MILOSŁAV JIŘINA

A simplified proof of the Sevastyanov theorem on branching processes

<http://www.numdam.org/item?id=AIHPB_1970__6_1_1_0>
A simplified proof
of the Sevastyanov theorem
on branching processes

by

Miloslav JIŘINA

SUMMARY. — The paper presents a new proof of a well known theorem (Sevastyanov) on necessary and sufficient conditions for the degeneration of a branching processes with \(n \) types of particles.

SUMMAIRE. — Cet article présente une démonstration nouvelle d'un théorème bien connu (Sevastyanov) sur les conditions nécessaires et suffisantes pour la dégénérescence des processus en cascade avec \(n \) types de particules.

One of the most important theorems on branching processes with \(n \)-types of particles (\(n \)-dimensional Galton-Watson processes) is the Sevastyanov's theorem on degeneration. The original proof of this theorem, as presented in [I], is complicated and is based on both probabilistic and non-probabilistic arguments. It is the author's belief that the proof presented in this paper is simpler. Moreover, it used analytic tools only.

We shall consider discrete-time-parameter processes only, i. e. we shall suppose that the time-parameter \(t \) assumes the values \(t = 0, 1, 2, \ldots \). We shall denote by \(\mathcal{P} \) a Markovian homogeneous branching process with \(n \) types of particles. We shall call \(\mathcal{P} \) shortly a \(n \)-dimensional branching process. We shall distinguish the particles by indices \(i = 1, 2, \ldots, n \). The basic set of indices will be denoted by \(I = \{1, 2, \ldots, n\} \). If \(A = [0, 1, 2, \ldots] \), then \(A^n \) is the state space of \(\mathcal{P} \). The states of \(\mathcal{P} \) will be
denoted by $a = [a_1, a_2, \ldots, a_n]$. To denote special vectors, we shall write $0 = [0, \ldots, 0]$, $\mathbf{1} = [1, \ldots, 1]$ and e_i will be the i-th unit vector. We shall denote by $P_i(t, a)$ the probability of transition from the state e_i to the state a after t time units. For $B \subseteq \mathbb{A}^n$, $P_i(t, B)$ will be the corresponding probability of B, i.e.

$$P(t, B) = \sum_{a \in B} P_i(t, a).$$

We shall denote by $F_i(t, x)$ the generating function of $P_i(t, a)$, i.e.

$$F_i(t, x) = \sum_{a \in \mathbb{A}^n} x_1^{a_1} \ldots x_n^{a_n} P_i(t, a),$$

where $x = [x_1 \ldots x_n] \in [0, 1]^n$. We shall write $F(t, x)$ instead of $[F_1(t, x), \ldots, F_n(t, x)]$. It is well known that

$$(1) \quad F(s + t), x) = F(s, F(t, x)).$$

For $i, j \in I$, we shall write

$$M_{ij}(t) = \sum_{a \in \mathbb{A}^n} a_j P_i(t, a).$$

We shall suppose that all $M_{ij}(t)$ are finite and we shall denote by $M(t)$ the moment matrix $(M_{ij}(t))_{i,j \in I}$. In all symbols we have introduced the time-parameter t will be omitted, if $t = 1$. It is well known that $M(t) = M'$. The maximal characteristic number of M will be denoted by R. Since the branching process is uniquely determined by the basic vector $F(x) = [F_1(x) \ldots F_n(x)]$, we may speak of a branching process defined by the generating functions $F_1(x), \ldots, F_n(x)$.

The subsets of the basic index set $I = [1, 2, \ldots, n]$ will be denoted by J, K or I_p. If $J \subseteq I$, $c(J)$ will denote the number of elements of J. If $x = [x_1, \ldots, x_n]$, then $x^{(J)}$ will denote the $c(J)$-dimensional vector the coordinate of which are x_i, $i \in J$. Generally, we shall express the fact that x_i belongs to the i-th particle by the index i only, not by the position of the coordinate x_i in vector; f. i. (x_1, x_2) and (x_2, x_1) will be the same vector for our purposes. This will simplify the forming of new vectors by sub-vectors; f. i. if $I = [1, 2, 3, 4]$, $J = [1, 3]$, $K = [2, 4]$, $y^{(J)} = [y_1, y_3]$, $z^{(K)} = [z_2, z_4]$, then $x = [y^{(J)}, z^{(K)}] = (y_1, y_3, z_2, z_4) = (y_1, z_2, y_3, y_4)$.

We shall write for $J \subseteq I$,

$$M^{(J)} = (M_{ij})_{i,j \in J}$$
$M^{(J)}$ is a $c(J)$-dimensional matrix and we shall denote its maximal characteristic number by $R^{(J)}$.

If $J \subset I$, we shall denote by $\mathcal{P}^{(J)}$ the $c(J)$-dimensional branching process (with particle-indices $i \in J$), defined by the generating functions

$$F^{(J)}_i(x^{(J)}) = F_i(x^{(J)}, \bar{1}^{(I-J)}), \quad i \in J.$$

Let $P_i^{(J)}(a)$ be the transition probabilities of $\mathcal{P}^{(J)}$. Then

$$P_i^{(J)}(B) = P_i(B \times A^{(I-J)})$$

for each $B \subset A^{(J)}$.

It follows from (3) that

(4) $M^{(J)}$ (defined by (2)) is the moment matrix of $\mathcal{P}^{(J)}$.

Let $J \subset K \subset I$; J will be called closed in K (with respect to \mathcal{P}), if

$$P_i\left(\{a : a_j = 0 \text{ for all } j \in K - J\}\right) = 1$$

for each $i \in J$.

It follows from (3) that

(5) J is closed in K with respect to \mathcal{P} if and only if it is closed in K with respect to $\mathcal{P}^{(K)}$.

An index set $J \subset I$ will be called decomposable (with respect to \mathcal{P}), if there exist two non-empty and disjoint set $J_1 \subset J$, $J_2 \subset J$ such that $J_1 \cup J_2 = J$ and J_1 is closed in J. J will be called indecomposable if it is not decomposable. Clearly

(6) J is indecomposable if and only if $M^{(J)}$ is indecomposable.

Also

(7) J is indecomposable with respect to \mathcal{P} if and only if it is indecomposable with respect to $\mathcal{P}^{(J)}$.

An index set J will be called final (with respect to \mathcal{P}), if it is indecomposable and if

$$P_i\left(\left\{ a : \sum_{j \in J} a_j = 1 \right\}\right) = 1$$

for each $i \in J$.

It follows again from (3) that

(8) J is final with respect to \mathcal{P} if and only if it is final with respect to $\mathcal{P}^{(J)}$.
We shall call
\[P_i = \lim_{t \to \infty} P_i(t, 0) = \lim_{t \to \infty} F_i(t, 0) \quad (i = 1, \ldots, n) \]
the *degeneration probabilities of* \(\mathcal{P} \) and \(p = (p_1, \ldots, p_n) \) the *degeneration-probability vector* of \(\mathcal{P} \). We shall call \(\mathcal{P} \) *degenerate* if \(p = \bar{1} \). It is well known that
\[F(p) = p \]
and that
\[\text{(10)} \quad \text{P is degenerate if and only if } \bar{1} \text{ is the only solution} \]
in \([0, 1]^n\) of the system \(F(x) = x \).

In the proof of the main theorem we shall need two lemmas.

Lemma A. — If \(J \subset I, K \subset I, J \cap K = \emptyset, J \cup K = I, J \text{ closed in } I \) and if both \(\mathcal{P}^{(J)} \) and \(\mathcal{P}^{(K)} \) are degenerate, then \(\mathcal{P} \) is degenerate.

Proof. — Let \(p = (p_1, \ldots, p_n) \) be the degeneration-probability vector of \(\mathcal{P} \). Since \(J \) is closed in \(I \), \(F_i(x) \) with \(i \in J \) does not depend on \(x_j \) with \(j \in K \) and, consequently
\[F_i(p, x) = F_i(p^{(J)}, \bar{1}^{(K)}) = F_i(p) = p_i \]
for all \(i \in J \) by (9). From (10), (11) and the assumption that \(\mathcal{P}^{(J)} \) is degenerate it follows that
\[p_i = 1 \quad \text{for } i \in J \]
Then
\[F_i(p^{(K)}) = F_i(\bar{1}^{(J)}, p^{(K)}) = F_i(p) = p_i \quad \text{for all } i \in K \]
and again
\[p_i = 1 \quad \text{for } i \in K. \]
Hence \(p = \bar{1} \).

Lemma B. — If, for \(J \subset I, \mathcal{P}^{(J)} \) is not degenerate, then \(\mathcal{P} \) is not degenerate.

Proof. — Let us write \(K = I - J \). For each \(x = (x_1, \ldots, x_n) \) and each \(i \in J \) we have
\[F_i^{(J)}(x^{(J)}) = F_i(x^{(J)}, \bar{1}^{(K)}) \geq F_i(x). \]
By (1)
\[F_i^{(J)}(2, x^{(J)}) = F_i^{(J)}(F^{(J)}(x^{(J)})) \geq F_i^{(J)}((F(x))^{(J)}) \]
\[\geq F_i(F(x)) = F_i(2, x) \quad \text{for each } i \in J. \]
Generally
\[\text{(12)} \quad F_i^{(J)}(t, x^{(J)}) \geq F_i(t, x) \quad \text{for each } i \in J \text{ and } t, \]
and denoting by p_i the degeneration probabilities of \mathcal{P} and by $q_i (i \in J)$ the degeneration probabilities of $\mathcal{P}^{(i)}$, we have by (12)

(13) \[q_i \geq p_i \quad \text{for all} \quad i \in J. \]

According to the assumption, $q_i < 1$ for at least one $i \in J$, and then $p_i < 1$ by (13). Hence, \mathcal{P} is not degenerate.

Theorem (Sevastyanov). \mathcal{P} is degenerate if and only if (a) $R \leq 1$ and (b) there are no final index sets.

Proof. — Let us suppose that the conditions (a) and (b) are satisfied.

(i) We shall first assume that the moment matrix M is indecomposable. Let $p = (p_1, \ldots, p_n)$ be the degeneration-probability vector and let J be the set of all indices i for which $p_i < 1$. Let us suppose that J is non-empty.

Then for each $i \in I$

(14) \[F_i(p) = 1 + \sum_{j \in J} M_{ij}(p_j - 1) + \frac{1}{2} \sum_{j,k \in J} \frac{\partial^2}{\partial x_j \partial x_k} F_i(q)(p_j - 1)(p_k - 1) \]

where $q = (q_1, \ldots, q_n)$ is a vector such that

(15) \[p_i < q_i < 1 \quad \text{for} \quad i \in J \]

\[q_i = 1 \quad \text{for} \quad i \notin J. \]

By (9) and (14) we have for each $i \in I$

(16) \[\sum_{j=1}^{n} M_{ij}(1 - p_j) = \sum_{j \in J} M_{ij}(1 - p_j) = 1 - p_j + \frac{1}{2} \sum_{j,k \in J} \frac{\partial^2}{\partial x_j \partial x_k} F_i(q)(1 - p_j)(1 - p_k) \geq 1 - p_j \geq R(1 - p_j). \]

Hence, $M(\bar{I} - p) \geq R(\bar{I} - p)$ and since J supposed to be non-empty, $\bar{I} - p$ is an eigen-vector belonging to R, according to a well-known theorem on non-negative matrices. But then

(17) \[M(\bar{I} - p) = R(\bar{I} - p) \]

and since M is indecomposable, $1 - p_i > 0$ for all $i \in I$, i. e. $J = I$. It follows now from (16) and (17) that $R = 1$ and

(18) \[\frac{\partial^2}{\partial x_j \partial x_k} F_i(q) = 0 \quad \text{for all} \quad i, j, k \in I. \]
By (15), \(q_i > 0 \) for all \(i \in J = I \), and since \(F_i \) is a power series with non-negative coefficients \(P_i(a) \), it follows from (18), that

\[
P_i \left(\left\{ a : \sum_{j=1}^{n} a_j \geq 2 \right\} \right) = 0 \quad \text{for all} \quad i \in I,
\]

Hence, \(M_{ij} = P_i(e_j) \) for all \(i, j \in I \), and since

\[
\sum_{j=1}^{n} P_i(e_j) \leq 1,
\]

\(M \) is a sub-stochastic matrix. On the other hand, we have proved that \(R = 1 \), which implies that \(M \) is a stochastic matrix, i.e.

\[
\sum_{j=1}^{n} P_i(e_j) = \sum_{j=1}^{n} M_{ij} = 1.
\]

It follows that \(I \) is a final set of indices and this is a contradiction to the condition (b). We came to this contradiction on the basis of the assumption that \(J \) is non-empty. Hence, \(J \) must be empty, i.e. \(p = 1 \).

(ii) We shall suppose again that conditions (a) and (b) hold, but \(M \) will now be an arbitrary moment matrix. It is well-known that there exists index sets \(I_l \subset I \) (\(l = 1, 2, \ldots, k \)) such that \(I_l \) are disjoint,

\[
\bigcup_{l=1}^{k} I_l = I,
\]

\(M^{(l)} \) are indecomposable and

\[
M_{ij} = 0 \quad \text{for} \quad i \in I_l, \quad j \in I_{l+1} \cup \ldots \cup I_k \quad (l = 1, 2, \ldots, k - 1).
\]

We shall write \(J_l = I_1 \cup \ldots \cup I_l \). By (6) and (7), \(I_l \) is indecomposable with respect to \(\mathcal{P}^{(l)} \), and it is well known that \(R^{(l)} \supseteq R \). Hence, by (4), (8) and part (i) of this proof, each \(\mathcal{P}^{(l)} \) is degenerate. In particular, \(\mathcal{P}^{(1)} \) is degenerate. Let us suppose that we have already proved that \(\mathcal{P}^{(l)} \) is degenerate. It follows from (20) and (5) that \(J_l \) is closed in \(J_{l+1} \) with respect to \(\mathcal{P}^{(l+1)} \) and hence \(\mathcal{P}^{(l+1)} \) is degenerate according to Lemma A. By induction, \(\mathcal{P}^{(k)} = \mathcal{P} \) is degenerate.

We shall prove that conditions (a) and (b) are necessary

(iii) Let us suppose that there exists a final index set \(J \subset I \). According to the definition of a final set,

\[
F^{(l)}(\emptyset) = P^{(l)}(\emptyset) = 0 \quad \text{for all} \quad i \in J.
\]
Then \(F_i^{(0)}(2, 0) = F_i^{(0)}(F_j(0)) = F_i^{(0)}(0) = 0 \) and, generally, \(F_i^{(0)}(t, 0) = 0 \) for all \(i \in J \) and all \(t \). Hence, the process \(\mathcal{P}^{(0)} \) is not degenerate and according to Lemma B, \(\mathcal{P} \) is also not degenerate.

(iv) Let us suppose that \(R > 1 \). It is well-known from the spectral theory of non-negative matrices that there exists \(j \in I \) and \(s \) such that \(M_{jj}(s) > 1 \). Let \(\mathcal{P} \) be a new branching process with the index set \(I \), generated by basic generating functions \(F_j(x) = F_j(s, x) \). According to (1), the general generating functions of \(\mathcal{P} \) are \(F_i(t, x) = F_i(st, x) \) and, consequently,

\[
(i) \lim_{t \to \infty} F_i(t, 0) = \lim_{t \to \infty} F_i(st, 0) = \lim_{t \to \infty} F_i(t, 0), \quad i \in I.
\]

Let us write \(J = \{ j \} \). Then \(\mathcal{P}^{(1)} \) is a one-dimensional subprocess of \(\mathcal{P} \) with the first moment \(M_{jj}(s) > 1 \) and according to a well-known theorem on one-dimensional branching processes, \(\mathcal{P}^{(1)} \) is not degenerate. By Lemma B, \(\mathcal{P} \) is also not degenerate. But, according to (21), \(\mathcal{P} \) and \(\mathcal{P} \) have the same degeneration-probability vector and, consequently, \(\mathcal{P} \) is not degenerate.

REFERENCES

(Manuscrit reçu le 17 mars 1969).
