.1 ).

DEFINITION 4.1. - An orbit 0 (~o) of the quantum twist map (4.1) is

defined as the set ~~f (Ho)]n 9 (W)]n with E D (Ho), n E N)
and is called

(i) stable if I I }n~N lS bounded,

(ii) strongly stable if C7 (~o) is stable and

exists for a subsequence (7/;0) E 
(iii) unstable if O ( 1/;0) fails to fullfill (i).

If every orbit C~ ~~o ~ is (strongly) stable then the quantum twist map (4.1 )
is called (strongly) stable.

Before relating the different orbits of (4.1 ) to the various spectral types
of (T, 0), we recall an important implication of the RAGE-theorem.
(See also [ 13], [4].)
LEMMA 4.2. - Let f (Ho) such that (A 1), (A 2) hold and assume E

D (H0). If 03B2cont (UW (7, 0)) 03C80 ~ 0 and UW (7, ~ D (f (H0)2)
for all then there exists a subsequence {kj (03C80) E N} such that

Annales de l’lnstitut Henri Poucare - Physique théorique
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Proof [13]. - Let = (T, 0)) 03C80 ~ 0 and ==

(U. (T, 0)) Corollary 3.2 implies that

Define

and

provides

Hence,

As M is arbitrary, the claim immediately follows with

In view of Definition 4.1 several conclusions can be drawn from the

results of Chapter 3 and Lemma 4.2. Sufficient conditions for global
stability are discussed in the following
THEOREM 4.3. - (i) Let f (Ho) such that (Al) and (A2) hold, let

D (Ho), (T, 0)’ D (~(~0~2~ for all and D 

be Then, if the quantum twist map (4.1 ) is stable for all

(Ho), ~vv (T, 0) is pure point.
(ii) Let be unitary and

-

W D (Ho) C D (~o ) . Then the quantum twist map (4.1 ) is strongly stable.

Proof (i) The stability assumption implies C ( ~o ) &#x3E; ~ ~ ~, f =

(T, ~~~ lbo, f (-~0)2 ilw (T, ~)~ Now the claim is deduced

from Lemma 4.2.

Vol. 68, n° 2-1998.
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(ii) Note that

implies s- exp ( - = W * . (All operators involved
are unitary.) As

the strong convergence of immediately follows. The
discreteness of Ho yields for some subsequence

~2014~00

(ji see Theorem 3.3. Hence, [g is strongly convergent. D

Remark. - (i) The converse of Theorem 4.3 (i) might not be true~
since expectations of f ( I~o ) 2 might grow unbounded even for pure point

(T, 0), cf. [9] as well.

(ii) The first assumption in Theorem 4.3 (ii) already means pure point
Uw (T, 0) according to Theorem 3.3. Thus, (T, 0))) = 0 is not
necessarily equivalent to strong stability of (4.1 ).
What about unstable dynamics? The next result shows that there might

be a countable set £ (Ho) of perturbation periods T such that every
orbit C (1/;0) is unstable and Uw (T, 0) is pure absolutely continuous
("resonances").

THEOREM 4.4. - Assume that ~ (Ho) and T are such that T En =
for all En, q) E 7~2 and ([1 (Ho)]q - .~ (Ho)) # 0

for all ’l/;o E Then all orbits 0 ( 1/;0) of (4.1 ) are unstable
and CJ (Uw (T, 0)) = (Uw (T, 0)) iff exp (-i pure

absolutely continuous.

Proof. - A short computation demonstrates that

Hence, for ([ f (Ho)]q - f (Ho)) ’l/;o :j: 0, the divergence of the map is
obvious.
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