J. W. COHEN

Extreme value distribution for the M/G/1 and the G/M/1 queueing systems

<http://www.numdam.org/item?id=AIHPB_1968__4_1_83_0>

© Gauthier-Villars, 1968, tous droits réservés.

NUMDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/
Extreme value distribution for the M/G/1 and the G/M/1 queueing systems

by

J. W. COHEN

Technological University Delft, Holland.

SUMMARY. — For the supremum of the virtual delay time in a busy cycle and for the supremum of the actual waiting times of the customers served in a busy cycle the Laplace-Stieltjes transforms of the distribution functions have been found recently. Also for the supremum of the number of customers simultaneously present in the system during a busy cycle the generating function of the distribution is known. For every one of these variables the limit distribution of the maximum of these variables over a finite number of busy cycles is derived in the present paper. These limit distributions are obtained for the queueing systems M/G/1 and G/M/1 and for traffic intensities equal to one and less than one.

1. SOME RELATIONS FOR THE M/G/1 SYSTEM

For the M/G/1 queueing system denote by \(v_t \) the virtual waiting time at time \(t \), by \(x_t \) the number of customers in the system at time \(t \) and by \(w_n \) the actual waiting time of the \(n \)th arriving customer with \(w_1 = 0 \). Further \(\zeta \) will denote the duration of a busy cycle and \(n \) the number of customers served in a busy cycle. Define

\[
\begin{align*}
V_{\text{max}} & \triangleq \sup_{0 < t < \zeta} v_t, \\
W_{\text{max}} & \triangleq \sup_{1 \leq n \leq n} w_n, \\
X_{\text{max}} & \triangleq \sup_{0 < t < \zeta} x_t,
\end{align*}
\]
so that ε_{max} is the supremum of the virtual waiting time in a busy cycle, w_{max} is the supremum of all actual waiting times of a busy cycle and x_{max} the maximum number of customers simultaneously present in a busy cycle.

Denoting by $B(t)$ the distribution function of the service times and by α the average interarrival time then with

$$\beta(\rho) = \int_0^\infty e^{-\rho t} dB(t), \; \Re \rho \geq 0, \; B(0+) = 0, \; \beta = \int_0^\infty t dB(t) < \infty,$$

we have

$$\Pr \{ \varepsilon_{\text{max}} < \nu \} = \frac{1}{2\pi i} \oint_{C_n} \frac{e^{\nu \eta} }{\beta(\eta) + \alpha \eta - 1} d\eta, \; \Re \eta > \delta; \quad \nu > 0,$$

$$= 0, \quad \nu < 0,$$

$$\Pr \{ w_{\text{max}} < w \} = \frac{1}{2\pi i} \oint_{C_n} \frac{e^{\nu \eta} }{\beta(\eta) + \alpha \eta - 1} \frac{d\eta}{1 - \alpha \eta} \frac{1}{\beta(\eta)}, \; w > 0,$$

$$= 0, \quad w < 0,$$

and for $x = 1, 2, \ldots,$

$$\Pr \{ x_{\text{max}} \leq x \} = \frac{1}{2\pi i} \oint_{D_\omega} \frac{d\omega}{\omega^{x+1}} \frac{1}{\beta(\omega)} \frac{1}{\beta(\omega) - \omega} \frac{1}{\beta(\omega) - (1 - \omega)} \frac{1}{\beta(\omega) - (1 - \omega)}.$$

Here we used the notation

$$\frac{1}{2\pi i} \oint_{C_n} \ldots d\eta = \lim_{b \to \infty} \int_{R - ib}^{R + ib} \ldots d\eta, \; \Re = \Re \eta,$$

and D_ω is a circle in the complex ω-plane with center at $\omega = 0$ and radius $|\omega|$, the positive direction of integration being counter clockwise. By δ is denoted the larger zero of $\beta(\eta) + \alpha \eta - 1$ with $\Re \eta \geq 0$, while μ is the smaller
zero inside or on the unit circle of \(\beta \left\{ \frac{1}{\alpha} (1 - \omega) \right\} - \omega \). It is well known (cf. Takacs [1]) that if \(a \overset{\text{def}}{=} \beta / \alpha \leq 1 \) then \(\delta = 0 \), \(\mu = 1 \); the zeros \(\delta \) and \(\mu \) have multiplicity one if \(a \neq 1 \), if \(a = 1 \) they have multiplicity two. The relations (1.1) and (1.3) have been derived by Takacs [2] and by Cohen [3], [4], [5], while the relation (1.2) has been obtained by Cohen [6].

Let \(w \) and \(x \) be stochastic variables with distribution functions given by

\[
(1.4) \quad E \{ e^{-\rho w} \} = \frac{(1 - a) \alpha \rho}{\beta(\rho) + \alpha \rho - 1}, \quad \Re \rho \geq 0, \quad a < 1,
\]

\[
(1.5) \quad E \{ \omega^x \} = (1 - a) \frac{\beta \left\{ \frac{1}{\alpha} (1 - \omega) \right\}}{\beta \left\{ \frac{1}{\alpha} (1 - \omega) \right\} - \omega}, \quad |\omega| \leq 1, \quad a < 1,
\]

so that the distribution of \(w \) is the stationary distribution of the (virtual or actual) waiting time for the M/G/1 queue, and the distribution of \(x \) is the stationary distribution of the number of customers present in the M/G/1 queueing system.

Further let \(\sigma \) be a negative exponentially distributed variable with expectation \(\alpha \) and \(r \) a variable with distribution function \(B(t) \). Assume that \(w \) and \(\sigma \) are independent, and also that \(w \) and \(r \) are independent. It follows from (1.1), ..., (1.5) that for \(a < 1 \),

\[
\Pr \{ v_{\max} < v \} = \frac{\Pr \{ w + r < v \}}{\Pr \{ w < v \}}, \quad v > 0,
\]

\[
\Pr \{ w_{\max} < w \} = \frac{\Pr \{ w < w \}}{\Pr \{ w < w + \sigma \}}, \quad w > 0,
\]

\[
\Pr \{ x_{\max} \leq x \} = 1 - \frac{\Pr \{ x = x \}}{\Pr \{ x \leq x \}}, \quad x = 0, 1, \ldots
\]

From (1.1) for \(v > 0 \), \(\Re \eta > 0 \), \(a \leq 1 \),

\[
(1.6) \quad 1 - \Pr \{ v_{\max} < v \} = \frac{\alpha}{2 \pi i} \int_{C_n} e^{\eta v} \frac{\eta d\eta}{\beta(\eta) + \alpha \eta - 1};
\]

\[
\frac{1}{2 \pi i} \int_{C_n} e^{\eta v} \frac{d\eta}{\beta(\eta) + \alpha \eta - 1};
\]
from (1.2) for \(w > 0, \frac{1}{\alpha} > \Re \eta > 0, a \leq 1, \)

\[
1 - \Pr \{ w_{\text{max}} < w \} = \frac{1}{2\pi i} \int_{C_\eta} \frac{e^{\eta w}}{e^{\eta w} - \beta(\eta) + \alpha \eta - 1} \eta d\eta
\]

(1.7)

and from (1.3) for \(x = 2, 3, \ldots, |\omega| < 1, \)

\[
1 - \Pr \{ x_{\text{max}} \leq x \} = \frac{1}{2\pi i} \int_{D_\omega} \frac{1 - \omega}{e^{\eta w} - \beta(\eta) + \alpha \eta - 1} \omega d\omega
\]

(1.8)

Define

\[
H(t) \overset{\text{def}}{=} \frac{1}{\beta} \int_0^t \{ 1 - B(\tau) \} d\tau, \quad h(t) \overset{\text{def}}{=} \frac{1}{\beta} \{ 1 - B(t) \}, \quad t > 0, \\
= 0, \quad t < 0,
\]

so that \(H(t) \) is a distribution function having a bounded and monotone density function \(h(t) \). Define for \(a \leq 1 \)

\[
K(t, a) \overset{\text{def}}{=} \sum_{n=0}^{\infty} a^n H^n(t),
\]

(1.9)

so that

\[
\int_0^\infty e^{-\eta t} d_{\eta} K(t, a) = \frac{\alpha \eta}{\beta(\eta) + \alpha \eta - 1}, \quad \Re \eta > 0.
\]

(1.10)

Obviously, \(K(t, 1) \) is the renewal function of a renewal process with \(H(t) \) as renewal distribution. Since \(H(t) \) has a density which is monotone and bounded \(K(t, a) \) has for \(a \leq 1 \) a bounded derivative \(k(t, a) \) (cf. Feller [7], p. 358) and

\[
k(t, a) = \frac{d}{dt} K(t, a), \quad t > 0,
\]

(1.11)

\[
\int_0^\infty e^{-\eta t} k(t, a) dt = \frac{\alpha \eta}{\beta(\eta) + \alpha \eta - 1} - 1, \quad \Re \eta > 0.
\]

(1.12)
Since for $a \leq 1$
\[
\int_{0}^{\infty} K(w + \tau, a)e^{-\tau/a} \frac{d\tau}{a} = e^{w/a} \int_{t = w}^{\infty} e^{-t/a} K(t, a) \frac{dt}{a},
\]
we have for $w > 0$, $a \leq 1$,
\[
\frac{d}{dw} \int_{0}^{\infty} K(w + \tau, a)e^{-\tau/a} \frac{d\tau}{a} = e^{w/a} \int_{t = w}^{\infty} e^{-t/a} k(t, a) \frac{dt}{a},
\]
It is easily seen that for $a \leq 1$, $0 < \Re \eta < \frac{1}{\alpha},$
\[
\int_{0}^{\infty} e^{-\eta t/dw} \int_{0}^{\infty} K(w, t, a)e^{-t/a} \frac{dt}{a} = \frac{1}{1 - \alpha \eta} \frac{\alpha \eta}{\beta(\eta) + \alpha \eta - 1},
\]
Further for $|\omega| < 1$, $x = 0, 1, \ldots,$
\[
\frac{1}{2\pi i} \int_{D \omega} \frac{d\omega}{\omega^{x+1}} \frac{1 - \omega}{\beta \left\{ \frac{1}{\alpha (1 - \omega)} \right\} - \omega} = \int_{0}^{\infty} \frac{(t/x)^x}{x!} e^{-t/2} d(t, a),
\]
From (1.6), (1.7) and (1.8) it follows easily by using the inversion formula for the Laplace-Stieltjes transform that for $a \leq 1,$
\[
1 - \Pr \{ v_{\max} < v \} = \alpha \frac{k(v, a)}{K(v, a)} = \alpha \frac{d}{dv} \log K(v, a), \quad v > 0,
\]
\[
= \alpha \frac{d}{dv} \log \Pr \{ w < v \} \quad \text{if} \quad a < 1;
\]
\[
1 - \Pr \{ w_{\max} < w \} = \frac{\int_{0}^{\infty} k(w + t, a)e^{-t/a} dt}{\int_{0}^{\infty} K(w + t, a)e^{-t/a} dt}
\]
\[
= \frac{\alpha}{d} \log \int_{0}^{\infty} K(w + t, a)e^{-t/a} dt,
\]
\[
= \frac{\alpha}{d} \log \Pr \{ w < w + \alpha \} \quad \text{if} \quad a < 1, \quad w > 0,
\]
From the relations

\[E\{v_{\max}\} = \int_0^\infty \{1 - \Pr\{v_{\max} < v\}\} \, dv, \]

\[E\{v_{\max}^2\} = 2 \int_0^\infty v \{1 - \Pr\{v_{\max} < v\}\} \, dv, \]

and

\[\Pr\{w < 0 +\} = 1 - a \text{ if } a < 1, \]

it is found that for \(a < 1\) (cf. (1.16) and (1.17))

\[E\{v_{\max}\} = \frac{\beta}{a} \log \frac{1}{1 - a}, \]

\[E\{v_{\max}^2\} = -2 \frac{\beta}{a} \int_0^\infty \log \{1 - \Pr\{w \geq v\}\} \, dv, \]

\[E\{w_{\max}\} = \frac{\beta}{a} \log \frac{1}{1 - a}, \]

\[E\{w_{\max}^2\} = -2 \frac{\beta}{a} \int_0^\infty \log \Pr\{w < w + \sigma\} \, dw. \]

Since

\[E\{v_{\max}^2\} = 2 \frac{\beta}{a} \sum_{n=1}^\infty \int_0^\infty \frac{1}{n} \Pr\{w \geq w\} \, dw, \]

and

\[\Pr\{w \geq w\} < a, \]

we have

\[2 \frac{\beta}{a} \int_0^\infty \Pr\{w \geq w\} \, dw < E\{v_{\max}^2\} < 2 \frac{\beta}{a} \sum_{n=1}^\infty \frac{a^{n-1}}{n} \int_0^\infty \Pr\{w \geq w\} \, dw \]

so that since

\[\int_0^\infty \Pr\{w \geq w\} \, dw = \frac{1}{2} \frac{a \beta}{1 - a \beta^2}, \]
with β_2 the second moment of $B(t)$, we obtain

$$\frac{\beta_2}{1 - a} < E \{ \xi_{\max}^2 \} < \frac{\beta_2}{1 - a} \log \frac{1}{1 - a}.$$

It is seen that the second moment of ξ_{\max} is finite if $\beta_2 < \infty$, a similar conclusion holds for w_{\max} and x_{\max}. It is noted that $E \{ w \}$ is finite if $\beta_2 < \infty$, while $E \{ w \}$ is finite if $a < 1$ and $\beta_2 < \infty$.

2. EXTREME VALUE DISTRIBUTIONS FOR M/G/1

Suppose the server is idle at time $t = 0$. Denote by ξ_{\max}, w_{\max} and x_{\max} the supremum of ξ_j, of w_j and of x_j in the jth busy cycle of the queueing system M/G/1, $j = 1, 2, \ldots$. Obviously, ξ_{\max}, $j = 1, 2, \ldots$, are independent, identically distributed variables with finite first moment if $a < 1$ and with finite second moment if $\beta_2 < \infty$. If $a < 1$ then the strong law of large numbers applies for the sequence ξ_{\max}, $j = 1, 2, \ldots$; whereas if $\beta_2 < \infty$ the central limit theorem applies also for this sequence. Similar statements hold for the other sequences w_{\max}, $j = 1, 2, \ldots$, and x_{\max}, $j = 1, 2, \ldots$

Define for $n = 1, 2, \ldots$,

$$V_n \overset{\text{def}}{=} \max_{1 \leq j \leq n} \xi_{\max}, \quad W_n \overset{\text{def}}{=} \max_{1 \leq j \leq n} w_{\max}, \quad X_n \overset{\text{def}}{=} \max_{1 \leq j \leq n} x_{\max},$$

i.e., V_n is the supremum of the virtual waiting time in n busy cycles, W_n that of the actual waiting times in n busy cycles and X_n the supremum of the number of customers present simultaneously in the system during n busy cycles. For these variables we shall derive some limit theorems.

Theorem 1. — If $a = 1$ and β_2, the second moment of $B(t)$, is finite then the distributions of $\frac{1}{n\beta} V_n$, of $\frac{1}{n\beta} W_n$ and of $\frac{1}{n} X_n$ all converge for $n \to \infty$ to the distribution $G(x)$ with

$$G(x) = e^{-x^{-1}} \quad \text{for} \quad x > 0, \quad = 0 \quad \text{for} \quad x < 0.$$

Proof. Since $\beta_2/2\beta$ is the first moment of $H(t)$, and since $h(t)$ is monotone we have from renewal theory (cf. Feller [7], p. 358)

$$\lim_{t \to \infty} \frac{K(t, 1)}{t} = \frac{2\beta}{\beta_2}, \quad \lim_{t \to \infty} k(t, 1) = \frac{2\beta}{\beta_2}.$$
Hence from (1.16) since \(a = 1 \)

\[
(2.2) \quad \lim_{v \to \infty} v \{ 1 - \Pr \{ x_{\max} < v \} \} = \alpha = \beta.
\]

From this relation and from

\[
\Pr \left\{ \frac{1}{n\beta} V_n < x \right\} = [\Pr \{ v_{\max} < n\beta x \}]^n = \left\{ 1 - \frac{\beta}{n\beta x} + o\left(\frac{1}{n}\right) \right\}^n, \quad x > 0,
\]

for \(n \to \infty \) it follows immediately that

\[
\lim_{n \to \infty} \Pr \left\{ \frac{1}{n\beta} V_n < x \right\} = e^{-x^{-1}}, \quad x > 0,
\]

\[
= 0, \quad x < 0,
\]

and the statement for \(V_n \) has been proved.

From (1.17) for \(a = 1 \)

\[
(2.4) \quad 1 - \Pr \{ w_{\max} < w \} = \alpha \int_{0}^{\infty} k(w + \tau, 1)e^{-\frac{\tau}{\alpha}} \frac{d\tau}{\alpha} \quad w > 0.
\]

For given \(\varepsilon > 0 \) a finite number \(W(\varepsilon) > 0 \) exists such that

\[
\left| k(w, 1) - \frac{2\beta}{\beta_2} \right| < \varepsilon \quad \text{for all} \quad w > W(\varepsilon),
\]

so that

\[
\left| k(w + t, 1) - \frac{2\beta}{\beta_2} \right| < \varepsilon \quad \text{for all} \quad w > W(\varepsilon), \quad t \geq 0.
\]

Consequently, since \(k(t, 1) \) is bounded

\[
\lim_{w \to \infty} \int_{0}^{\infty} k(t + w, 1)e^{-\frac{t}{\alpha}} \frac{dt}{\alpha} = \frac{2\beta}{\beta_2} \int_{0}^{\infty} e^{-\frac{t}{\alpha}} \frac{dt}{\alpha} = \frac{2\beta}{\beta_2}.
\]

Using (2.1) the same argumentation yields

\[
\lim_{w \to \infty} \int_{0}^{\infty} K(w + t, 1)e^{-\frac{t}{\alpha}} \frac{dt}{\alpha} = \lim_{w \to \infty} \int_{0}^{\infty} K(w + t, 1)e^{-\frac{t}{w + t}} \left\{ 1 + \frac{t}{w} \right\} \frac{dt}{\alpha} = \frac{2\beta}{\beta_2}.
\]

Hence from (2.4)

\[
\lim_{w \to \infty} w \{ 1 - \Pr \{ w_{\max} < w \} \} = \alpha = \beta,
\]

so that, as above the statement for \(W_n \) follows.
For \(x = 1, 2, \ldots \),
\[
\int_{\mathcal{W}(e)}^{\infty} \frac{(t/\alpha)^{x-1}}{(x-1)!} e^{-t/\alpha} \left| k(t, 1) - \frac{2\beta}{\beta_2} \right| \frac{dt}{\alpha} \leq \varepsilon \int_{\mathcal{W}(e)}^{\infty} \frac{(t/\alpha)^{x-1}}{(x-1)!} e^{-t/\alpha} \frac{dt}{\alpha} \leq \varepsilon,
\]
and
\[
\lim_{x \to \infty} \int_{0}^{\mathcal{W}(e)} \frac{(t/\alpha)^{x-1}}{(x-1)!} e^{-t/\alpha} k(t, 1) \frac{dt}{\alpha} \leq \max_{0 \leq t \leq \mathcal{W}(e)} k(t, 1), \lim_{x \to \infty} \int_{0}^{\mathcal{W}(e)} \frac{(t/\alpha)^{x-1}}{(x-1)!} e^{-t/\alpha} dt = 0.
\]
It follows
\[
\lim_{x \to \infty} \int_{0}^{\infty} \frac{(t/\alpha)^{x-1}}{(x-1)!} e^{-t/\alpha} \left(k(t, 1) - \frac{2\beta}{\beta_2} \right) \frac{dt}{\alpha} = 0,
\]
or
\[
\lim_{x \to \infty} \int_{0}^{\infty} \frac{(t/\alpha)^{x-1}}{(x-1)!} e^{-t/\alpha} k(t, 1) \frac{dt}{\alpha} = \frac{2\beta}{\beta_2}.
\]
In the same way it is shown that
\[
\lim_{x \to \infty} \int_{0}^{\infty} \frac{(t/\alpha)^{x}}{x!} e^{-t/\alpha} k(t, 1) \frac{dt}{t} \frac{1}{\alpha} = \frac{2\beta}{\beta_2}.
\]
Hence from (1.12)
\[
\lim_{x \to \infty} x \{ 1 - \Pr \{ X^{(j)}_{\text{max}} \leq x \} \} = 1,
\]
the last relation leads as above to the statement for \(X_n \). The theorem is proved.

Theorem 2. — If \(a < 1, \rho_0 > 0 \) and \(-\rho_0 \) is the abcissa of convergence of \(\beta(\rho) \) and if \(\beta(-\rho_0 + 0) = \infty \) then for \(-\infty < x < \infty \),
\[
\lim_{n \to \infty} \Pr \left\{ \frac{1}{\beta} V_n < \frac{x + \log(nb_1)}{-\varepsilon \beta} \right\} = e^{-e^{-x}},
\]
\[
\lim_{n \to \infty} \Pr \left\{ \frac{1}{\beta} W_n < \frac{x + \log(nb_2)}{-\varepsilon \beta} \right\} = e^{-e^{-x}},
\]
\[
\lim_{n \to \infty} \Pr \left\{ X_n < \frac{x + \log(nb_3)}{\log(1 - \alpha \varepsilon)} \right\} = e^{-e^{-x}},
\]
with
\[
b_1 = \frac{\alpha - \beta}{\alpha + \beta'(\varepsilon) \alpha \varepsilon}, \quad b_2 = \frac{\alpha - \beta}{\alpha + \beta'(\varepsilon) (1 - \alpha \varepsilon)}, \quad b_3 = \frac{\alpha - \beta}{\alpha + \beta'(\varepsilon) \alpha \varepsilon (1 - \alpha \varepsilon)},
\]
\[
\beta'(\rho) = -\int_{0}^{\infty} te^{-\rho t} dB(t), \quad \text{Re} \rho > -\rho_0,
\]
and ε is the zero of $\beta(\eta) + \alpha\eta - 1$, $\Re \eta < 0$ which is nearest to the imaginary axis $\Re \eta = 0$.

Proof. Since $\rho_0 > 0$ and $\alpha < 1$, the function $\beta(\eta) + \alpha\eta - 1$ has for $\Re \eta < 0$ a real zero. Denote by ε its real zero nearest to the axis $\Re \eta = 0$. Clearly $\varepsilon > -\rho_0$. From

$$|\beta(\eta)| \leq \beta(\Re \eta) = 1 - \alpha \varepsilon < |1 - \alpha\eta| \quad \text{for} \quad \Re \eta = \varepsilon, \eta \neq \varepsilon,$$

it follows that ε is the only zero with $\Re \eta = \varepsilon$. From

$$|\beta(\eta)| \leq \beta(\Re \eta) < |1 - \alpha\eta| \quad \text{for} \quad \Re \eta > \varepsilon$$

and from Rouche's theorem it is seen that $\beta(\eta) + \alpha\eta - 1$ has only one zero with $\Re \eta > \varepsilon$; this zero is $\eta = 0$. Hence ε is the zero with $\Re \eta < 0$ nearest to the axis $\Re \eta = 0$. Moreover, ε is a single zero, since

$$\beta'(\varepsilon) + \alpha = \beta'(\varepsilon) + \frac{1 - \beta(\varepsilon)}{\varepsilon} = -\sum_{n=1}^{\infty} \int_0^{\infty} \frac{(e^n - 1)}{n!} dB(t) < 0,$$

the series being convergent. If $\beta(\eta) + \alpha\eta - 1$ has a second zero ε_1 with $\Re \varepsilon_1 < 0$ then $-\rho_0 < \Re \varepsilon_1 < \varepsilon$. Let C_ξ be a line parallel to the imaginary axis with $\Re \varepsilon_1 < \Re \xi < \varepsilon$ if ε_1 exists, otherwise $-\rho_0 < \Re \xi < \varepsilon$. The function $\beta(\eta) + \alpha\eta - 1$ is analytic for $\Re \eta > \Re \xi$ and has single zeros at $\eta = \varepsilon$ and $\eta = 0$. From Cauchy's theorem it follows for

$$\Re \eta > 0 > \varepsilon > \Re \xi > \Re \varepsilon_1 > -\rho_0$$

$$\frac{\alpha}{2\pi i} \int_{C_\eta} e^{\eta\beta(\eta) + \alpha\eta - 1} = \frac{\alpha e^{\eta\beta(\eta) + \alpha\eta - 1}}{\beta(\varepsilon) + \alpha\eta - 1} + \frac{\alpha}{2\pi i} \int_{C_\xi} e^{\xi\beta(\eta) + \alpha\eta - 1}, \quad v > 0,$$

$$\frac{1}{2\pi i} \int_{C_\eta} e^{\eta\beta(\eta) + \alpha\eta - 1} = \frac{1}{\alpha - \beta} + \frac{1}{\alpha + \beta'\varepsilon} e^{\varepsilon\beta(\eta) + \alpha\eta - 1}, \quad v > 0.$$

It is easily verified that

$$\lim_{v \to \infty} \frac{\alpha e^{\xi\beta(\eta) + \alpha\eta - 1}}{\beta(\varepsilon) + \alpha\eta - 1} = 0, \quad \lim_{v \to \infty} \frac{\alpha e^{\xi\beta(\eta) + \alpha\eta - 1}}{\beta(\varepsilon) + \alpha\eta - 1} = 0.$$

Hence from (1.6) we obtain

$$\lim_{v \to \infty} e^{-\varepsilon v} \{ 1 - \Pr \{ \xi_{\text{max}} < v \} \} = \frac{\alpha - \beta}{\alpha + \beta'\varepsilon} \alpha \varepsilon = b_1 > 0.$$
Therefore
\[\Pr \left\{ \frac{1}{\beta} V_n < \frac{x + \log (nb_1)}{-\varepsilon \beta} \right\} = \left[\Pr \left\{ \frac{x + \log (nb_1)}{b_{\max}} < \frac{x + \log (nb_1)}{-\varepsilon \beta} \right\} \right]^n, \]
so that for \(n \to \infty \)
\[\Pr \left\{ \frac{1}{\beta} V_n < \frac{x + \log (nb_1)}{-\varepsilon \beta} \right\} = \left[1 - b_1 e^{-x - \log(nb_1)} + o \left(\frac{1}{n} \right) \right]^n, \]
i.e.
\[\lim_{n \to \infty} \Pr \left\{ \frac{1}{\beta} V_n < \frac{x + \log (nb_1)}{-\varepsilon \beta} \right\} = e^{-e^{-x}}, \quad -\infty < x < \infty. \]
This proves the statement for \(V_n \), that for \(W_n \) is proved in the same way.
The statement for \(X_n \) is also analogous. Start from (1.3) and move the path of integration \(D_\omega \) to a circle with radius \(|\omega| > 1 \) and such that the first zero of
\[\beta \left\{ \frac{1}{\alpha (1 - \omega)} \right\} - \omega \]
outside the circle \(|\omega| = 1 \) is an interior point of this circle.

Corollary to theorem 2. For \(a < 1 \) the variables \(\frac{1}{\beta \log n} V_n \), \(\frac{1}{\beta \log n} W_n \) and \(\frac{X_n}{\log n} \) converge for \(n \to \infty \) in probability to \(-\frac{1}{\varepsilon \beta}, -\frac{1}{\varepsilon \beta} \) and \(\frac{1}{\log (1 - ax)} \), respectively.
Proof. For every fixed \(x > 0 \) it follows from theorem 2 that for \(n \to \infty \)
\[\Pr \left\{ \left| \frac{1}{\beta \log n} V_n + \frac{1}{\varepsilon \beta} + \frac{\log b_1}{\varepsilon \beta \log n} \right| > \frac{x}{-\varepsilon \beta \log n} \right\} \to \{ e^{-e^{-x}} + 1 - e^{-e^{-x}} \}, \]
so that for every \(z > 0 \)
\[\Pr \left\{ \left| \frac{1}{\beta \log n} V_n + \frac{1}{\varepsilon \beta} + \frac{\log b_1}{\varepsilon \beta \log n} \right| > \frac{z}{-\varepsilon \beta} \right\} \to e^{-n^z} + 1 - e^{-n^z} \to 0 \]
for \(n \to \infty \),
and hence the statement for \(V_n \) follows; the other statements are proved similarly.

During a busy cycle a realisation of \(V_t \) may have a number of intersections with level \(K \). There are no intersections at all if during the busy cycle the virtual delay time is always less than \(K \). Denote by \(\Pi_k^{(j)} \) the number of intersections from above with level \(K \) of \(V_t \) in the \(j \)th busy cycle, \(j = 1, 2, \ldots \).
Obviously, the variables $\Pi_j^0, j = 1, 2, \ldots$, are independent and identically distributed variables. It has been shown in [8] that if $a \leq 1$ then

$$\Pr \{ \Pi_j^0 = m \} = f(0), \quad m = 0,$$

$$= \{ 1 - f(0) \} \{ 1 - h(0) \}^{m-1} h(0), \quad m = 1, 2, \ldots,$$

where

$$f(0) = \Pr \{ x_{\text{max}} < K \},$$

$$h(0) = \left[\frac{1}{2\pi i} \int_{C_n} e^{\eta K} \frac{x\eta}{\beta(\eta) + x\eta - 1} \right]^{-1}, \quad \text{Re}\ \eta > 0.$$

Denote by E_K the state with K customers left behind in the system at a departure. Let Δ_j^0 represent the number of times that state E_K occurs during the jth busy cycle. Obviously, $\Delta_j^0, j = 1, 2, \ldots$, are independent and identically distributed variables. It has been shown in [9] that if $a \leq 1$ then

$$\Pr \{ \Delta_j^0 = m \} = f(1), \quad m = 0,$$

$$= \{ 1 - f(1) \} \{ 1 - h(1) \}^{m-1} h(1), \quad m = 1, 2, \ldots,$$

where

$$f(1) = \Pr \{ x_{\text{max}} \leq K \},$$

$$h(1) = \left[\frac{1}{2\pi i} \int_{D_\omega} d\omega \frac{\beta \left\{ \frac{1}{\alpha} (1 - \omega) \right\}}{\omega^{K+1} \beta \left\{ \frac{1}{\alpha} (1 - \omega) \right\} - \omega} \right]^{-1}, \quad |\omega| < 1.$$

Define

$$P_{K,n} \coloneqq \max_{1 \leq j \leq n} \Pi_j^0, \quad L_{K,n} \coloneqq \max_{1 \leq j \leq n} \Delta_j^0,$$

then we have :

Theorem 3. — If $a \leq 1$ then

$$\lim_{n \to \infty} \Pr \left\{ \frac{x + \log \left\{ n \frac{1 - f(0)}{1 - h(0)} \right\}}{-\log \left\{ 1 - h(0) \right\}} < P_{K,n} \right\} = e^{-e^{-x}}, \quad -\infty < x < \infty,$$

$$\lim_{n \to \infty} \Pr \left\{ \frac{x + \log \left\{ n \frac{1 - f(1)}{1 - h(1)} \right\}}{-\log \left\{ 1 - h(1) \right\}} < L_{K,n} \right\} = e^{-e^{-x}}, \quad -\infty < x < \infty.$$

Proof. It is easily verified that

$$\Pr \{ \Pi_j^0 \geq m \} = \frac{1 - f(0)}{1 - h(0)} \exp \{ m \log (1 - h(0)) \}.$$
from which the statement of the theorem follows as in the preceding theorem. Similarly for \(L_{K,n}\).

As before we obtain.

Corollary to theorem 3. For \(a \leq 1\) the variables \(\frac{P_{K,n}}{\log n}\) and \(\frac{L_{K,n}}{\log n}\) converge for \(n \to \infty\) in probability to

\[
\frac{1}{-\log \{1 - h(0)\}} \quad \text{and} \quad \frac{1}{-\log \{1 - h(1)\}},
\]

respectively.

It is noted that if \(B(t) = 1 - e^{-t/\beta}\) for \(t > 0\) then \(\varepsilon \beta = -(1 - a), b_1 = (1 - a), b_2 = a(1 - a), b_3 = a^{-1}(1 - a), 1 - \alpha \varepsilon = a^{-1},\)

\[
f(0) = \frac{1 - e^{-(1-a)K/\beta}}{1 - ae^{-(1-a)K/\beta}}, \quad h(0) = \frac{1 - a}{1 - ae^{-(1-a)K/\beta}}, \quad a < 1,
\]

\[
= \frac{K/\beta}{1 + K/\beta}, \quad a = 1,
\]

\[
f(1) = \frac{1 - a^K}{1 - a^{K+1}}, \quad h(1) = \frac{1 - a}{1 - a^{K+1}}, \quad a < 1,
\]

\[
= \frac{K}{1 + K}, \quad a = 1.
\]

3. Extreme Value Distributions for G/M/1

Denote by \(A(t)\) the distribution function of the interarrival times for the queueing system G/M/1;

\[
\alpha(\rho) = \int_0^\infty e^{-\rho t}dA(t), \quad \Re \rho \geq 0, \quad A(0 +) = 0, \quad \alpha = \int_0^\infty tdA(t) < \infty.
\]

For the system G/M/1 the variables \(v_{\max}, w_{\max}\) and \(x_{\max}\) will have the same meaning as those for the system M/G/1, and similarly for \(V_n, W_n\) and \(X_n\).

For \(a \leq 1\) we have (cf. Cohen [3], [5], [6]),

\[
(3.1) \quad 1 - \Pr \{ v_{\max} < v \} = 0, \quad v < 0,
\]

\[
= \left\{ \frac{1}{2\pi i} \int_{C_{\varepsilon}} e^{\xi v} \frac{\beta d\xi}{\alpha(\xi) + \beta \xi - 1} \right\}^{-1}, \Re \varepsilon > \psi, \quad v > 0,
\]

\[
(3.2) \quad 1 - \Pr \{ w_{\max} < w \} = 0, \quad w < 0,
\]

\[
= \left\{ \frac{1}{2\pi i} \int_{C_{\varepsilon}} e^{\xi v} \frac{\beta d\xi}{1 - \beta \xi \alpha(\xi) + \beta \xi - 1} \right\}^{-1} \frac{1}{\beta} \quad \Re \varepsilon > \psi, \quad w > 0,
\]

\[
(3.3) \quad 1 - \Pr \{ x_{\max} \leq x \}
\]

\[
= \left\{ \frac{1}{2\pi i} \int_{D_{\omega}} \frac{d\omega}{\omega^{\varphi}} \frac{1}{\alpha \left\{ \frac{1 - \omega}{\beta (1 - \omega)} \right\} - \omega} \right\}^{-1}, \quad |\omega| < \varphi, \quad x = 1, 2, \ldots,
\]

\[\text{ANN. INST. POINCARE, B-IV-1}\]
here Ψ is the larger zero of $\alpha(\xi) + \beta \xi - 1$ with $\Re \xi \geq 0$, and ϕ is the smaller zero of $\alpha \left\{ \frac{1}{\beta} (1 - \omega) \right\} - \omega$ with $|\omega| \leq 1$. If $a = 1$ then $\psi = 0$, $\phi = 1$, whereas for $a < 1$ both ϕ and ψ are positive with multiplicity one. Put

$$N(t) \overset{\text{def}}{=} 0, \quad t < 0,$$

$$= \int_0^t \left\{ 1 - A(u) \right\} \frac{du}{\alpha}, \quad t > 0,$$

and

$$M(t) \overset{\text{def}}{=} \sum_{n=1}^{\infty} \left\{ N(t) \right\}^{n*}, \quad t > 0,$$

so that $M(t)$ is the renewal function of the renewal process with $N(t)$ as renewal distribution. As in section 1 (cf. the derivation of (1.10), . . . , (1.12)) we have from (3.1), . . . , (3.3) for $a = 1$

$$1 - \Pr \left\{ V_{\max} < v \right\} = \left\{ M(v) \right\}^{-1}, \quad v > 0,$$

$$1 - \Pr \left\{ W_{\max} < w \right\} = \left\{ \int_0^\infty M(w + t)e^{-t/\beta} \frac{dt}{\beta} \right\}^{-1}, \quad w > 0,$$

$$1 - \Pr \left\{ X_{\max} \leq x \right\} = \left\{ \int_0^\infty \frac{(t/\beta)^{x-1}}{(x-1)!} e^{-t/\beta} M(t) \frac{dt}{\beta} \right\}^{-1}, \quad x = 1, 2, \ldots$$

If the second moment α_2 of $A(t)$ is finite then from renewal theory

$$\lim_{t \to \infty} \frac{M(t)}{t} = \frac{2\alpha}{\alpha_2}.$$

The same argumentation as used in the proof of theorem 1 leads immediately to

THEOREM 4. — If $a = 1$ and $\alpha_2 < \infty$ then the distribution functions of

$$\frac{2\alpha}{n\alpha_2} V_n$$

and of

$$\frac{2\alpha^2}{n\alpha_2} X_n$$

all converge to $G(x)$ for $n \to \infty$.

Further

THEOREM 5. — If $a < 1$ then for $-\infty < x < \infty$,

$$\lim_{n \to \infty} \Pr \left\{ \frac{1}{\beta} V_n < \frac{x + \log (nc_1)}{\psi \beta} \right\} = e^{-e^{-x}},$$

$$\lim_{n \to \infty} \Pr \left\{ \frac{1}{\beta} W_n < \frac{x + \log (nc_2)}{\psi \beta} \right\} = e^{-e^{-x}},$$

$$\lim_{n \to \infty} \Pr \left\{ X_n < \frac{x + \log (nc_1)}{-\log (1 - \alpha \psi)} \right\} = e^{-e^{-x}},$$
with \[
c_1 = \frac{\alpha'(\psi) + \beta}{\beta}, \quad c_2 = \frac{\alpha'(\psi) + \beta}{\beta} (1 - \beta \psi),
\]
\[
\alpha'(\rho) = - \int_0^\infty te^{-\rho t} dA(t), \quad \Re \rho \geq 0.
\]

Proof. From (3.1) we have for \(\Re \zeta > \psi > \Re \eta > 0, \nu > 0 \)
\[
\frac{1}{2\pi i} \oint_{C_\zeta} e^{v \zeta} \frac{\beta d\zeta}{\alpha(\zeta) + \beta \zeta - 1} = \frac{\beta e^{\psi \nu}}{\alpha'(\psi) + \beta} + \int_{C_n} e^{v \eta} \frac{\beta d\eta}{\alpha(\eta) + \beta \eta - 1},
\]
so that, since \(\alpha(\eta) + \eta \beta - 1 \) has no zeros for \(0 < \Re \eta < \psi \), it immediately follows from (3.1) that
\[
\lim_{v \to \infty} e^{v \psi} \left\{ \Pr \left\{ \Upsilon_{\max} < \psi \right\} \right\} = \frac{\alpha'(\psi) + \beta}{\beta} = \frac{1}{\beta} \left\{ \alpha'(\psi) + \frac{1 - \alpha(\psi)}{\psi} \right\} > 0.
\]

From this relation the statement for \(V_n \) follows as in the proof of theorem 2. The proof of the statement for \(W_n \) is similar. To prove the statement for \(X_n \), move the path of integration \(D_\infty \) to a circle with radius \(|\zeta| \) and such that \(\varphi < |\zeta| < 1 \), and observe that \(\varphi = 1 - \alpha \psi \). The statement for \(X_n \) is now easily derived.

Corollary to theorem 5. For \(a < 1 \) the variables \(\frac{1}{\beta \log n} \frac{V_n}{\psi}, \frac{1}{\beta \log n} \frac{W_n}{\psi} \) and \(\frac{X_n}{\log n} \) converge for \(n \to \infty \) in probability to \(\frac{1}{\psi \beta^2}, \frac{1}{\psi \beta} - \log (1 - \alpha \psi) \), respectively.

The proof is analogous to that of the corollary of theorem 2 in the preceding section.

REFERENCES

Manuscrit reçu le 4 septembre 1967.