JON AARONSON

Ergodic theory for inner functions of the upper half plane

<http://www.numdam.org/item?id=AIHPB_1978__14_3_233_0>
Ergodic theory for inner functions
of the upper half plane

by

Jon AARONSON

ABSTRACT. — The real restriction of an inner function of the upper half plane leaves Lebesgue measure quasi-invariant. It may have a finite or infinite invariant measure. We give conditions for the rational ergodicity and exactness of such restrictions.

§ 0. INTRODUCTION

In this paper, we consider the ergodic properties of the real restrictions of inner functions on the open upper half plane:

\[\mathbb{R}^2^+ = \{ x + iy : x, y \in \mathbb{R}, y > 0 \}. \]

Let \(f : \mathbb{R}^2^+ \to \mathbb{R}^2^+ \) be an analytic function. We say that \(f \) is an inner function on \(\mathbb{R}^2^+ \) if for \(\lambda \)-a. e. \(x \in \mathbb{R} \) the limit \(\lim_{y \to 0} f(x + iy) \) exists, and is real. (Here, and throughout the paper, \(\lambda \) denotes Lebesgue measure on \(\mathbb{R} \).) Consider the limit \(\lim_{y \to 0} f(x + iy) = T(x) \). This is defined \(\lambda \)-a. e. on \(\mathbb{R} \). We call this limit the (real) restriction of \(f \), and will sometimes write this as \(T = T(f) \).
We will denote the class of inner functions on \mathbb{R}^2^+ by $I(\mathbb{R}^2^+) = I$, and their real restrictions by $M(\mathbb{R})$. We note that $f \in I(\mathbb{R}^2^+)$ iff $\emptyset^{-1} f \emptyset(z)$ is an inner function of the unit disc, according to the definition on p. 370 of [9] \\
\left(\text{where } \emptyset(z) = i \left(\frac{1 + z}{1 - z} \right) \right).

The following characterisation of $I(\mathbb{R}^2^+)$ appears in [6] and [17].

$f \in I(\mathbb{R}^2^+)$ iff

\begin{equation}
(0.1) \quad f(\omega) = \alpha \omega + \beta + \int_{-\infty}^{\infty} \frac{1 + t \omega}{t - \omega} d\mu(t)
\end{equation}

where $\alpha \geq 0$, $\beta \in \mathbb{R}$ and μ is a bounded, positive Borel measure, singular w. r. t. λ. Since we shall be refering to (0.1) rather a lot, we shall denote the class of bounded, positive, singular measures on \mathbb{R} by $S(\mathbb{R})$.

G. Letac ([6]) has shown that a measurable transformation T of \mathbb{R} preserves the class of Cauchy distributions iff either $T \in M(\mathbb{R})$ or $-T \in M(\mathbb{R})$. In particular, if $dP_{a+ib}(x) = \frac{b}{\pi (x-a)^2 + b^2} dx$ for $a + ib \in \mathbb{R}^2^+$ and $T = T(f) \in M(\mathbb{R})$, then :

\begin{equation}
(0.2) \quad P_{\omega} \circ T^{-1} = P_{f(\omega)} \quad \text{for} \quad \omega \in \mathbb{R}^2^+
\end{equation}

This equation shows that $M(\mathbb{R})$ is a class of non-singular transformations of the measure space $(\mathbb{R}, \mathcal{B}, \lambda)$, and is therefore an object of ergodic theory.

Let $f \in I(\mathbb{R}^2^+)$ have a fixed point $\omega_0 \in \mathbb{R}^2^+$. By (0.2), $T(f)$ preserves the Cauchy distribution P_{ω_0}. It was shown in [16], that if f is $1 - 1$, then $T(f)$ is conjugate to a rotation of the circle, and shown in [15] that otherwise, $T(f)$ is mixing. We show in § 1 that if f is not $1 - 1$ then $T(f)$ is exact.

In § 2 we recall some well known facts about inner functions of \mathbb{R}^2^+. The Denjoy-Wolff theorem (see [13], [14] and [18]) adapted to \mathbb{R}^2^+ shows that when studying the ergodic properties of $T(f)$, for $f \in I(\mathbb{R}^2^+)$ with no fixed points in \mathbb{R}^2^+, we may assume that $\alpha(f) \geq 1$. In case $\alpha(f) > 1$, $T(f)$ is dissipative, and when $\alpha(f) = 1$, $T(f)$ preserves Lebesgue measure.

In § 3, we consider the case $\alpha(f) = 1$. Here, the conservativity of a restriction $T(f)$ is sufficient for its rational ergodicity ([1]) (ergodicity was established in [15]). We also give sufficient conditions for exactness, and discuss the similarity classes ([1]) of restrictions.

The ergodic theory of certain restrictions has been considered in [2], [5], [7], [10], [11], [15] and [16].

The author would like to thank B. Weiss for helpful conversations, and G. Letac, J. Neuighthouse and F. Schweiger for making preprints of their works available.
§ 1. MIXING RESTRICTIONS
PRESERVING FINITE MEASURES

The purpose of this section is to prove

THEOREM 1.1. — Let \(f \in I(\mathbb{R}^2^+) \) and assume that \(f \) is not \(1 - 1 \). If \(f \) has a fixed point \(\omega_0 \in \mathbb{R}^2^+ \), then \((\mathbb{R}, \mathcal{B}, P_{\omega_0}, T(f))\) is an exact measure preserving transformation.

i.e. \(\bigcap_{n \geq 1} T^{-n} \mathcal{B} = \{ \phi, \mathbb{R} \} \mod \lambda \).

Before proving theorem 1.1, we shall need some auxiliary results. The first of these is Lin's criterion for exactness of Markov operators (theorem 4.4 in [8]) as applied to our case. To state this, we shall need some extra notation:

Let \(T \in M(\mathbb{R}) \), then \((\mathbb{R}, \mathcal{B}, \lambda, T)\) is a non-singular transformation, and so \(g \in L^\infty(\mathbb{R}, \mathcal{B}, \lambda) \) iff \(g \circ T \in L^\infty(\mathbb{R}, \mathcal{B}, \lambda) \). We define the dual operator of \(T, \hat{T} : L^1(\mathbb{R}, \mathcal{B}, \lambda) \to L^1(\mathbb{R}, \mathcal{B}, \lambda) \) by

\[
\int_{\mathbb{R}} \hat{T}h. g d\lambda = \int_{\mathbb{R}} h. g \circ T d\lambda \quad \text{for} \quad h \in L^1 \quad \text{and} \quad g \in L^\infty
\]

If we write, for \(\omega = a + ib \in \mathbb{R}^2^+ \)

\[
\frac{dP_{\omega}}{d\lambda}(x) = \phi_{\omega}(x) = \frac{b}{\pi} \cdot \frac{1}{(x - a)^2 + b^2}
\]

then equation (0.2) translates to:

(1.1) \(\hat{T}\phi_{\omega} = \phi_{f(\omega)} \) for \(T = T(f) \in M(\mathbb{R}) \)

Clearly, \(\hat{T} \) is a positive linear operator, \(\int_{\mathbb{R}} \hat{T}h d\lambda = \int_{\mathbb{R}} h d\lambda \) for \(h \in L^1 \).

Lin's Criterion (for restrictions). — Let \(T = T(f) \in M(\mathbb{R}) \).
\(T \) is exact iff

(1.2) \(\| \hat{T}^n u \|_1 \to 0 \) for every \(u \in L^1 \), \(\int_{\mathbb{R}} u d\lambda = 0 \). Here, and throughout, \(\| u \|_1 = \int_{\mathbb{R}} |u| d\lambda \).

We shall also need the following (elementary) lemma.

Vol. XIV, n° 3 - 1978.
LEMMA 1.2. — If \(\omega_n \in \mathbb{R}^{2+} \) and \(\omega_n \to \omega \in \mathbb{R}^{2+} \) then:

\[
\| \phi_{\omega_n} - \phi_\omega \|_1 \to 0
\]

Proof of theorem 1.1. — We first show that \(f^n(\omega) \to \omega_0 \ \forall \omega \in \mathbb{R}^{2+} \), where \(f^1(\omega) = f(\omega) \) and \(f^{n+1}(\omega) = f(f^n(\omega)) \).

Let \(\phi : U = \{ |Z| < 1 \} \to \mathbb{R}^{2+} \) be a conformal map. Then \(g = \phi^{-1} f \phi : U \to U \) is analytic, and \(g(\phi(\omega_0)) = \phi(\omega_0) \). By the Schwartz lemma ([9]):

\[
|g'(\phi(\omega_0))| < 1 \quad \text{as} \quad g \text{ is not 1 - 1.}
\]

It is now not hard to see that

\[
g^n(Z) \to \phi(\omega_0) \quad \forall z \in U,
\]

and hence that \(f^n(\omega) \to \omega_0 \ \forall \omega \in \mathbb{R}^{2+} \).

Hence, by lemma 1.2

\[
\| \hat{T}^n \phi_{\omega_0} - \phi_{\omega_0} \|_1 = \| f^{n(\omega)} - \phi_{\omega_0} \|_1 \to 0 \quad \text{for} \quad \omega \in \mathbb{R}^{2+}.
\]

We will now establish that

\[
\| \hat{T}^n u \|_1 \to 0 \quad \text{for} \quad u \in L^1
\]

with \(\int u d\lambda = 0 \) which, by Lin's criterion, will ensure the exactness of \(T \).

Let \(u \in L^1 \) with \(\int u d\lambda = 0 \) and let \(\varepsilon > 0 \). By Wiener's Tauberian theorem (see [12], p. 357), there exist \(\alpha_1 \ldots \alpha_N, a_1 \ldots a_N \in \mathbb{Q} \) such that

\[
\| u - \sum_{j=1}^{N} \alpha_j \phi_{a_j+i} \|_1 < \varepsilon/2
\]

Clearly, this implies that \(\sum_{j=1}^{N} \alpha_j < \varepsilon/2 \) and so:

\[
\| \hat{T}^n u \|_1 \leq \| \hat{T}^n \left(u - \sum_{j=1}^{N} \alpha_j \phi_{a_j+i} \right) \|_1
\]

\[
+ \| \hat{T}^n \left(\sum_{j=1}^{N} \alpha_j (\phi_{a_j+i} - \phi_{\omega_0}) \right) \|_1 + \| \sum_{j=1}^{N} \alpha_j \phi_{\omega_0} \|_1 \leq \| u - \sum_{j=1}^{N} \alpha_j \phi_{a_j+i} \|_1
\]

\[
+ \sum_{j=1}^{N} |\alpha_j| \| \hat{T}^n \phi_{a_j+i} - \phi_{\omega_0} \|_1 + \sum_{j=1}^{N} |\alpha_j| < \varepsilon + o(1) \quad \text{as} \quad k \to \infty \quad \square
\]

Since \(\varepsilon > 0 \) was arbitrary:

\[
\| \hat{T}^n u \|_1 \to 0. \quad \square
\]
§ 2. BASIC CLASSIFICATION

PROPOSITION 2.1. [17]. — Let \(f \in I(\mathbb{R}^2^+) \). Then

\[
\frac{f(ib)}{ib} \rightarrow \begin{cases}
\alpha(f) = x \in [0, \infty) & \text{as } b \rightarrow \infty \text{ (as in 0.1)} \\
\gamma(f) \in [x, \infty] & \text{as } b \downarrow 0.
\end{cases}
\]

Moreover

\[\alpha = \gamma \quad \text{iff} \quad f(\omega) = \alpha \omega \]

Proof. — From the representation 0.1, we immediately calculate that:

\begin{equation}
(2.1) \quad \frac{f(ib)}{ib} = \alpha + \frac{\beta}{ib} + \frac{1 - b^2}{ib} \int_{-\infty}^{\infty} \frac{t d\mu(t)}{t^2 + b^2} + \int_{-\infty}^{\infty} \frac{1 + t^2}{t^2 + b^2} d\mu(t)
\end{equation}

It follows from elementary integration theory that

\[\frac{f(ib)}{ib} \rightarrow \alpha = \alpha(f) \quad \text{as } b \rightarrow \infty. \]

To check the limit as \(b \rightarrow 0 \), we « flip » \(f \) to get:

\[\tilde{f}(\omega) = -1/f(-1/\omega) \]

Since \(\tilde{f} \in I(\mathbb{R}^2^+) \), we have that

\[\frac{\tilde{f}(ib)}{ib} \rightarrow \alpha(\tilde{f}) \in [0, \infty) \quad \text{as } b \rightarrow \infty \]

but this decodes to:

\[\frac{f(ib)}{ib} \rightarrow \gamma(f) = \frac{1}{\alpha(f)} \in (0, \infty] \quad \text{as } b \downarrow 0. \]

Now, if \(\gamma(f) < \infty \) then, by 2.1:

\[\gamma(f) = \alpha + \int_{-\infty}^{\infty} \frac{1 + t^2}{t^2} d\mu(t) \]

Hence \(\gamma(f) \geq \alpha(f) \) with equality iff \(\mu \equiv 0. \)

PROPOSITION 2.2. — Let \(f \in I(\mathbb{R}^2^+) \) and \(T = T(f) \). If \(\alpha(f) > 1 \) then \(T \) is dissipative.

Proof. — Write \(f^\ast(\omega) = u_\ast(\omega) + iv_\ast(\omega) \).

Vol. XIV, n° 3 - 1978.
From the representation (0.1), we have:

\[v_{n+1}(\omega) = \alpha v_n(\omega) + v_n(\omega) \int_{-\infty}^{\infty} \frac{(1 + t^2)d\mu(t)}{(t - u_n)^2 + v_n^2} \geq \alpha v_n \]

Hence \(v_n(\omega) \geq \alpha^n \) for \(n \geq 1 \), and

Clearly

\[\hat{T}^n \phi_i(t) = \frac{v_n(i)}{\pi((t - \mu)^2 + \sigma^2)} \leq \frac{1}{\pi \alpha^n} \]

and so

\[\sum_{n=1}^{\infty} \hat{T}^n \phi_i(t) \leq \frac{1}{(\alpha - 1)} \quad \forall t \in \mathbb{R} \]

PROPOSITION 2.3 (Letac [6]). — Let \(f \in I(\mathbb{R}^2^+), T = T(f) \).

If \(\alpha(f) = 1 \) then \(\lambda \circ T^{-1} = \lambda \).

Proof. — Let \(f(ib) = u(b) + iv(b) \) we have:

\[\frac{u(b)}{b} \to 0 \quad \text{and} \quad \frac{v(b)}{b} \to 1 \quad \text{as} \quad b \to \infty . \]

Hence, for \(A \in \mathcal{B} \):

\[\pi b P_{ib}(A) \to \lambda(A) \]

and

\[\pi b P_{fib}(A) \to \lambda(A) \quad \text{as} \quad b \to \infty . \]

Since \(P_{ib}(T^{-1}A) = P_{f_ib}(A) \), we have that

\[\lambda(T^{-1}A) = \lambda(A) \quad \text{for} \quad A \in \mathcal{B} \]

The next result is the Denjoy-Wolff theorem stated on \(\mathbb{R}^2^+ \), which shows that if \(f \in I(\mathbb{R}^2^+) \) has no fixed point in \(\mathbb{R}^2^+ \), then \(\exists \tilde{f} \in I(\mathbb{R}^2^+) \) with \(\alpha(\tilde{f}) \geq 1 \), and such that (\(\mathbb{R}, \mathcal{B}, \lambda, T(f) \)) and (\(\mathbb{R}, \mathcal{B}, \lambda, T(\tilde{f}) \)) are conjugate, (and therefore have the same ergodic properties).

THEOREM 2.4. — Let \(f \in I(\mathbb{R}^2^+) \) have no fixed points in \(\mathbb{R}^2^+ \), and assume that \(\alpha(f) < 1 \); then

\[\exists ! \ t \in \mathbb{R} \quad \text{such that} \quad \alpha(f, T^{-1}) \geq 1 \]
where
\[\phi_\omega = \frac{1 + t\omega}{t - \omega}. \]
(Note that \(\alpha(\phi_\omega^{-1}f_\phi) = 1/\gamma(f) \)).

Proof. — Let \(\phi(z) = i \frac{1 + z}{1 - z} \). Then \(g = \phi^{-1}f: U \to U \) is analytic, and has no fixed points in \(U \). The Denjoy-Wolff theorem on \(U \) (see [13] or [14]) shows that \(\exists ! \rho \in T \) such that
\[(*) \quad \Re \left(\frac{\rho + g(Z)}{\rho - g(Z)} \right) \geq \Re \left(\frac{\rho + Z}{\rho - Z} \right) \quad \forall Z \in U \]

Now let \(t = \phi(\rho), \psi = i \frac{\rho + Z}{\rho - Z} \) and \(\tilde{f} = \psi g^{-1} \in I(\mathbb{R}^2) \). It follows that \(\phi\psi^{-1} = \phi_t^{-1} \) and hence that \(\tilde{f} = \phi_t f \phi_t^{-1} \). Also, \((*)\) means that \(\Im g(Z) \geq \Im \psi(Z) \) for \(Z \in U \), and hence \(\Im \tilde{f}(\omega) \geq \Im \omega \) for \(\omega \in \mathbb{R}^2 \), which implies \(\alpha(\tilde{f}) \geq 1 \). \(\square \)

If \(\alpha(\phi_t f \phi_t^{-1}) > 1 \) for some \(t \), then by proposition 2.2, \(T(f) \) is dissipative. If \(\alpha(\phi_t f \phi_t^{-1}) = 1 \), then, by proposition 2.3, \(T(\phi_t f \phi_t^{-1}) = \phi_t T(f) \phi_t^{-1} \) preserves Lebesgue measure. Hence \(T(f) \) preserves the measure \(\nu_t \), where \(d\nu_t(x) = dx/(x - t)^2 \). The rest of this section is devoted to odd restrictions.

(We say that a restriction \(T \) is **odd** if \(T(-x) = -T(x) \)).

Lemma 2.5. — Let \(f \in I(\mathbb{R}^2) \) and let \(T = T(f) \). The following are equivalent:

- i) \(T \) is odd
- ii) \(\Re f(ib) = 0 \) for \(b > 0 \)
- iii) \(f(-\bar{\omega}) = -\tilde{f}(\omega) \) for \(\omega \in \mathbb{R}^2 \)
- iv) \(f(\omega) = \alpha\omega + \int_{-\infty}^{\infty} \frac{1 + t\omega}{t - \omega} d\mu(t) \)

where \(\mu \in S(\mathbb{R}) \) is symmetric

Proof. — The implications \(iv \Rightarrow iii \Rightarrow i \) and \(iii \Rightarrow ii \) are elementary. That \(ii \Rightarrow iii \) is because of the Schwartz reflection principle (see [9]). The fact that for \(t \geq 0 \):
\[e^{\mu f(\omega)} = \int_{-\infty}^{\infty} e^{\mu T(x)} \phi_\omega(x) dx \]
gives the implication \(i \Rightarrow iii \).

Vol. XIV, n° 3 - 1978.
We show that \(\text{iii)} \Rightarrow \text{iv)}. \) Assume \(\text{iii)}. \) It is evident that \(\beta = 0 \) in the representation 0.1, so we have

\[
f(\omega) = \alpha \omega + \int_{-\infty}^{\infty} \frac{1 + t\omega}{t - \omega} d\mu(t) \quad \text{where} \quad \alpha \geq 0 \quad \text{and} \quad \mu \in \mathcal{S}(\mathbb{R}).
\]

We must show that \(\mu \) is symmetric. To see this, we first rewrite the equation \(\nu(-a + ib) = \nu(a + ib) \) (implied by \(\text{iii)} \)) as:

\[(2.2) \quad \int_{-\infty}^{\infty} \phi_{b}(t - a)(1 + t^2)d\mu(t) = \int_{-\infty}^{\infty} \phi_{b}(t + a)(1 + t^2)d\mu(t) \]

Next, we take \(g(t) \) a continuous function of compact support and let \(g_{b}(t) = \phi_{ib} \ast g \) for \(b > 0 \). It follows from (2.2) that

\[
\int_{-\infty}^{\infty} g_{b}(-t)(1 + t^2)d\mu(t) = \int_{-\infty}^{\infty} g_{b}(t)(1 + t^2)d\mu(t).
\]

The symmetry of \(\mu \) is established by the (elementary) facts that

\[
g_{b}(t) \to g(t) \quad \text{as} \quad b \to 0
\]

\[
\sup_{t \in \mathbb{R}} (1 + t^2)|g_{b}(t)| < \infty \quad \square
\]

We denote the collection of those inner functions on \(\mathbb{R}^{2+} \) satisfying the conditions of the above lemma by \(\mathcal{I}_{0}(\mathbb{R}^{2+}) \), and remark that \(f \in \mathcal{I}_{0}(\mathbb{R}^{2+}) \) iff \(\Theta^{-1}f\Theta \) is an essentially real inner function of \(\mathcal{U} \). (Here \(\Theta(z) = i \left(\frac{1 + z}{1 - z} \right) \).

Theorem 2.6. — Let \(f \in \mathcal{I}_{0}(\mathbb{R}^{2+}) \) and \(T = T(f) \).

If \(\alpha(f) < 1 < \gamma(f) \) then \(T \) preserves a Cauchy distribution. Moreover, if \(\omega f(\omega) \) is not constant, then \(T \) is exact.

Proof. — If \(f \in \mathcal{I}_{0}(\mathbb{R}^{2+}) \) then it follows from the lemma

\[
\gamma(f) = \alpha(f) + \int_{-\infty}^{\infty} \frac{1 + t^2}{t^2} d\mu(t).
\]

Now since \(\alpha(f) < 1 < \gamma(f) \), we have that

\[
\int_{-\infty}^{\infty} \frac{1 + t^2}{t^2} d\mu(t) > 1 - \alpha > 0.
\]
But \(\int_{0}^{\infty} \frac{1 + t^2}{t^2 + b^2} \, d\mu(t) \downarrow 0 \) as \(b \to \infty \) so there is a \(b_0 > 0 \) such that
\[
\int_{0}^{\infty} \frac{1 + t^2}{t^2 + b^2} \, d\mu(t) = 1 - \alpha, \quad \text{i.e.} \quad f(b_0) = ib_0, \quad \text{hence} \quad P_{ib_0} \circ T^{-1} = P_{ib_0}.
\]

The result now follows from theorem 1.1. \(\square \)

To illustrate the results of this section, we consider \(T x = \alpha x + \beta \tan x \) where \(\alpha, \beta > 0 \). Here, \(\alpha(T) = \alpha \), and \(\gamma(T) = \alpha + \beta \).

If either \(\alpha > 1 \), or \(\alpha + \beta < 1 \), \(T \) is dissipative.

If \(\alpha < 1 < \alpha + \beta \), then \(T \) preserves a Cauchy distribution and is exact.
(This was established in [5] for \(\alpha = 0, \beta > 1 \)).

The remaining cases (\(\alpha = 1 \) and \(\alpha + \beta = 1 \)) are contained in the discussion of:

§ 3. RESTRICTIONS PRESERVING INFINITE MEASURES

In this section, we consider those restrictions preserving infinite measures with \(\alpha = 1 \), or \(\alpha(\phi, f \phi^{-1}) = 1 \) for some \(t \).

We will see that for these transformations, conservativity is sufficient for ergodicity and rational ergodicity ([I]), a stronger property (example 1.2 in [I]). We then give sufficient conditions for exactness.

Firstly, we recall the definition of rational ergodicity. Let \((X, \mathcal{B}, m, \tau) \) be a conservative, ergodic, measure preserving transformation of a non-atomic, \(\sigma \)-finite measure space. We say that \(\tau \) is rationally ergodic if there is a set \(A \), of positive finite measure and \(K < \infty \) such that

\[
\int_A \left(\sum_{k=0}^{n-1} 1_A \circ \tau^k \right)^2 \, dm \leq K \left(\sum_{k=0}^{n-1} m(A \cap \tau^{-k}A) \right)^2 \quad \text{for} \quad n \geq 1
\]

For a rationally ergodic transformation \(\tau \), we let \(B(\tau) \) denote the collection of sets with the property (B). It was shown in [I] that there is a sequence \(\{ a_n(\tau) \} \) such that

\[
\frac{1}{a_n(\tau)} \sum_{k=0}^{n-1} m(A \cap \tau^{-k}A) \to m(A)^2 \quad \text{for every} \quad A \in B(\tau)
\]

The sequence \(\{ a_n(\tau) \} \) is known as a return sequence for \(\tau \) and the collection of all sequences asymptotically proportional to \(a_n(\tau) \)

\[
\left(\text{i.e. } \frac{a_n}{a_n(\tau)} \to c \in (0, \infty) \right)
\]
is known as the asymptotic type of \(\tau \) and denoted by \(\mathcal{A}(\tau) \). It was shown in [7] (theorem 2.4) that if \(\tau_1 \) and \(\tau_2 \) are rationally ergodic transformations which are both factors of the same measure preserving transformation, then

\[
\mathcal{A}(\tau_1) = \mathcal{A}(\tau_2) \quad \text{(i.e. } \exists \lim_{n \to \infty} \frac{a_n(\tau_1)}{a_n(\tau_2)} \in (0, \infty) \).
\]

We commence with the case \(\alpha(f) = 1 \).

Lemma 3.1. — Let \(f \in \text{I}(\mathbb{R}^2^+) \) be non-linear and let \(T = T(f) \),

\[
f^n(\omega) = u_n(\omega) + iv_n(\omega) \quad \text{for } n \geq 1 \ \omega \in \mathbb{R}^2^+.
\]

If \(\alpha = 1 \) then \(T \) is conservative

\[
\text{iff } \sum_{n=1}^{\infty} \frac{v_n(\omega)}{|f^n(\omega)|^2} = \infty \quad \forall \omega \in \mathbb{R}^2^+.
\]

Proof. — It will be more comfortable to work on the unit disc \(U \). Accordingly, we let \(M(z) = \theta^{-1}f(\theta(z)) \) where \(\theta(z) = i\left(\frac{1+z}{1-z}\right) \). Then \(M \) is an inner function on \(U \). Let \(M(re^{i\theta}) \to r e^{i\theta} \) as \(r \to 1 \) a.e. Denoting \(\text{Im} \left(\frac{e^{i\theta} + z}{e^{i\theta} - z}\right) \) by \(q_z(\theta) \) and \(q_z(\theta) d\theta \) by \(d\pi_z(\theta) \), we see that \(\pi_z \circ \theta^{-1} = \pi_0 P_{\theta(z)} \) and this combined with the fact that \(\theta^{-1}T\theta = \tau \) gives us that:

\[
\pi_z \circ \tau^{-1} = \pi_{M(z)}.
\]

So \(\tau \) is a non-singular transformation of \((T, \lambda) \), and is conservative iff \(T \) is conservative.

Let \(\hat{\tau} \) be the operator dual to \(\tau \), acting on \(L^1 \). Then \(\hat{\tau} q_z(t) = q_{M(z)}(t) \) and \(\tau \) is conservative iff

\[
\sum_{n=1}^{\infty} q_{M^n(z)}(t) = \infty \quad \text{a.e. } \forall z \in U.
\]

We next show that \(M^n(z) \to 1 \) as \(n \to \infty \) \(\forall z \in U \). This will follow from the fact that \(f^n(\omega) \to \infty \) as \(n \to \infty \) \(\forall \omega \in \mathbb{R}^2^+ \) which we now demonstrate. From 0.1:

\[
v_{n+1}(\omega) = v_n(\omega) + v_n(\omega) \int_{U_n} (1 + t^2) d\mu(t) \geq v_n(\omega).
\]
Hence \(v_n \uparrow v_\infty \). It is not hard to see that if \(v_\infty < \infty \), we must have \(|U_n| \to \infty \). Hence \(M^n(z) \to 1 \).

Now choose \(z \in U \) and let \(M^n(z) = r_n e^{i\theta_n} \). We have \(r_n \to 1 \) and \(\theta_n \to 0 \).

Also:

\[
q_{M^n(z)}(t) = \frac{1 - r_n^2}{1 - 2r_n \cos(\theta_n - t) + r_n^2} \sim \frac{1 - r_n}{1 - \cos t} \quad \text{as} \quad n \to \infty.
\]

For \(t \neq 0 \). Thus:

\[
(3.2) \quad T \text{ is conservative iff} \quad \sum_{n=1}^{\infty} 1 - |M^n(z)| = \infty \quad \forall z \in U.
\]

The second condition is the same as

\[
\sum_{n=1}^{\infty} 1 - |M^n(z)|^2 = \infty \quad \forall z \in U.
\]

Now if \(\omega = a + ib \in \mathbb{R}^2^+ \), then

\[
1 - \left| \frac{\omega - i}{\omega + i} \right|^2 = \frac{4b}{a^2 + (b + 1)^2}
\]

From the definition of \(M \), we have

\[
1 - \left| M^n \left(\frac{\omega - i}{\omega + i} \right) \right|^2 = \frac{4v_n(\omega)}{U_n(\omega) + (v_n + 1)^2} \sim \frac{4v_n(\omega)}{|f^n(\omega)|^2} \quad \text{as} \quad n \to \infty \quad \square
\]

Theorem 3.2. — Let \(f \in \mathcal{I}(\mathbb{R}^2^+) \) be non-linear, \(T = T(f) \) and \(\alpha(f) = 1 \). If \(T \) is conservative then \(T \) is rationally ergodic, and

\[
\mathcal{A}(T) = \left\{ \sum_{k=1}^{n} \frac{v_k(\omega)}{|f^k(\omega)|^2} \right\} \quad \text{for every} \quad \omega \in \mathbb{R}^2^+.
\]

Proof. — We first prove ergodicity, and here again, it is more comfortable to work on \(U \). We prove the ergodicity of \(\tau \) (as defined in Lemma 3.1). If \(T \) is conservative then by (3.2):

\[
\sum_{n=1}^{\infty} 1 - |M^n(z)| = \infty \quad \forall z \in U.
\]

Since \(M^n(z) \to 1 \), we must have that the points \(\{ M^n(z) \}_{n \geq 1} \) are distinct. Now, let \(h \in N(U) \) (defined on p. 303 of \([9]\)). If \(h(M(z)) = h(z) \) for all \(z \in U \) then by theorem 15-23 of \([9]\), \(h \) must be constant. The ergodicity of \(\tau \) is deduced from this as follows:

Let \(A \subseteq T \) be a \(\tau \)-invariant measurable set and let

\[
v(z) = \int_{\pi}^{\pi} q_{A}(\theta) 1_{A}(\theta) \frac{d\theta}{2\pi}.
\]

Vol. XIV, n° 3 - 1978.
Then \(v(M(z)) = v(z) \), \(\| v \circ M^n \|_\infty \leq 1 \ \forall n \geq 1 \), and \(v(re^{i0}) \to 1_A(\theta) \) a.e. as \(r \to 1 \). Now \(v \) can be regarded as the imaginary part of an analytic function \(F \in H(U) \). By theorem 17-26 of [9] \(F \in H^1(U) \subseteq N(U) \) and \(\| F \circ M^n \|_1 \leq A \ \forall n \geq 1 \).

Moreover: \(F(M(z)) = F(z) + c \) where \(c \in \mathbb{R} \).

Let \(F^*(e^{i\theta}) = \lim_{r \uparrow 1} F(re^{i\theta}) \), then \(F^*(\tau e^{i\theta}) = F^*(e^{i\theta}) + c \). The conservativity of \(\tau \) yields that \(c = 0 \) (since the set \([F^* | \leq M] \) has positive measure for some \(M \), and so every point of this set returns infinitely often to it under iterations of \(\tau \) — an impossibility if \(c \neq 0 \)). Thus, \(F \) is constant and hence also \(1_A(0) \).

We now turn to rational ergodicity. Let

\[
b_n(\omega) = \frac{|f^n(\omega)|^2}{v_n(\omega)}
\]

Since \(f^n(\omega) \to \infty \), it is clear that:

\[
(3.3) \quad \pi b_n(\omega) \hat{T}^n \phi_\omega(t) \to 1
\]

uniformly on compact subsets of \(\mathbb{R} \). Let

\[
a_n(\omega) = \sum_{k=1}^{\infty} \frac{1}{\pi b_k(\omega)}.
\]

From (3.3) we have that

\[
(3.4) \quad \frac{1}{a_n(\omega)} \sum_{k=0}^{n-1} \hat{T}^k \phi_\omega \to 1
\]

uniformly on compact subset of \(\mathbb{R} \).

Now, since \(T \) is a conservative ergodic transformation, it follows that \(\hat{T} \) is a conservative ergodic Markov operator, and we have from (3.4), by the Chacon-Ornstein theorem (see [3]) that:

\[
(3.5) \quad \frac{1}{a_n(\omega)} \sum_{k=0}^{n-1} \hat{T}^k f \to \int \mathbb{R} f \, d\lambda \quad \text{a.e.} \quad \forall f \in L^1.
\]

Hence

\[
\exists a_n \to \infty \text{ s.t.} \quad \frac{a_n(\omega)}{a_n} \to 1 \quad \text{for every} \quad \omega \in \mathbb{R}^2_+.
\]

We will prove rational ergodicity of \(T \) by showing that bounded intervals are in \(B(T) \).

Let \(A = [a, b] \) where \(-\infty < a < b < \infty \).
Then $1_A \leq c \phi_i$
Hence, by (3.4), there is a $C_1 < \infty$ s.t.

\begin{equation}
\frac{1}{a_n} \sum_{k=0}^{n-1} \hat{T}^k 1_A(x) \leq C_1 \quad \text{for} \quad n \geq 1, \, x \in A.
\end{equation}

This, combined with (3.5), gives (by dominated convergence)

\begin{equation}
\frac{1}{a_n} \sum_{k=0}^{n-1} \lambda(A \cap T^{-k}A) \to \lambda(A)^2
\end{equation}

To complete the proof that T is rationally ergodic, we show that:

\begin{equation}
\int_A \left(\sum_{k=0}^{n-1} 1_A \circ T^k \right)^2 d\mu \leq 2C_1 a_n^2 \quad \text{for} \quad n \geq 1.
\end{equation}

\begin{align*}
\int_A \left(\sum_{k=0}^{n-1} 1_A \circ T^k \right)^2 d\mu & \leq 2 \sum_{k=0}^{n-1} \sum_{l=0}^{n-1} \lambda(A \cap T^{-k}(A \cap T^{-l}A)) \\
& = 2 \sum_{l=0}^{n-1} \int_{A \cap T^{-l}A} \sum_{k=0}^{n-1} \hat{T}^k 1_A d\lambda \leq 2C_1 a_n^2 \quad \square
\end{align*}

We now turn to exactness. The following elementary lemma plays a similar role to that of lemma 1.2.

Lemma 3.3. — If $b_n \to \infty$, $B_n \sim b_n$ and

$$\frac{a_n}{b_n} \to 0 \quad \text{as} \quad n \to \infty,$$

then

$$\| \phi_{a_n+ib_n} - \phi_{ib_n} \|_1 \to 0 \quad \text{as} \quad n \to \infty.$$

Theorem 3.4. — Let $f \in \mathcal{I}(\mathbb{R}^2^+)$, $T = T(f)$ and assume

$$f(\omega) = \omega + \int_{-\infty}^{\infty} \frac{d\nu(t)}{t - \omega}$$

then: T is exact, rationally ergodic and $\mathcal{A}(T) = \{ \sqrt{n} \}$.

Proof. — Let $L = \max \{ \nu(\mathbb{R}), \nu(\mathbb{R})^2 \}$ and assume that $K \geq \frac{1}{4}$. We
write \(f^n(\omega) = u_n(\omega) + iv_n(\omega) \). The assumption of the theorem means that

\[
\begin{align*}
\text{(3.9)} & \quad u_{n+1} = u_n + \int_{-K}^{K} \frac{t - u_n}{(t - u_n)^2 + v_n^2} \, dv(t) \\
& \quad v_{n+1} = v_n + v_n \int_{-K}^{K} \frac{dv(t)}{(t - u_n)^2 + v_n^2}
\end{align*}
\]

The first part of the proof of this result consists of deducing the asymptotic behaviour of \(u_n \) and \(v_n \). For this, we assume that \(\omega = a + iL \) where \(a \in \mathbb{R} \). The recurrence relations (3.9) show us that

\[v_n(\omega) \geq L \quad \text{for every} \quad n \geq 1. \]

And this enables us to deduce the boundless of \(|u_n(\omega)| \) as follows:

Noting that:

\[
\left| \int_{-K}^{K} \frac{t - u_n}{(t - u_n)^2 + v_n^2} \, dv(t) \right| \leq \frac{v(\mathbb{R})}{2v_n} \leq \frac{1}{2}
\]

we see that:

If \(u_n \geq K \) then \(-K \leq K - \frac{1}{2} \leq u_{n+1} \leq u_n \).

If \(u_n \leq -K \) then \(u_n \leq u_{n+1} \leq -K + \frac{1}{2} \leq K \).

If \(u_n \leq K \) then

\[
\begin{align*}
& \quad u_{n+1} \leq u_n + (K - u_n) \int_{-K}^{K} \frac{dv}{(t - u_n)^2 + v_n^2} \leq u_n + \frac{(K - u_n)}{v_n^2} v(\mathbb{R}) \leq K \\
& \quad u_{n+1} \leq K \\
& \quad u_{n+1} \leq -K.
\end{align*}
\]

Hence \(|u_n(a + iL)| \leq |a| V^K \) for \(n \geq 1 \).

The recurrence relations (3.9) now imply that \(v_n \to \infty \) as \(n \to \infty \) and hence

\[
\begin{align*}
v_{n+1}^2 - v_n^2 &= 2v_n^2 \int_{-K}^{K} \frac{dv(t)}{(t - u_n)^2 + v_n^2} \\
& \quad + v_n^2 \left(\int_{-K}^{K} \frac{dv(t)}{(t - u_n)^2 + v_n^2} \right)^2 \to 2v(\mathbb{R}) \quad \text{as} \quad n \to \infty
\end{align*}
\]

Hence \(v_n(a + iL) \sim \sqrt{2v_n} \) as \(n \to \infty \).

Lemma 3.3 now shows us that for every \(a \in \mathbb{R} \):

\[
\text{(3.19)} \quad \| \mathcal{T}^n \phi_{a+il} - \phi_{i,\sqrt{2v_n}} \| \to 0 \quad \text{as} \quad n \to \infty.
\]

We now obtain exactness by Lin's criterion by an argument similar
to that of theorem 1.1 (the rational ergodicity of T has already been established, and its asymptotic type characterised, by theorem 3.2).

Let $u \in L^1$, $\int_{\mathbb{R}} u d\lambda = 0$, and $\varepsilon > 0$.

By Wiener's Tauberian theorem, there are $a_1 \ldots a_N$, $a_1 \ldots a_N \in \mathbb{R}$ such that

$$\left\| u - \sum_{k=1}^{N} a_k \phi_{a_k + iL} \right\|_1 < \varepsilon/2$$

Whence:

$$\left\| \hat{T}^n u \right\|_1 \leq \left\| \hat{T}^n \left(u - \sum_{k=1}^{N} a_k \phi_{a_k + iL} \right) \right\|_1$$

$$+ \left\| \hat{T}^n \sum_{k=1}^{N} a_k \phi_{a_k + iL} - \sum_{k=1}^{N} a_k \phi_{i \sqrt{2} n \pi \alpha_k} \right\|_1 + \left\| \sum_{k=1}^{N} a_k \phi_{i \sqrt{2} n \pi \alpha_k} \right\|_1$$

$$\left\| \hat{T}^n u \right\|_1 \leq \left\| u - \sum_{k=1}^{N} a_k \phi_{a_k + iL} \right\|_1$$

$$+ \sum_{k=1}^{N} a_k \left\| \hat{T}^n \phi_{a_k + iL} - \phi_{i \sqrt{2} n \pi \alpha_k} \right\|_1 + \left\| \sum_{k=1}^{N} a_k \phi_{i \sqrt{2} n \pi \alpha_k} \right\|_1 < \varepsilon + o(1) \quad \square$$

We note that the « generalized Boole transformation » (proven ergodic in [7]) falls within the scope of this last theorem.

If we added $\beta \neq 0$ to f in theorem 3.4, we would obtain that for $\text{Im } \omega$ large enough $|u_\omega(\omega)| \geq c_1 n$ and $v_\omega(\omega) \leq c_2 \log n$ (where $f^n(\omega) = u_\omega(\omega) + iv_\omega(\omega)$). The methods of lemma 3.1 would yield that $T(f)$ is dissipative.

The following corollary follows immediately from lemma 3.1 and theorem 3.2.

Corollary 3.5. — Let $f \in L^2(\mathbb{R}^2)$ and let $T = T(f)$, $f^n(i) = iv_n(i)$. If $\alpha(f) = 1$ then:

$$T \text{ is conservative iff } \sum_{n=1}^{\infty} \frac{1}{v_n(i)} = \infty$$

and in this case, T is rationally ergodic with

$$\mathcal{A}(T) = \left\{ \sum_{k=1}^{n} \frac{1}{\pi v_k(i)} \right\}.$$
Moreover, in case $f \in \mathcal{I}_0$ and $\alpha(f) = 1$ we have that $v_n \to \infty$ and so:

\[
v_{n+1}^2 - v_n^2 = 2v_n^2 \int_{-\infty}^{\infty} \frac{1 + t^2}{t^2 + v_n^2} \, d\mu(t) + \frac{v_n^2}{\left(\int_{-\infty}^{\infty} \frac{1 + t^2}{t^2 + v_n^2} \, d\mu(t) \right)^2} \to 2 \int_{-\infty}^{\infty} (1 + t^2) \, d\mu(t) \leq \infty\]

Hence:

\[
\frac{v_n(i)}{\sqrt{n}} \to \sqrt{2 \int_{-\infty}^{\infty} (1 + t^2) \, d\mu(t) \leq \infty}
\]

which means:

a) $T \times T \times T$ is dissipative

b) $\frac{a_n(T)}{\sqrt{n}} \to c \in [0, \infty)$ as $n \to \infty$ (in case T is r.e.).

These last two properties are held in common with the restrictions of theorem 3.4, and with the Markov shifts of random walks on \mathbb{Z}.

The following example does not fall within the scope of theorem 3.4, (though theorem 3.2 does apply).

Example 3.6. — $Tx = x + \alpha \tan x$ is exact, rationally ergodic with $a_n(T) \sim \frac{\log n}{\alpha}$ for $\alpha > 0$.

Proof. — Let $f(\omega) = \omega + \alpha \tan \omega$ and $f^n(\omega) = u_n(\omega) + iv_n(\omega)$. Then:

\[
u_{n+1} = u_n + \frac{2\alpha \sin 2u_ne^{2v_n}}{e^{4v_n} - 2 \cos 2u_ne^{2v_n} + 1}
\]

and

\[
v_{n+1} = v_n + \frac{\alpha e^{4v_n}}{e^{4v_n} - 2 \cos 2u_ne^{2v_n} + 1}
\]

Whence:

\[
v_{n+1} - v_n \geq \alpha \tanh v_n \geq \alpha \tanh v_0 > 0
\]

so

\[
v_n \sim \alpha n \quad \text{as } n \to \infty.
\]

On the other hand:

\[
|u_{n+1} - u_n| \leq \frac{2\alpha e^{2v_n}}{(e^{2v_n} - 1)^2} \leq 4\alpha e^{-2v_n} \leq 4\alpha e^{-an} \quad \text{for } n \text{ large}.
\]

Hence $u_n \to u_\infty$, and the argument that T is exact now proceeds identically to the last argument of theorem 3.4. □
The following lemma will give examples of \(f \in I_0(\mathbb{R}^2^+) \) with \(\alpha(f) = 1 \) and \(T = T(f) \) dissipative, and also uncountably many dissimilar \(\Gamma.e. \) (see [1]) restrictions \(T(f) \) with \(f \in I_0(\mathbb{R}^2^+) \), \(\alpha(f) = 1 \).

Lemma 3.7. — Let \(\mu \in S(\mathbb{R}) \) be symmetric with
\[
c(x) = \mu(|t| \geq x) \sim \frac{1}{x^\alpha} \quad \text{where} \quad 0 < \alpha < 2.
\]

Let
\[
f_a(\omega) = \omega + \int_{-\infty}^{\infty} \frac{1 + t\omega}{t - \omega} d\mu(t) \quad \text{and} \quad f^n(i) = iv_n.
\]

Then: \(v_n \sim cn^{1/\alpha} \) where \(c \) depends only on \(\alpha \).

Proof. — We have
\[
v_{n+1} = v(1 + F(v_n))
\]
where
\[
F(b) = \int_{-\infty}^{\infty} \frac{1 + t^2}{t^2 + b^2} d\mu(t).
\]

It is not difficult to see that
\[
F(b) = \frac{\mu(\mathbb{R})}{b^2} + 2(b^2 - 1) \int_{0}^{\infty} \frac{xc(x)}{(x^2 + b^2)^2} dx
\]

We first show that \(F(b) \sim \frac{c_1}{b^\alpha} \) as \(\alpha \to \infty \)

Let \(\varepsilon > 0 \), and \(M \) be such that
\[
\frac{1 - \varepsilon}{x^\alpha} \leq c(x) \leq \frac{1 + \varepsilon}{x^\alpha} \quad \forall x \geq M
\]
Writing
\[
L_M(b) = \int_{M}^{\infty} \frac{x^{1-\alpha}}{(x^2 + b^2)^2} dx
\]
we have that:
\[
(1 - \varepsilon)L_M(b) = \int_{M}^{\infty} \frac{xc(x)dx}{(x^2 + b^2)^2} \leq (1 + \varepsilon)L_M(b).
\]

Now
\[
L_M(b) = \int_{M}^{\infty} \frac{x^{1-\alpha}}{(x^2 + b^2)^2} dx = \frac{1}{b^{2+\alpha}} \int_{M/b}^{\infty} \frac{x^{1-\alpha}dx}{(x^2 + 1)^2} \sim \frac{c}{b^{2+\alpha}} \quad \text{as} \quad b \to \infty
\]

where
\[
c = \int_{0}^{\infty} \frac{x^{1-\alpha}dx}{(x^2 + 1)^2}
\]
Since \(\varepsilon > 0 \) was arbitrary and \(\alpha < 2 \), we have that

\[
F(b) \sim \frac{c}{b^2} \quad \text{as} \quad b \to \infty.
\]

Clearly, \(v_\alpha \to \infty \), hence:

\[
v_{n+1}^\alpha - v_n^\alpha = v_n^\alpha (1 + F(v_n))^\alpha - 1
\sim \alpha v_n^\alpha F(v_n) \quad \text{as} \quad n \to \infty
\to \alpha c \quad \text{as} \quad n \to \infty
\]

Thus \(v_\alpha \sim (\alpha c n)^{1/\alpha} \) as \(n \to \infty \) \(\square \)

We now let \(T_\alpha = T(f_\alpha) \).

By corollary 3.5:

If \(0 < \alpha < 1 \) then \(T_\alpha \) is dissipative.

If \(1 \leq \alpha < 2 \) then \(T_\alpha \) is rationally ergodic and

\[
\mathcal{A}(T_\alpha) = \begin{cases}
\{ \log n \} & \text{if} \quad \alpha = 1 \\
\{ n^{1-1/\alpha} \} & \text{if} \quad 1 < \alpha < 2.
\end{cases}
\]

If follows from theorem 2.4 of \([1]\) that if \(1 \leq \alpha_1 < \alpha_2 < 2 \) then \(T_{\alpha_1} \) and \(T_{\alpha_2} \) are not factors of the same measure preserving transformation.

Theorem 3.8. Let \(f \in \mathcal{L}(\mathbb{R}^2) \) and \(T = T(f) \).

Suppose \(x_0 \in \mathbb{R} \) and \(f \) is analytic in a neighbourhood around \(x_0 \).

If \(T(x_0) = x_0, T'(x_0) = 1 \) and \(T''(x_0) = 0 \) then \(T \) preserves the measure \(\nu_{x_0} \)

where \(d\nu_{x_0}(x) = \frac{dx}{(x - x_0)^2} \), and is exact, rationally ergodic with asymptotic type \(\{ \sqrt{n} \} \).

Remarks. The conditions \(T(x_0) = x_0 \) and \(T'(x_0) = 1 \) correspond to:

\(\lambda(\phi_{x_0}, f \phi_{x_0}^{-1}) = 1 \). If, in this situation, \(T''(x_0) \neq 0 \); then \(T \) is dissipative.

By possibly considering \(g(\omega) = f(\omega + x_0) - x_0 \) we may (and do) assume \(x_0 = 0 \).

Proof. Let

\[
f(\omega) = \omega + \sum_{n=3}^{\infty} a_n \omega^n \quad \text{for} \quad |\omega| \text{ small}.
\]

Then

\[
\frac{1}{f(\omega)} - \frac{1}{\omega} = \frac{\omega - f(\omega)}{f(\omega)} = \frac{\omega}{f(\omega)} \sum_{n=3}^{\infty} a_n \omega^n
\to 0 \quad \text{as} \quad \omega \to 0.
\]
Hence
\[\frac{1}{f(\omega)} = \frac{1}{\omega} + \sum_{n=1}^{\infty} b_n \omega^n \quad \text{for } |\omega| \text{ small}. \]

Let \(\tilde{f}(\omega) = -1/\left(-\frac{1}{\omega}\right) \).

Then:
\[\tilde{f}(\omega) = \omega + \sum_{n=1}^{\infty} b_n \omega^{-n} \quad \text{for } |\omega| \text{ large}, \]
say \(|\omega| \geq K \) and, since \(\tilde{f} \in I(\mathbb{R}^2^+) \), \(\alpha(\tilde{f}) = 1 \):

\[\tilde{f}(\omega) = \omega + \beta + \int_{-\infty}^{\infty} \frac{1 + t\omega}{t - \omega} d\mu(t) \quad \text{where } \mu \in S(\mathbb{R}), \beta \in \mathbb{R} \]

In order to prove the theorem by applying theorem 3.4, we will show that
\[\tilde{f}(\omega) = \omega + \int_{-K}^{K} \frac{dv(t)}{t - \omega} \quad \text{where } v \in S(\mathbb{R}). \]

Firstly, let \(g(\omega) = \tilde{f}(\omega) - \omega \). By (3.11):

\[-ibg(ib) \rightarrow b_1 \quad \text{as } b \rightarrow \infty \]

But by (3.12):

\[-ibg(ib) = -ib\left(\beta - b^2 \int_{-\infty}^{\infty} \frac{t \mu(t)}{t^2 + b^2}\right) + ib \int_{-\infty}^{\infty} \frac{t \mu(t)}{t^2 + b^2} + b^2 \int_{-\infty}^{\infty} \frac{1 + t^2}{t^2 + b^2} d\mu(t). \]

Hence, we obtain, from the convergence of the real part, that
\[\int_{-\infty}^{\infty} (1 + t^2) \mu(t) < \infty \]
and from the convergence of the imaginary part that:

\[b^2 \int_{-\infty}^{\infty} \frac{t \mu(t)}{t^2 + b^2} \rightarrow \beta \quad \text{as } b \rightarrow \infty. \]

which convergence, when combined with the previous one, gives
\[\int_{-\infty}^{\infty} t \mu(t) = \beta. \]
Now, let $dv(t) = (1 + t^2)d\mu(t)$, then $v \in S(\mathbb{R})$ and it follows easily that

\[\int(\omega) = \omega + \int_{-\infty}^{\infty} \frac{dv(t)}{t - \omega} \]

(3.14)

Now, let $h_b(a) = \text{Im} g(a + ib) = b$.

By (3.11) g is uniformly continuous on compact subsets of $[|\omega| \geq K]$, and so $h_b(a) \to 0$ as $b \to 0$ uniformly on compact subsets of $[|a| > K]$.

Let $dQ_b(x) = h_b(x)dx$, then $Q_b = P_{ib} \ast v$, and so $Q_b(A) \to v(A)$ for A a compact set. If A is a compact subset of $[|x| > K]$, then

\[v(A) = \lim_{b \to 0} Q_b(A) = \lim_{b \to 0} \int_A h_b(x)dx = 0.\]

Thus v is concentrated on $[-K, K]$ and (3.13) is established.

The transformations $T_\alpha x = \alpha x + (1 - \alpha) \tan x$ for $0 \leq \alpha < 1$ fall within the scope of theorem 3.9 (it was shown in [11] that T_0 is ergodic). It follows from asymptotic type considerations that the above transformations are dissimilar to $T_\alpha x = x + \alpha \tan x$.

REFERENCES

(Manuscrit reçu le 30 janvier 1978)